Ultra-Sensitive Bioanalytical Separations Using a New 4-Tritylphenyl Methacrylate-Based Monolithic Nano-Column with an Inner Diameter of 20 µm for Nano-LC
Abstract
1. Introduction
2. Results and Discussion
2.1. The Preparation and Characterization of 4-TPM-Based Monolithic Column
2.2. Chromatographic Evaluation
2.3. Peptide and Protein Separation
2.4. Proteomics Analysis
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instrumentation
3.3. The Preparation of the 4-TPM-Based Monolithic Column
3.3.1. Monomer Synthesis
3.3.2. In Situ Polymerization
3.4. Protein-Peptide and Cell Culture Preparations
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Greguš, M.; Ivanov, A.R.; Wilson, S.R. Ultralow Flow Liquid Chromatography and Related Approaches: A Focus on Recent Bioanalytical Applications. J. Sep. Sci. 2023, 46, 2300440. [Google Scholar] [CrossRef]
- Wilson, S.R.; Vehus, T.; Berg, H.S.; Lundanes, E. Nano-LC in Proteomics: Recent Advances and Approaches. Bioanalysis 2015, 7, 1799–1815. [Google Scholar] [CrossRef]
- Chetwynd, A.J.; David, A. A Review of Nanoscale LC-ESI for Metabolomics and Its Potential to Enhance the Metabolome Coverage. Talanta 2018, 182, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Danne-Rasche, N.; Coman, C.; Ahrends, R. Nano-LC/NSI MS Refines Lipidomics by Enhancing Lipid Coverage, Measurement Sensitivity, and Linear Dynamic Range. Anal. Chem. 2018, 90, 8093–8101. [Google Scholar] [CrossRef]
- Aydoğan, C. Critical Review of New Advances in Food and Plant Proteomics Analyses by Nano-LC/MS towards Advanced Foodomics. TrAC Trends Anal. Chem. 2024, 176, 117759. [Google Scholar] [CrossRef]
- Wilson, S.R.; Olsen, C.; Lundanes, E. Nano Liquid Chromatography Columns. Analyst 2019, 144, 7090–7104. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Felisilda, B.M.B.; Quirino, J.P. Recent Advancements in Open-Tubular Liquid Chromatography and Capillary Electrochromatography during 2014–2018. Anal. Chim. Acta 2019, 1088, 20–34. [Google Scholar] [CrossRef]
- Aydoğan, C.; Alharthi, S. Nano-LC with New Hydrophobic Monolith Based on 9-Antracenylmethyl Methacrylate for Biomolecule Separation. Int. J. Mol. Sci. 2024, 25, 13646. [Google Scholar] [CrossRef] [PubMed]
- Svec, F.; Lv, Y. Advances and Recent Trends in the Field of Monolithic Columns for Chromatography. Anal. Chem. 2015, 87, 250–273. [Google Scholar] [CrossRef]
- Knob, R.; Kulsing, C.; Boysen, R.I.; Macka, M.; Hearn, M.T.W. Surface-Area Expansion with Monolithic Open Tubular Columns. TrAC Trends Anal. Chem. 2015, 67, 16–25. [Google Scholar] [CrossRef]
- Rozing, G. Micropillar Array Columns for Advancing Nanoflow HPLC. Microchem. J. 2021, 170, 106629. [Google Scholar] [CrossRef]
- Lynch, K.B.; Ren, J.; Beckner, M.A.; He, C.; Liu, S. Monolith Columns for Liquid Chromatographic Separations of Intact Proteins: A Review of Recent Advances and Applications. Anal. Chim. Acta 2019, 1046, 48–68. [Google Scholar] [CrossRef]
- Ma, J.; Dai, Q.; Li, X.; Zhu, X.; Ma, T.; Qiao, X.; Shen, S.; Liu, X. Dipentaerythritol Penta-/Hexa-Acrylate Based-Highly Cross-Linked Hybrid Monolithic Column: Preparation and Its Applications for Ultrahigh Efficiency Separation of Proteins. Anal. Chim. Acta 2017, 963, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Arrua, R.D.; Talebi, M.; Causon, T.J.; Hilder, E.F. Review of Recent Advances in the Preparation of Organic Polymer Monoliths for Liquid Chromatography of Large Molecules. Anal. Chim. Acta 2012, 738, 1–12. [Google Scholar] [CrossRef]
- Şeker, S.; Alharthi, S.; Aydoğan, C. Open Tubular Nano-Liquid Chromatography with a New Polylysine Grafted on Graphene Oxide Stationary Phase for the Separation and Determination of Casein Protein Variants in Milk. J. Chromatogr. A 2022, 1667, 462885. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, J.E.; Flodin, P. Macroporous Gels. 2. Polymerization of Trimethylolpropane Trimethacrylate in Various Solvents. Macromolecules 1987, 20, 1518–1522. [Google Scholar] [CrossRef]
- Vlakh, E.G.; Tennikova, T.B. Preparation of Methacrylate Monoliths. J. Sep. Sci. 2007, 30, 2801–2813. [Google Scholar] [CrossRef]
