Clinical, Genetic, and Immunological Spectrum of CHAI and LATAIE Patients from a Tertiary Referral Centre in India
Abstract
1. Introduction
2. Results
2.1. Demographic Characteristics
2.2. Clinical Spectrum
2.3. Immunological Findings
2.4. Mutation Spectrum
2.5. Treatment Outcomes
3. Discussion
4. Materials and Methods
4.1. Immunological Evaluation
4.2. Flow Cytometry (FCM)
4.3. Lymphocyte Subset Analysis (LSSA)
4.4. B Cell Immunophenotyping
4.5. T Regulatory Cell (Tregs) Evaluation
4.6. Specific Protein Expression
- (i)
- CTLA4 expression
- (ii)
- LRBA expression
4.7. Molecular Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AIHA | Autoimmune haemolytic anaemia |
| APC | Allophycocyanin |
| APCs | Antigen-presenting cells |
| APC700 | Allophycocyanin-700 |
| APCH7 or APC-750 | Allophycocyanin-750 |
| BEACH | Beige and Chediak–Higashi |
| BV421 | Brilliant violet 421 |
| BV510 | Brilliant violet 510 |
| CaI | Calcium Ionophore |
| CD | Cluster of differentiation |
| CHAI | CTLA4 haploinsufficiency with autoimmune infiltration |
| CTLA-4 | Cytotoxic T lymphocyte antigen-4 |
| CVID | Common variable immunodeficiency |
| DNA | Deoxyribose nucleic acid |
| DUF1088 | Domain of unknown function 1088 |
| ECD | Electron-coupled dye |
| FITC | Fluorescein isothiocyanate |
| HSCT | Hematopoietic stem cell transplantation |
| IBD | Inflammatory bowel disease |
| IEI | Inborn errors of immunity |
| ILD | Interstitial lung disease |
| ITP | Immune thrombocytopenia |
| IVIG | Intravenous immunoglobulin |
| LATAIE | LRBA deficiency with autoantibodies, regulatory T (Treg) cell defects, autoimmune infiltration, and enteropathy |
| LRBA | Lipopolysaccharide-responsive beige-like anchor protein |
| MMF | mycophenolate mofetil |
| PB | Pacific Blue |
| PE-Cy7 or PC7 | Phycoerythrin-cyanine7 conjugate |
| PE | Phycoerythrin |
| PeCF594 | PE and CF594, tandem conjugate dye |
| PH | Pleckstrin homology |
| PIDOT | Primary Immunodeficiency Orientation Tube |
| PIRDs | Primary immune regulatory disorders |
| PMA | Phorbol 12-Myristate 13-Acetate |
| RPMI 1640 | Roswell Park Memorial Institute 1640 |
| TCR | T cell receptor |
| Tregs | T regulatory cells |
| VUS | Variant of Uncertain significance |
References
- Chan, A.Y.; Torgerson, T.R.; Chan, A. PIRD: Primary Immune Regulatory Disorders, A Growing Universe of Immune Dysregulation HHS Public Access. Curr. Opin. Allergy Clin. Immunol. 2020, 20, 582–590. [Google Scholar] [CrossRef]
- Flinn, A.M.; Gennery, A.R. Primary immune regulatory disorders: Undiagnosed needles in the haystack? Orphanet J. Rare Dis. 2022, 17, 99. [Google Scholar] [CrossRef]
- Gámez-Díaz, L.; Grimbacher, B. Immune checkpoint deficiencies and autoimmune lymphoproliferative syndromes. Biomed. J. 2021, 44, 400–411. [Google Scholar] [CrossRef] [PubMed]
