Modified Flavonoids with Diamines and Polyamines Provide Enhanced Fluorescence and Antimicrobial Activity
Abstract
1. Introduction
2. Results
2.1. Synthesis of Modified Flavonoids Through Schiff Base Reactivity
2.2. FT-IR Spectroscopy
2.3. UV-Visible Spectroscopy
2.4. ESI-MS Profile and Features
2.5. 1H and 13C NMR Spectroscopy
2.6. Fluorescence Activity
2.7. Antibacterial Properties
3. Discussion
3.1. Synthetic Flavonoid Derivatives and Physicochemical Profile
3.2. Photoluminescence Activity
3.3. Antibacterial Activity
4. Materials and Methods
4.1. Flavonoids and Chemicals
4.2. Physical Measurements
4.2.1. ESI-MS Spectrometry
4.2.2. Solution 1H-, 13C-NMR
4.2.3. Photoluminescence
4.3. Synthesis of Schiff Base Modified Flavonoids
General Procedure
4.4. Antibacterial Properties In Vitro
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| DA-2-PrOH | 1,3-diamino-2-propanol |
| DMSO | Dimethyl sulfoxide |
| ESI-MS | Electron Spray Ionization Mass Spectrometry |
| EDA | Ethylenediamine |
| FT-IR | Fourier Transform Infrared Spectroscopy |
| MIC | Minimum Inhibitory Concentration |
| NMR | Nuclear Magnetic Resonance Spectroscopy |
| PMEDA | Pentamethylenediamine |
| PRESAT | Presaturation |
| SD | Standard deviation |
| SPD | Spermidine |
| SPM | Spermine |
| UV-Visible | Ultraviolet-Visible Spectroscopy |
| TMEDA | Tetramethylenediamine |
| ZOI | Zone Of Inhibition |
References
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [PubMed]
- Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Feliciano, R.P.; Pritzel, S.; Heiss, C.; Rodriguez-Mateos, A. Flavonoid intake and cardiovascular disease risk. Curr. Opin. Food Sci. 2015, 2, 92–99. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important Flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Villela, A.; van Vuuren, M.S.A.; Willemen, H.M.; Derksen, G.C.H.; van Beek, T.A. Photo-stability of a flavonoid dye in presence of aluminium ions. Dye. Pigment. 2019, 162, 222–231. [Google Scholar] [CrossRef]
- Paramita, V.; Kusumayanti, H.; Wahyuningsih; Amalia, R.; Leviana, W.; Nisa’, Q.A.K. Application of flavonoid and anthocyanin contents from Rambutan (Nephelium lappaceum) Peel as natural dyes on cotton fabric. Adv. Sci. Lett. 2018, 24, 9853–9855. [Google Scholar] [CrossRef]
- Danihelová, M.; Viskupičová, J.; Šturdík, E. Lipophilization of flavonoids for their food, therapeutic and cosmetic applications. Acta Chim. Slovaca 2012, 5, 59–69. [Google Scholar] [CrossRef]
- Čižmárová, B.; Hubková, B.; Tomečková, V.; Birková, A. Flavonoids as promising natural compounds in the prevention and treatment of selected skin Diseases. Int. J. Mol. Sci. 2023, 24, 6324. [Google Scholar] [CrossRef]
- Chuarienthong, P.; Lourith, N.; Leelapornpisid, P. Clinical efficacy comparison of anti-wrinkle cosmetics containing herbal flavonoids. Int. J. Cosmet. Sci. 2010, 32, 99–106. [Google Scholar] [CrossRef]
- Hendra, R.; Ahmad, S.; Sukari, A.; Shukor, M.Y.; Oskoueian, E. Flavonoid analyses and antimicrobial activity of various parts of Phaleria macrocarpa (Scheff.) Boerl fruit. Int. J. Mol. Sci. 2011, 12, 3422–3431. [Google Scholar] [CrossRef] [PubMed]