- Aydoğan, C.; El Rassi, Z. Monolithic Stationary Phases with Incorporated Fumed Silica Nanoparticles. Part II. Polymethacrylate-Based Monolithic Column with “Covalently” Incorporated Modified Octadecyl Fumed Silica Nanoparticles for Reversed-Phase Chromatography. J. Chromatogr. A 2016, 1445, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Melander, W.R.; Horváth, C. Reversed-Phase Chromatography. In High-Performance Liquid Chromatography; Elsevier: Amsterdam, The Netherlands, 1980; pp. 113–319. ISBN 978-0-12-312202-5. [Google Scholar]
- Snyder, L.R.; Kirkland, J.J.; Dolan, J.W. Introduction to Modern Liquid Chromatography, 1st ed.; Wiley: Hoboken, NJ, USA, 2009; ISBN 978-0-470-16754-0. [Google Scholar]
- Collier, T.S.; Hawkridge, A.M.; Georgianna, D.R.; Payne, G.A.; Muddiman, D.C. Top-Down Identification and Quantification of Stable Isotope Labeled Proteins from Aspergillus flavus Using Online Nano-Flow Reversed-Phase Liquid Chromatography Coupled to a LTQ-FTICR Mass Spectrometer. Anal. Chem. 2008, 80, 4994–5001. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Piehowski, P.D.; Shi, T.; Smith, R.D.; Qian, W.-J. Advances in Microscale Separations towards Nanoproteomics Applications. J. Chromatogr. A 2017, 1523, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Mahn, A.; Lienqueo, M.E.; Salgado, J.C. Methods of Calculating Protein Hydrophobicity and Their Application in Developing Correlations to Predict Hydrophobic Interaction Chromatography Retention. J. Chromatogr. A 2009, 1216, 1838–1844. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, L.; Zhang, Y. Chromatographic Separation of Peptides and Proteins for Characterization of Proteomes. Chem. Commun. 2023, 59, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Pirmoradian, M.; Budamgunta, H.; Chingin, K.; Zhang, B.; Astorga-Wells, J.; Zubarev, R.A. Rapid and Deep Human Proteome Analysis by Single-Dimension Shotgun Proteomics. Mol. Cell. Proteom. 2013, 12, 3330–3338. [Google Scholar] [CrossRef] [PubMed]
- Aydoğan, C. New Advances in Nano-Liquid Chromatography for Proteomics Analysis. In Advances in Chromatography; CRC Press: Bota Raton, FL, USA, 2024; ISBN 978-1-003-50056-8. [Google Scholar]
- Zhang, Y.; Zhang, Y.; Wang, G.; He, Y. Study on Fluorescent Switching of Naphthopyran and Pyrene-Containing Dyad and Copolymer in Solutions and Films. Dyes Pigments 2014, 102, 107–113. [Google Scholar] [CrossRef]
- Aydoğan, C. Boronic Acid-Fumed Silica Nanoparticles Incorporated Large Surface Area Monoliths for Protein Separation by Nano-Liquid Chromatography. Anal. Bioanal. Chem. 2016, 408, 8457–8466. [Google Scholar] [CrossRef]








| Column | Monomers (Molar Ratio) | Porogen (µL) | R2 a | Specific Surface Area (m2/g) | Permeability (×10−14) |
|---|---|---|---|---|---|
| 4-TPM: TRIM | Cyclohexanol: 1-Dodecanol | ||||
| TPM 1 | 1.0:2.1 | 350:150 | - | - | - |
| TPM 2 | 1.0:2.1 | 300:200 | - | - | - |
| TPM 3 | 1.0:2.1 | 250:250 | - | - | - |
| TPM 4 | 1.0:2.1 | 200:300 | - | - | too low flow |
| TPM 5 | 1.0:2.1 | 100:400 | 0.9994 | 141.4 | 4.34 |
| TPM 6 | 1.2:2.1 | 100:400 | 0.9997 | 211.7 | 1.30 |
| TPM 7 | 1.4:2.1 | 100:400 | - | - | - |
| TPM 8 | 1.6:2.1 | 100:400 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Aydoğan, C. Ultra-Sensitive Bioanalytical Separations Using a New 4-Tritylphenyl Methacrylate-Based Monolithic Nano-Column with an Inner Diameter of 20 µm for Nano-LC. Int. J. Mol. Sci. 2026, 27, 224. https://doi.org/10.3390/ijms27010224
Aydoğan C. Ultra-Sensitive Bioanalytical Separations Using a New 4-Tritylphenyl Methacrylate-Based Monolithic Nano-Column with an Inner Diameter of 20 µm for Nano-LC. International Journal of Molecular Sciences. 2026; 27(1):224. https://doi.org/10.3390/ijms27010224
Chicago/Turabian StyleAydoğan, Cemil. 2026. "Ultra-Sensitive Bioanalytical Separations Using a New 4-Tritylphenyl Methacrylate-Based Monolithic Nano-Column with an Inner Diameter of 20 µm for Nano-LC" International Journal of Molecular Sciences 27, no. 1: 224. https://doi.org/10.3390/ijms27010224
APA StyleAydoğan, C. (2026). Ultra-Sensitive Bioanalytical Separations Using a New 4-Tritylphenyl Methacrylate-Based Monolithic Nano-Column with an Inner Diameter of 20 µm for Nano-LC. International Journal of Molecular Sciences, 27(1), 224. https://doi.org/10.3390/ijms27010224