- Schubert, D.; Bode, C.; Kenefeck, R.; Hou, T.Z.; Wing, J.B.; Kennedy, A.; Bulashevska, A.; Petersen, B.-S.; Schäffer, A.A.; Grüning, B.A.; et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat. Med. 2014, 20, 1410–1416. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, H.S.; Ouyang, W.; Lo, B.; Deenick, E.K.; Niemela, J.E.; Avery, D.T.; Schickel, J.-N.; Tran, D.Q.; Stoddard, J.; Zhang, Y.; et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 2014, 345, 1623–1627. [Google Scholar] [CrossRef]
- Lo, B.; Fritz, J.M.; Su, H.C.; Uzel, G.; Jordan, M.B.; Lenardo, M.J. CHAI and LATAIE: New genetic diseases of CTLA-4 checkpoint insufficiency. Blood 2016, 128, 1037–1042. [Google Scholar] [CrossRef]
- Jamee, M.; Hosseinzadeh, S.; Sharifinejad, N.; Zaki-Dizaji, M.; Matloubi, M.; Hasani, M.; Baris, S.; Alsabbagh, M.; Lo, B.; Azizi, G. Comprehensive comparison between 222 CTLA-4 haploinsufficiency and 212 LRBA deficiency patients: A systematic review. Clin. Exp. Immunol. 2021, 205, 28–43. [Google Scholar] [CrossRef] [PubMed]
- Valk, E.; Rudd, C.E.; Schneider, H. CTLA-4 trafficking and surface expression. Trends Immunol. 2008, 29, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.S.K. EFIS Lecture: Understanding the CTLA-4 checkpoint in the maintenance of immune homeostasis. Immunol. Lett. 2017, 184, 43–50. [Google Scholar] [CrossRef]
- Abraham, R.S. How to evaluate for immunodeficiency in patients with autoimmune cytopenias: Laboratory evaluation for the diagnosis of inborn errors of immunity associated with immune dysregulation. Hematology 2020, 2020, 661–672. [Google Scholar] [CrossRef]
- Cepika, A.M.; Sato, Y.; Liu, J.M.H.; Uyeda, M.J.; Bacchetta, R.; Roncarolo, M.G. Tregopathies: Monogenic diseases resulting in regulatory T-cell deficiency. J. Allergy Clin. Immunol. 2018, 142, 1679–1695. [Google Scholar] [CrossRef] [PubMed]
- Gámez-Díaz, L.; Seidel, M.G. Different Apples, Same Tree: Visualizing Current Biological and Clinical Insights into CTLA-4 Insufficiency and LRBA and DEF6 Deficiencies. Front. Pediatr. 2021, 9, 662645. [Google Scholar] [CrossRef]
- Garcia-Perez, J.E.; Baxter, R.M.; Kong, D.S.; Tobin, R.; McCarter, M.; Routes, J.M.; Verbsky, J.; Jordan, M.B.; Dutmer, C.M.; Hsieh, E.W.Y. CTLA4 message reflects pathway disruption in monogenic disorders and under therapeutic blockade. Front. Immunol. 2019, 10, 998. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.Z.; Verma, N.; Wanders, J.; Kennedy, A.; Soskic, B.; Janman, D.; Halliday, N.; Rowshanravan, B.; Worth, A.; Qasim, W.; et al. Identifying functional defects in patients with immune dysregulation due to LRBA and CTLA-4 mutations. Blood 2017, 129, 1458–1468. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Herrera, G.; Tampella, G.; Pan-Hammarström, Q.; Herholz, P.; Trujillo-Vargas, C.M.; Phadwal, K.; Simon, A.K.; Moutschen, M.; Etzioni, A.; Mory, A.; et al. Deleterious Mutations in LRBA Are Associated with a Syndrome of Immune Deficiency and Autoimmunity. Am. J. Hum. Genet. 2012, 90, 986. [Google Scholar] [CrossRef] [PubMed]