- Ao, C.; Li, A.; Elzaawely, A.A.; Xuan, T.D.; Tawata, S. Evaluation of antioxidant and antibacterial activities of Ficus microcarpa L. fil. extract. Food Control 2008, 19, 940–948. [Google Scholar] [CrossRef]
- Liang, M.; Ge, X.; Xua, H.; Ma, K.; Zhang, W.; Zan, Y.; Efferth, T.; Xue, Z.; Hua, X. Phytochemicals with activity against methicillin-resistant Staphylococcus Aureus. Phytomedicine 2022, 100, 154073. [Google Scholar] [CrossRef]
- Butler, M.S. Natural products to drugs: Natural product derived compounds in clinical trials. Nat. Prod. Rep. 2005, 22, 162–195, Erratum in Nat. Prod. Rep. 2006, 23, 131. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [PubMed]
- Hatano, T.; Kusuda, M.; Inada, K.; Ogawa, T.; Shiota, S.; Tsuchiya, T.; Yoshida, T. Effects of tannins and related polyphenols on methicillin-resistant Staphylococcus aureus. Phytochemistry 2005, 66, 2047–2055. [Google Scholar] [CrossRef]
- Tangney, C.C.; Rasmussen, H.E. Polyphenols, Inflammation, and cardiovascular disease. Curr. Atheroscler. Rep. 2013, 15, 324. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356, Erratum in Int. J. Antimicrob. Agents 2006, 27, 181. [Google Scholar] [CrossRef]
- Li, A.P.; He, Y.H.; Zhang, S.Y.; Shi, Y.P. Antibacterial activity and action mechanism of flavonoids against phytopathogenic bacteria. Pestic. Biochem. Physiol. 2022, 188, 105221. [Google Scholar] [CrossRef]
- Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Ali Shah, S.A.; Khatib, A.; Mukhtar, S.; Alsharif, M.A.; Parveen, H.; Zakaria, Z.A. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules 2022, 27, 1149. [Google Scholar] [CrossRef]
- Duda-Madej, A.; Stecko, J.; Sobieraj, J.; Szymańska, N.; Kozłowska, J. Naringenin and its derivatives—Health-promoting phytobiotic against resistant bacteria and fungi in humans. Antibiotics 2022, 11, 1628. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Fokou, P.V.T.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The Therapeutic Potential of Naringenin: A Review of Clinical Trials. Pharmaceuticals 2019, 12, 11. [Google Scholar] [CrossRef]
- Yan, Y.; Xia, X.; Fatima, A.; Zhang, L.; Yuan, G.; Lian, F.; Wang, Y. Antibacterial activity and mechanisms of plant flavonoids against Gram-negative bacteria based on the antibacterial statistical model. Pharmaceuticals 2024, 17, 292. [Google Scholar] [CrossRef] [PubMed]
- Uçar, K.; Göktaş, Z. Biological activities of naringenin: A narrative review based on in vitro and in vivo studies. Nutr. Res. 2023, 119, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Céliz, G.; Daz, M.; Audisio, M.C. Antibacterial activity of naringin derivatives against pathogenic strains. J. Appl. Microbiol. 2011, 111, 731–738. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: Boston, MA, USA, 2006. [Google Scholar]
- Monago-Maraña, O.; Durán-Merás, I.; Galeano-Díaz, T.; Muñoz de la Peña, A. Fluorescence properties of flavonoid compounds. Quantification in paprika samples using spectrofluorimetry coupled to second order chemometric tools. Food Chem. 2016, 196, 1058–1065. [Google Scholar] [CrossRef]