- Habibi, S.; Zaki-Dizaji, M.; Rafiemanesh, H.; Lo, B.; Jamee, M.; Gámez-Díaz, L.; Salami, F.; Kamali, A.N.; Mohammadi, H.; Abolhassani, H.; et al. Clinical, Immunologic, and Molecular Spectrum of Patients with LPS-Responsive Beige-Like Anchor Protein Deficiency: A Systematic Review. J. Allergy Clin. Immunol. Pract. 2019, 7, 2379–2386.e5. [Google Scholar] [CrossRef]
- Jaramillo, C.M.; Trujillo-Vargas, C.M. LRBA in the endomembrane system. Colomb. Médica 2018, 49, 236–243. [Google Scholar] [CrossRef]
- Kedar, P.; Dongerdiye, R.; Chandrakala, S.; Bargir, U.A.; Madkaikar, M. Targeted next-generation sequencing revealed a novel homozygous mutation in the LRBA gene causes severe haemolysis associated with Inborn Errors of Immunity in an Indian family. Hematology 2022, 27, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, V.; Taur, P.; Gowri, V.; Chougule, A.; Prabhu, S.; Bodhanwala, M.; Madkaikar, M.; Desai, M. Clinical and molecular features of LRBA. Authorea 2023, preprint. [Google Scholar] [CrossRef]
- Banday, A.Z.; Jindal, A.K.; Tyagi, R.; Singh, S.; Patra, P.K.; Kumar, Y.; Suri, D.; Rawat, A. Refractory Autoimmune Cytopenia in a Young Boy with a Novel LRBA Mutation Successfully Managed with Sirolimus. J. Clin. Immunol. 2020, 40, 1184–1186. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, R.; Rawat, A.; Venkatesan, R. Neonatal diabetes with a rare LRBA mutation. BMJ Case Rep. 2022, 15, e250243. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, R.; Sathiyasekeran, M.; Srinivas, S.; Narayanan, R.K. Clinical Spectrum of Monogenic Infantile-Onset Inflammatory Bowel Disease. Indian. J. Pediatr. 2022, 89, 497–502. [Google Scholar] [CrossRef]
- Ravindran, D.; Mugunthan, R.R.; Shruthi, T.; Jayaraman, D. Severe diabetic ketoacidosis and autoimmune pancreatitis with SIRS in an adolescent with LRBA deficiency—A rare complication of a common primary immunodeficiency disease. J. Family Med. Prim. Care 2022, 11, 1552. [Google Scholar] [CrossRef]
- Munirathnam, D.; Kumar, V.; Sivasankaran, M.; Agrawal, S. Varied Clinical Manifestations of LRBA Deficiency (Immune Dysregulation Disorder). Indian Pediatr. 2021, 58, 285–286. [Google Scholar] [CrossRef]
- Gámez-Díaz, L.; August, D.; Stepensky, P.; Revel-Vilk, S.; Seidel, M.G.; Noriko, M.; Morio, T.; Worth, A.J.; Blessing, J.; Van de Veerdonk, F.; et al. The extended phenotype of LPS-responsive beige-like anchor protein (LRBA) deficiency. J. Allergy Clin. Immunol. 2016, 137, 223–230. [Google Scholar] [CrossRef]
- Seidel, M.G. Treatment of immune-mediated cytopenias in patients with primary immunodeficiencies and immune regulatory disorders (PIRDs). Hematology 2020, 2020, 673–679. [Google Scholar] [CrossRef]
- Tang, W.J.; Hu, W.H.; Huang, Y.; Wu, B.B.; Peng, X.M.; Zhai, X.W.; Qian, X.-W.; Ye, Z.-Q.; Xia, H.-J.; Wu, J.; et al. Potential protein–phenotype correlation in three lipopolysaccharide-responsive beige-like anchor protein-deficient patients. World J. Clin. Cases. 2021, 9, 5873. [Google Scholar] [CrossRef] [PubMed]
- Monika, M.-T.; Iwona, R.; Bukowska-Strakova, K.; Rutkowska-Zapała, M.; Biedroń, A.; Gergont, A.; Jolanta, G.; Anna, P.-N.; Anna, S. Common Variable Immunodeficiency (CVID) and LRBA Mutation: Different Clinical Phenotypes and Effects of Hematopoietic Stem Cell Transplantation (HSCT) in Three Children. J. Immunol. Inflamm. Dis. Ther. 2023, 6. [Google Scholar]
- Ochoa, S.; Abers, M.S.; Rosen, L.B.; Rump, A.; Howe, K.; Lieberman, J.A.; Wright, B.L.; Suez, D.; Krausz, M.; Grimbacher, B.; et al. Management and outcome of COVID-19 in CTLA-4 insufficiency. Blood Adv. 2023, 7, 5743–5751. [Google Scholar] [CrossRef] [PubMed]
- Rovshanov, S.; Göçmen, R.; Barişta, İ.; Çağdaş, D.; Üner, A.; Çilingir, V.; Tezer Filik, İ.; Tan, Ç.; Aytekin, E.S.; Tezcan, İ.; et al. Treatment of severe forms of LPS-responsive beige-like anchor protein deficiency with allogeneic hematopoietic stem cell transplantation. J. Allergy Clin. Immunol. 2018, 141, 770–775.e1. [Google Scholar]
- Siggs, O.M.; Russell, A.; Singh-Grewal, D.; Wong, M.; Chan, P.; Craig, M.E.; O’LOughlin, T.; Stormon, M.; Goodnow, C.C. Preponderance of CTLA4 Variation Associated With Autosomal Dominant Immune Dysregulation in the MYPPPY Motif. Front. Immunol. 2019, 10, 1544. [Google Scholar] [CrossRef]
- Ayrignac, X.; Goulabchand, R.; Jeziorski, E.; Rullier, P.; Carra, C.; Lozano, C.; Portales, P.; Vincent, T.; Viallard, J.F.; de Champfleur, N.M.; et al. Two neurologic facets of CTLA4-related haploinsufficiency. Neuroimmunol. Neuroinflammation 2020, 7, e751. [Google Scholar] [CrossRef] [PubMed]
- Meshaal, S.; El Hawary, R.; Adel, R.; Abd Elaziz, D.; Erfan, A.; Lotfy, S.; Hafez, M.; Hassan, M.; Johnson, M.; Rojas-Restrepo, J.; et al. Clinical Phenotypes and Immunological Characteristics of 18 Egyptian LRBA Deficiency Patients. J. Clin. Immunol. 2020, 40, 820–832. [Google Scholar] [CrossRef]
- Schwab, C.; Gabrysch, A.; Olbrich, P.; Patiño, V.; Warnatz, K.; Wolff, D.; Hoshino, A.; Kobayashi, M.; Imai, K.; Takagi, M.; et al. A Rare Central Nervous System Involvement Due to CTLA-4 Gene Defect. Arch. Neuropsychiatry 2022, 59, 248. [Google Scholar]
- Westermann-Clark, E.; Ballow, M.; Walter, J.E. The new quest in CTLA-4 insufficiency: How to immune modulate effectively? J. Allergy Clin. Immunol. 2022, 149, 543–546. [Google Scholar] [CrossRef]
- Mitsuiki, N.; Schwab, C.; Grimbacher, B. What did we learn from CTLA-4 insufficiency on the human immune system? Immunol. Rev. 2019, 287, 33–49. [Google Scholar] [CrossRef]