- Matsia, S.; Tsave, O.; Hatzidimitriou, A.; Salifoglou, A. Chromium flavonoid complexation in an antioxidant capacity role. Int. J. Mol. Sci. 2022, 23, 7171. [Google Scholar] [CrossRef]
- Pereira, R.M.; Andrades, N.E.; Paulino, N.; Sawaya, A.C.; Eberlin, M.N.; Marcucci, M.C.; Favero, G.M.; Novak, E.M.; Bydlowski, S.P. Synthesis and characterization of a metal complex containing naringin and Cu, and its antioxidant, antimicrobial, antiinflammatory and tumor cell cytotoxicity. Molecules 2007, 12, 1352–1366. [Google Scholar] [CrossRef]
- Alem, M.B.; Desalegn, T.; Damena, T.; Bayle, E.A.; Koobotse, M.O.; Ngwira, K.J.; Ombito, J.O.; Zachariah, M.; Demissie, T.B. Cytotoxicity and antibacterial potentials of mixed ligand Cu(II) and Zn(II) complexes: A combined experimental and computational study. ACS Omega 2023, 8, 13421–13434. [Google Scholar] [CrossRef]
- Matsia, S.; Lazopoulos, G.; Hatzidimitriou, A.; Reimann, M.K.; Pöttgen, R.; Salifoglou, A. Chemical reactivity profile of rare earth metal ions with flavonoids. From structural speciation to magneto-optical properties. Polyhedron 2023, 230, 116231. [Google Scholar] [CrossRef]
- Rajesh R, U.; K S, S.; Gopakumar, A.B.; Koshy, J.T.; Sangeetha, D. Synthesis of naringenin Schiff base loaded CMC/PVA scaffold as biodegradable wound care materials. Mater. Res. Express 2024, 11, 125402. [Google Scholar] [CrossRef]
- Hassan, M.A.; Omer, A.M.; Abbas, E.; Baset, W.M.A.; Tamer, T.M. Preparation, physicochemical characterization and antimicrobial activities of novel two phenolic chitosan Schiff base derivatives. Sci. Rep. 2018, 8, 11416. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Chen, J.; Yuan, W.; Lin, Q.; Ji, L.; Liu, F. Preparation and antibacterial activity of Schiff bases from O-Carboxymethyl chitosan and para-substituted benzaldehydes. Polym. Bull. 2011, 68, 1215–1226. [Google Scholar] [CrossRef]
- Kumar, S.; Kumari, M.; Dutta, P.K.; Koh, J. Chitosan biopolymer Schiff base: Preparation, characterization, optical, and antibacterial activity. Int. J. Polym. Mater. Polym. Biomater. 2013, 63, 173–177. [Google Scholar] [CrossRef]
- Abood Hameed, S.; Alrouby, S.K.; Hilal, R. Design of molecular switching and signaling based on proton transfer in 2-hydroxy Schiff bases: A computational study. J. Mol. Model. 2013, 19, 559–569. [Google Scholar] [CrossRef]
- Shi, L.; Ge, H.M.; Tan, S.H.; Li, H.Q.; Song, Y.C.; Zhu, H.L.; Tan, R.X. Synthesis and antimicrobial activities of Schiff bases derived from 5-chloro-salicylaldehyde. Eur. J. Med. Chem. 2007, 42, 558–564. [Google Scholar] [CrossRef]
- Singh, K.; Barwa, M.S.; Tyagi, P. Synthesis, characterization and biological studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with bidentate Schiff bases derived by heterocyclic ketone. Eur. J. Med. Chem. 2006, 41, 147–153. [Google Scholar] [CrossRef]
- Zhao, Y.; Cui, X.; Cui, M.; Zhang, C.; Meng, Q. ESIPT and AIE characteristics of three Schiff base derivatives and the relevant photophysical mechanism analyses. J. Lumin. 2022, 248, 118951. [Google Scholar] [CrossRef]
- Wallace, H.M.; Fraser, A.V. Inhibitors of polyamine metabolism: Review article. Amino Acids 2004, 26, 353–365. [Google Scholar] [CrossRef]