- Hadjadj, J.; Aladjidi, N.; Fernandes, H.; Leverger, G.; Magérus-Chatinet, A.; Mazerolles, F.; Stolzenberg, M.-C.; Jacques, S.; Picard, C.; Rosain, J.; et al. Pediatric Evans syndrome is associated with a high frequency of potentially damaging variants in immune genes. Blood 2019, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Besnard, C.; Levy, E.; Aladjidi, N.; Stolzenberg, M.C.; Magerus-Chatinet, A.; Alibeu, O.; Nitschke, P.; Blanche, S.; Hermine, O.; Jeziorski, E.; et al. Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4–insufficient subjects. J. Allergy Clin. Immunol. 2018, 142, 1932–1946. [Google Scholar] [CrossRef] [PubMed]
- Carbonnel, F.; Soularue, E.; Coutzac, C.; Chaput, N.; Mateus, C.; Lepage, P.; Robert, C. Inflammatory bowel disease and cancer response due to anti-CTLA-4: Is it in the flora? Semin. Immunopathol. 2017, 39, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Charbonnier, L.M.; Janssen, E.; Chou, J.; Ohsumi, T.K.; Keles, S.; Hsu, J.T.; Massaad, M.J.; Garcia-Lloret, M.; Hanna-Wakim, R.; Dbaibo, G.; et al. Regulatory T-cell deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like disorder caused by loss-of-function mutations in LRBA. J. Allergy Clin. Immunol. 2015, 135, 217–227.e9. [Google Scholar] [CrossRef] [PubMed]
- Alkhairy, O.K.; Abolhassani, H.; Rezaei, N.; Fang, M.; Andersen, K.K.; Chavoshzadeh, Z.; Mohammadzadeh, I.; El-Rajab, M.A.; Massaad, M.; Chou, J.; et al. Spectrum of Phenotypes Associated with Mutations in LRBA. J. Clin. Immunol. 2016, 36, 33–45. [Google Scholar] [CrossRef]
- Makadia, P.; Srinath, A.; Madan-Khetarpal, S.; McGuire, M.; Infante, E.; Zhang, J.; Felgar, R.E.; Davis, A.W.; Chong, H.J.; Windreich, R.M. Aplastic anemia and cytotoxic T lymphocyte antigen-4 haploinsufficiency treated with bone marrow transplantation. J. Allergy Clin. Immunol. Pract. 2017, 5, 1445–1447.e2. [Google Scholar] [CrossRef] [PubMed]
- Krausz, M.; Uhlmann, A.; Rump, I.C.; Ihorst, G.; Goldacker, S.; Sogkas, G.; Posadas-Cantera, S.; Schmidt, R.; Feißt, M.; Alsina, L.; et al. The ABACHAI clinical trial protocol: Safety and efficacy of abatacept (s.c.) in patients with CTLA-4 insufficiency or LRBA deficiency: A non controlled phase 2 clinical trial. Contemp. Clin. Trials Commun. 2022, 30, 101008. [Google Scholar] [CrossRef] [PubMed]
- Forlanini, F.; Chan, A.; Dara, J.; Dvorak, C.C.; Cowan, M.J.; Puck, J.M.; Dorsey, M.J. Impact of Genetic Diagnosis on the Outcome of Hematopoietic Stem Cell Transplant in Primary Immunodeficiency Disorders. J. Clin. Immunol. 2023, 43, 636–646. [Google Scholar] [CrossRef] [PubMed]
- Slatter, M.A.; Engelhardt, K.R.; Burroughs, L.M.; Arkwright, P.D.; Nademi, Z.; Skoda-Smith, S.; Hagin, D.; Kennedy, A.; Barge, D.; Flood, T.; et al. Hematopoietic stem cell transplantation for CTLA4 deficiency. J. Allergy Clin. Immunol. 2016, 138, 615–619.e1. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.M.; Jodhawat, N.; Gupta, M.; Dalvi, A.; Bargir, U.A.; Hule, G.; Setia, P.; Shinde, S.; Saxena, S.; Parab, A.; et al. Utility of HLA-DR in screening panel for inborn errors of immunity. Scand. J. Immunol. 2023, 97, e13238. [Google Scholar] [CrossRef]
- Van der Burg, M.; Kalina, T.; Perez-Andres, M.; Vlkova, M.; Lopez-Granados, E.; Blanco, E.; Bonroy, C.; Sousa, A.E.; Kienzler, A.-K.; Wentink, M.; et al. The EuroFlow PID Orientation Tube for Flow Cytometric Diagnostic Screening of Primary Immunodeficiencies of the Lymphoid System. Front. Immunol. 2019, 10, 246. [Google Scholar] [CrossRef]
- Jodhawat, N.; Bargir, U.A.; Setia, P.; Taur, P.; Bala, N.; Madkaikar, A.; Yadav, R.M.; Dalvi, A.; Shinde, S.; Gupta, M.; et al. Normative data for paediatric lymphocyte subsets: A pilot study from western India. Indian. J. Med. Res. 2023, 158, 161–174. [Google Scholar] [CrossRef]
- Bain, J.B.; Laffan, M.A. Dacie & Lewis Practical Haematology, 12th ed.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
| Parameters | LATAIE (n = 17) | CHAI (n = 12) | p-Value |
|---|---|---|---|
| # Sex ratio (M/F) | 11/6 | 8/4 | >0.999 |
| # Consanguinity (%) | 15 (88.24%) | 0 | <0.0001 **** |
| # Positive family history (%) | 1 (5.88%) | 7 (58.33%) | 0.0033 ** |
| ## Median age of onset of symptoms (in years) (range) | 4.5 (0.58–19) | 13 (0.83–38) | 0.0342 * |
| ## Median age at diagnosis (in years) (range) | 10 (0.75–38) | 18 (5–55) | 0.0108 * |
| ## Median delay in diagnosis (in years) (range) | 3 (0–28) | 8.5 (1–42) | 0.0917 |
| Clinical Manifestations, n (%) | LATAIE (n = 17) | CHAI (n = 12) | p-Value |
|---|---|---|---|
| Autoimmune cytopenia, n (%) | 12 (70.59) | 9 (75.0) | >0.999 |
| Splenomegaly, n (%) | 10 (58.82) | 1 (8.33) | 0.0080 ** |
| Lymphadenopathy, n (%) | 7 (41.18) | 6 (50.0) | 0.7163 |
| Sinopulmonary infections, n (%) | 10 (58.82) | 1 (8.33) | 0.0080 ** |
| Inflammatory bowel disease, n (%) | 8 (47.06) | 7 (58.33) | 0.7104 |
| Hepatomegaly, n (%) | 6 (35.29) | 1 (8.33) | 0.1872 |
| Chronic diarrhoea, n (%) | 6 (35.29) | 5 (41.67) | >0.999 |
| Unexplained fevers, n (%) | 5 (29.41) | 3 (25) | >0.999 |
| Other infections, n (%) | 5 (29.41) | 2 (16.67) | 0.6645 |
| Failure to thrive, n (%) | 5 (29.41) | 2 (16.67) | 0.6645 |
| Recurrent otitis media, n (%) | 2 (11.76) | 1 (8.33) | >0.999 |
| Polyarthritis, n (%) | 2 (11.76) | 2 (16.67) | >0.999 |
| Type 1 diabetes, n (%) | 2 (11.76) | 0 | 0.4975 |
| Autoimmune hepatitis, n (%) | 1 (5.88) | 2 (16.67) | 0.5534 |
| Finger clubbing, n (%) | 1 (5.88) | 0 | >0.999 |
| Vasculitis, n (%) | 1 (5.88) | 0 | >0.999 |
| Interstitial lung disease, n (%) | 1 (5.88) | 0 | >0.999 |
| Aplastic anaemia, n (%) | 0 | 1 (8.33) | 0.4138 |
| Immune Abnormalities | LATAIE | CHAI | p-Value |
|---|---|---|---|
| Lymphopenia (n = 20) | 5 (35.71) | 1(16.67) | 0.6120 |
| Low Th naïve cell% (n = 20) | 9 (64.29) | 0 | 0.0141 * |
| Low Tc naïve % (n = 20) | 2 (14.29) | 0 | >0.9999 |
| Elevated DNTs (n = 18) | 6 (50) | 2(33.33) | 0.6380 |
| Low Tregs % (n = 12) | 4 (57.14) | 0 | 0.0699 |
| Low B cell % (n = 20) | 9 (64.29) | 2 (33.33) | 0.3359 |
| Low B memory (n = 20) | 6 (42.86) | 3 (50) | >0.999 |
| Low class switch memory B cells (n = 20) | 3 (21.43) | 2 (33.33) | 0.6126 |