- Minois, N.; Carmona-Gutierrez, D.; Madeo, F. Polyamines in aging and disease. Aging 2011, 3, 716–732. [Google Scholar] [CrossRef]
- Thomas, T.; Thomas, T.J. Polyamines in cell growth and cell death: Molecular mechanisms and therapeutic applications. Cell. Mol. Life Sci. 2001, 58, 244–258. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.-L.; Meng, X.; Yan, Y.-D.; Han, J.-C.; Li, J.-S.; Wang, H.; Zhang, L. Optimisation of the extraction process of naringin and its effect on reducing blood lipid levels in vitro. Molecules 2023, 28, 1788. [Google Scholar] [CrossRef] [PubMed]
- Din, S.; Hamid, S.; Yaseen, A.; Yatoo, A.M.; Ali, S.; Shamim, K.; Mahdi, W.A.; Alshehri, S.; Rehman, M.U.; Shah, W.A. Isolation and characterization of flavonoid Naringenin and evaluation of cytotoxic and biological efficacy of Water Lilly (Nymphaea mexicana Zucc.). Plants 2022, 11, 3588. [Google Scholar] [CrossRef] [PubMed]
- Krysa, M.; Szymańska-Chargot, M.; Zdunek, A. FT-IR and FT-Raman fingerprints of flavonoids—A review. Food Chem. 2022, 393, 133430. [Google Scholar] [CrossRef]
- Mundlia, J.; Ahuja, M.; Kumar, P.; Pillay, V. Improved antioxidant, antimicrobial and anticancer activity of naringenin on conjugation with pectin. 3 Biotech 2019, 9, 312. [Google Scholar] [CrossRef]
- Brodowska, K.; Sykuła, A.; Garribba, E.; Łodyga-Chruścińska, E.; Sójka, M. Naringenin Schiff base: Antioxidant activity, acid–base profile, and interactions with DNA. Transit. Met. Chem. 2016, 41, 179–189. [Google Scholar] [CrossRef]
- Cordenonsi, L.M.; Sponchiado, R.M.; Campanharo, S.C.; Garcia, C.V.; Raffin, R.P.; Schapoval, E.E.S. Study of flavonoids present in pomelo (Citrus maxima) by DSC, UV-VIS, IR, 1H and 13C NMR and MS. Drug Anal. Res. 2017, 1, 31–37. [Google Scholar] [CrossRef]
- Gattuso, G.; Barreca, D.; Gargiulli, C.; Leuzzi, U.; Caristi, C. Flavonoid composition of Citrus juices. Molecules 2007, 12, 1641–1673. [Google Scholar] [CrossRef]
- Das, G.; Shinde, D.B.; Kandambeth, S.; Biswal, B.P.; Banerjee, R. Mechanosynthesis of imine, β-ketoenamine, and hydrogen-bonded imine-linked covalent organic frameworks using liquid-assisted grinding. Chem. Commun. 2014, 50, 12615–12618. [Google Scholar] [CrossRef]
- Victor, M.M.; David, J.M.; Sakukuma, M.C.K.; França, E.L.; Nunes, A.V.J. A simple and efficient process for the extraction of naringin from grapefruit peel waste. Green Process. Synth. 2018, 7, 524–529. [Google Scholar] [CrossRef]
- Sykuła, A.; Kowalska-Baron, A.; Gałęcki, K.; Błazińska, P.; Łodyga-Chruścińska, E. Structural and spectral investigation of a series of Flavanone derivatives. Molecules 2021, 26, 1298. [Google Scholar] [CrossRef]
- Mandial, D.; Khullar, P.; Kumar, H.; Ahluwalia, G.K.; Bakshi, M.S. Naringin-chalcone bioflavonoid-protected nanocolloids: Mode of flavonoid adsorption, a determinant for protein extraction. ACS Omega 2018, 3, 15606–15614. [Google Scholar] [CrossRef] [PubMed]
- Mukai, R.; Terao, J.; Shirai, Y.; Saito, N.; Ashida, H. Determination of subcellular localization of flavonol in cultured cells by Laser Scanning. In Laser Scanning, Theory and Applications; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef]
- Denny, B.J.; West, P.W.; Mathew, T.C. Antagonistic interactions between the flavonoids hesperetin and naringenin and beta-lactam antibiotics against Staphylococcus aureus. Br. J. Biomed. Sci. 2008, 65, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.H.; Wang, M.S.; Zeng, X.A.; Xu, X.M.; Brennan, C.S. Membrane and genomic DNA dual-targeting of citrus flavonoid naringenin against Staphylococcus aureus. Integr. Biol. 2017, 9, 820–829. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cao, M.; Shang, Z.; Xu, J.; Chen, X.; Zhu, Z.; Wang, W.; Wei, X.; Zhou, X.; Bai, Y.; et al. Research progress on the antibacterial activity of natural flavonoids. Antibiotics 2025, 14, 334. [Google Scholar] [CrossRef]
- Das, S.; Rohman, M.A.; Roy, A.S. Exploring the non-covalent binding behaviours of 7-hydroxyflavone and 3-hydroxyflavone with hen egg white lysozyme: Multi-spectroscopic and molecular docking perspectives. J. Photochem. Photobiol. B Biol. 2018, 180, 25–38. [Google Scholar] [CrossRef]
- Nagaoka, S.-I.; Bandoh, Y.; Matsuhiroya, S.; Inoue, K.; Nagashima, U.; Ohara, K. Activity correlation among singlet-oxygen quenching, free-radical scavenging and excited-state proton-transfer in hydroxyflavones: Substituent and solvent effects. J. Photochem. Photobiol. A Chem. 2021, 409, 113122, Erratum in J. Photochem. Photobiol. A Chem. 2021, 410, 113189. [Google Scholar] [CrossRef]
- Santos, F.S.; Ramasamy, E.; Ramamurthy, V.; Rodembusch, F.S. Excited state chemistry of flavone derivatives in a confined medium: ESIPT emission in aqueous media. Photochem. Photobiol. Sci. 2014, 13, 992–996. [Google Scholar] [CrossRef]
- Hymas, M.; Eller, J.; Salehi, M.; Omidyan, R.; Poigny, S.; Stavros, V.G. Excited state deactivation in phytochemical flavonoids: Astragalin and kaempferol. Phys. Chem. Chem. Phys. 2025, 27, 15895–15905. [Google Scholar] [CrossRef]
- Afrin, A.; Jayaraj, A.; Gayathri, M.S.; Swamy P., C.A. An overview of Schiff base-based fluorescent turn-on probes: A potential candidate for tracking live cell imaging of biologically active metal ions. Sens. Diagn. 2023, 2, 988–1076. [Google Scholar] [CrossRef]
- Rajimon, K.J.; Alzahrani, A.Y.; Rajendran Nair, D.S.; Venkatesh, D.P.; Thomas, R. Exploring the structure and dynamics of a fluorescent schiff base (1E,1′E)-1,1′-(1,4-phenylene) bis(N-(4-chlorophenyl) methamine: Synthesis, spectroscopic analysis, thermal, electronic and crystallographic study with biological applications. J. Mol. Struct. 2024, 1312, 138546. [Google Scholar] [CrossRef]
- da Silva, C.M.; da Silva, D.L.; Modolo, L.V.; Alves, R.B.; de Resende, M.A.; Martins, C.V.B.; de Fátima, Â. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res. 2011, 2, 1–8. [Google Scholar] [CrossRef]
- Halevas, E.; Matsia, S.; Hatzidimitriou, A.; Geromichalou, E.; Papadopoulos, T.A.; Katsipis, G.; Pantazaki, A.; Litsardakis, G.; Salifoglou, A. A unique ternary Ce(III)-quercetin-phenanthroline assembly with antioxidant and anti-inflammatory properties. J. Inorg. Biochem. 2022, 235, 111947. [Google Scholar] [CrossRef]
- Matsia, S.; Papadopoulos, A.; Hatzidimitriou, A.; Schumacher, L.; Koldemir, A.; Pöttgen, R.; Panagiotopoulou, A.; Chasapis, C.T.; Salifoglou, A. Hybrid lanthanide metal–organic compounds with flavonoids: Magneto-optical properties and biological activity profiles. Int. J. Mol. Sci. 2025, 26, 1198. [Google Scholar] [CrossRef] [PubMed]







| Flavonoid/Modified Flavonoid | FT-IR Vibrations (cm−1) | UV-Visible | ||||
|---|---|---|---|---|---|---|
| OH | C-H | C=N | C-O-C | Wavelength (λmax, nm) | Molecular Absorption Coefficient (ε, M−1·cm−1) | |
| Naringin | 3417 | 2926 | 1649(C=O) | 1205–1043 | 284/320 | 16,579/3215 |
| Naringin-EDA-Naringin | 3375 | 2973 | 1612 | 1179–1064 | 284/392 | 18,780/3694 |
| Naringin-DA-2-PrOH-Naringin | 3382 | 2978 | 1607 | 1179–1064 | 286/392 | 18,825/5299 |
| Naringin-TMEDA-Naringin | 3406 | 2935 | 1611 | 1177–1065 | 286/389 | 18,535/5121 |
| Naringin-PMEDA-Naringin | 3396 | 2930 | 1611 | 1167–1075 | 286/389 | 18,657/5692 |
| Naringin-SPD-Naringin | 3406 | 2933 | 1613 | 1180–1066 | 285/386 | 25,517/6075 |
| Naringin-SPM-Naringin | 3402 | 2933 | 1608 | 1180–1070 | 285/386 | 24,469/5640 |
| Naringenin | 3285/3118 | 2911 | 1633(C=O) | 1161–1065 | 288/324 | 18,412/3495 |
| Naringenin-EDA-Naringenin | 3369/3192 | 3032 | 1589 | 1188–1010 | 286/386 | 26,671/7080 |
| Naringenin-DA-2-PrOH-Naringenin | 3375/3187 | 2916 | 1596 | 1184–1012 | 297/386 | 18,950/5158 |
| Naringenin-TMEDA-Naringenin | 3422/3171 | 2967 | 1590 | 1177–1069 | 294/380 | 18,510/6284 |
| Naringenin-PMEDA-Naringenin | 3418/3154 | 2941 | 1589 | 1177–1021 | 297/386 | 18,327/5942 |
| Naringenin-SPD-Naringenin | 3427/3214 | 2927 | 1592 | 1170–1060 | 303/387 | 18,535/5756 |
| Naringenin-SPM-Naringenin | 3402/3211 | 2930 | 1592 | 1171–1060 | 288/385 | 4987/1063 |
| Derivatives | Mass Content (mg)/Mass Content/Unit Area (mg/cm2) ZOI (mm) | Controls | Mass Content (mg)/Mass Content/Unit Area (mg/cm2) ZOI (mm) |
|---|---|---|---|
| Naringin-EDA-Naringin | 5.0 mg (17 mg/cm2) 28.2 ± 0.1 | Naringin | 4.9 mg (17 mg/cm2) n.e.z. |
| EDA | 0.23 mg (0.82 mg/cm2) n.e.z. | ||
| Naringin-DA-2-PrOH-Naringin | 2.0 mg (7.1 mg/cm2) 26.0 ± 0.2 | Naringin | 1.9 mg (6.8 mg/cm2) n.e.z. |
| DA-2-PrOH | 0.35 mg (1.3 mg/cm2) n.e.z. | ||
| Naringin-TMEDA-Naringin | 2.0 mg (7.1 mg/cm2) 38.3 ± 0.3 | Naringin | 1.9 mg (6.8 mg/cm2) n.e.z. |
| TMEDA | 0.14 mg (0.5 mg/cm2) n.e.z. | ||
| Naringin-PMEDA-Naringin | 2.0 mg (7.1 mg/cm2) 29.8 ± 0.2 | Naringin | 1.9 mg (6.8 mg/cm2) n.e.z. |
| PMEDA | 0.16 mg (0.57 mg/cm2) n.e.z. | ||
| Naringin-SPD-Naringin | 3.0 mg (11 mg/cm2) 26.6 ± 0.2 | Naringin | 2.7 mg (9.6 mg/cm2) n.e.z. |
| SPD | 0.33 mg (1.2 mg/cm2) n.e.z. | ||
| Naringin-SPM-Naringin | 3.0 mg (11 mg/cm2) 25.5 ± 0.2 | Naringin | 2.6 mg (9.3 mg/cm2) n.e.z. |
| SPM | 0.45 mg (1.6 mg/cm2) n.e.z. |
| Derivatives | Mass Content (mg)/Mass Content/Unit Area (mg/cm2) ZOI (mm) | Controls | Mass Content (mg)/Mass Content/Unit Area (mg/cm2) ZOI (mm) |
|---|---|---|---|
| Naringenin-EDA-Naringenin | 10 mg (36 mg/cm2) 23.3 ± 0.2 | Naringenin | 9.5 mg (34 mg/cm2) n.e.z. |
| Ethylenediamine | 0.9 mg (3.2 mg/cm2) 13.2 ± 0.1 | ||
| Naringenin-DA-2-PrOH-Naringenin | 10 mg (36 mg/cm2) 17.3 ± 0.1 | Naringenin | 9.0 mg (32 mg/cm2) n.e.z. |
| 1,3-diamino-2-propanol | 1.4 mg (5.0 mg/cm2) 11.1 ± 0.1 | ||
| Naringenin-TMEDA-Naringenin | 10 mg (36 mg/cm2) 19.9 ± 0.1 | Naringenin | 9.1 mg (33 mg/cm2) n.e.z. |
| 1,4-diaminobutane | 1.4 mg (5.0 mg/cm2) 18.2 ± 0.1 | ||
| Naringenin-PMEDA-Naringenin | 10 mg (36 mg/cm2) 16.5 ± 0.3 | Naringenin | 1.9 mg (6.8 mg/cm2) n.e.z. |
| 1,5-diaminopentane | 1.6 mg (5.7 mg/cm2) 18.4 ± 0.1 | ||
| Naringenin-SPD-Naringenin | 10 mg (36 mg/cm2) 26.9 ± 0.1 | Naringenin | 8.3 mg (30 mg/cm2) n.e.z. |
| Spermidine | 0.64 mg (2.3 mg/cm2) 16.2 ± 0.2 | ||
| Naringenin-SPM-Naringenin | 10 mg (36 mg/cm2) 21.5 ± 0.1 | Naringenin | 7.5 mg (27 mg/cm2) n.e.z. |
| Spermine | 2.8 mg (10 mg/cm2) 34.4 ± 0.3 |
| Linker Mass 0.50 mmol | Chemical Formula | MW (g/mol) | Product (g) Yield (%) | % C Calc./Found | % H Calc./Found | % N Calc./Found |
|---|---|---|---|---|---|---|
| 33 μL EDA | C56H68N2O26 | 1185.14 | 0.37 g 63% | 56.71/56.75 | 5.74/5.76 | 2.36/2.33 |
| 0.045 g DA-2-PrOH | C57H70N2O27 | 1215.16 | 0.23 g 38% | 56.29/56.22 | 5.76/5.78 | 2.30/2.28 |
| 0.045 g TMEDA | C58H72N2O26 | 1213.19 | 0.36 g 59% | 57.36/57.41 | 5.93/5.96 | 2.31/2.27 |
| 0.051 g PMEDA | C59H74N2O26 | 1227.21 | 0.59 g 95% | 57.69/57.62 | 6.03/6.06 | 2.28/2.24 |
| 78 μL SPD | C61H79N3O26 | 1270.28 | 0.15 g 52% | 57.62/57.64 | 6.22/6.26 | 3.31/2.28 |
| 0.12 g SPM | C64H86N4O26 | 1327.38 | 0.25 g 75% | 57.86/57.81 | 6.48/6.42 | 4.22/4.25 |
| Linker Mass 0.50 mmol | Chemical Formula | MW (g/mol) | Product (g) Yield (%) | % C Calc./Found | % H Calc./Found | % N Calc./Found |
|---|---|---|---|---|---|---|
| 33 μL EDA | C32H28N2O8 | 568.57 | 0.070 g 25% | 67.58/67.60 | 4.93/4.96 | 4.93/4.90 |
| 0.045 g DA-2-PrOH | C33H30N2O9 | 598.60 | 0.14 g 47% | 66.20/66.17 | 5.02/5.06 | 4.68/4.66 |
| 0.045 g TMEDA | C34H32N2O8 | 596.63 | 0.080 g 27% | 68.38/68.41 | 5.36/5.40 | 4.69/4.67 |
| 0.051 g PMEDA | C35H34N2O8 | 610.65 | 0.13 g 43% | 68.78/68.82 | 5.57/5.61 | 4.59/4.60 |
| 78 μL SPD | C37H39N3O8 | 653.72 | 0.12 g 36% | 67.91/67.95 | 5.97/6.01 | 6.42/6.45 |
| 0.12 g SPM | C40H46N4O8 | 710.82 | 0.11 g 31% | 67.52/67.46 | 6.47/6.41 | 7.88/7.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Matsia, S.; Salifoglou, A. Modified Flavonoids with Diamines and Polyamines Provide Enhanced Fluorescence and Antimicrobial Activity. Int. J. Mol. Sci. 2026, 27, 253. https://doi.org/10.3390/ijms27010253
Matsia S, Salifoglou A. Modified Flavonoids with Diamines and Polyamines Provide Enhanced Fluorescence and Antimicrobial Activity. International Journal of Molecular Sciences. 2026; 27(1):253. https://doi.org/10.3390/ijms27010253
Chicago/Turabian StyleMatsia, Sevasti, and Athanasios Salifoglou. 2026. "Modified Flavonoids with Diamines and Polyamines Provide Enhanced Fluorescence and Antimicrobial Activity" International Journal of Molecular Sciences 27, no. 1: 253. https://doi.org/10.3390/ijms27010253
APA StyleMatsia, S., & Salifoglou, A. (2026). Modified Flavonoids with Diamines and Polyamines Provide Enhanced Fluorescence and Antimicrobial Activity. International Journal of Molecular Sciences, 27(1), 253. https://doi.org/10.3390/ijms27010253