| Hypogammaglobulinemia (n = 21) | 6 (42.86) | 1(14.29) | 0.3371 |
| Only IgG low (n = 21) | 1(7.14) | 4 (57.14) | 0.0251 * |
| Patient | Variant Description | Variant Classification According to ACMG Guidelines | Reported/Novel | Treatment | Outcome | ||||
|---|---|---|---|---|---|---|---|---|---|
| Location | cDNA Position | Protein Change | Zygosity | Domain Affected | |||||
| L1 | Intron 29 | c.4729+1G>C | 5′splice site | Homo | - | PVS1, PM2 (likely Pathogenic I) | Novel | Managed with steroids (6 months, poor response) and MMF (initial improvement for AICs and lymphoproliferation, later developed infections). | Expired due to pneumonia and ARDS |
| L2 | Exon 8 | c.999del | p.Phe333LeufsTer29 | Homo | ConA/LAMG # | PVS1, PM2, PP4 (Pathogenic Ic) | Novel | Managed with platelet transfusions for Evans syndrome and MMF * for 1 year (poor response). Currently on methylprednisolone (for 5 months). | Alive |
| L3 | Exon 26 | c.4333C>T | p.Arg1445Ter | Homo | DUF 4707 | PVS1, PM2, PM3, PP5 (Pathogenic Ib) | [25] | - | Lost to follow-up |
| L4 | Exon 25 | c.4086_4087del | p.Gln1363SerfsTer25 | Homo | between DUF4704 and WD40 | PVS1, PM2 (Likely Pathogenic I) | Novel | Treated with intravenous (IV) antibiotics for 4 months due to infection complications. | Lost to follow-up |
| L5 | Exon 23 | c.3662_3663insGA | p.T1222Kfs*4 | Homo | between DUF4704 and WD40 | PVS1, PM2 (Likely Pathogenic I) | Novel | Required multiple transfusions and pulse steroids for hemolysis but showed poor control. Later developed IBD/AIHA and was started on methotrexate with IVIG for 8 months. Remains refractory to most therapies. | Alive and has been offered a transplant |
| L6 | Exon 28 | c.4522C>T | p.Gln1508Ter | Homo | between WD1 and DUF1088 | PVS1, PM2, PM3, PP4 (Pathogenic Ib) | [26] | Receiving monthly IVIG for ITP for 1.5 years, with good response. | Alive |
| L7 | Exon 21 | c.2479C>T | p.Arg827Ter | Homo | between DUF4704 and WD40 | PVS1, PM2, PM3, PP5 (Pathogenic Ib) | [27] | - | Lost to follow-up |
| L8 | Exon 53 | c.7799G>A | p.C2600Y | Homo | WD40 (WD2) | BS2, BP6 (Likely Benign-I) | [18] | - | Lost to follow-up |
| L9 | Exon 2 | c.217-1G>A | 3′splice site | Homo | Near N-terminal region | PVS1,PM2 (Likely Pathogenic-I) | Novel | Receiving monthly IVIG for hypogammaglobulinemia for 2 years. | Alive |
| L10 | Exon 50 | c.7523_7524del | p.P2508Rfs*23 | Homo | BEACH | PVS1, PM2 (Likely Pathogenic-I) | [19] | Partial response to sirolimus for autoimmunity. | Alive |
| L11 | Exon 20 | c.2449C>T | p.Gln817Ter | Homo | between DUF4704 and WD40 | PVS1, PM2, PM3, PP5 (Pathogenic Ib) | [19] | Started on Rituximab for hepatosplenomegaly and positive family of EBV lymphoproliferation. Developed Evans syndrome months later, managed with corticosteroids. A year later, had CMV reactivation and was treated with oral valganciclovir. Currently has complete control of symptoms and lymphoproliferation on sirolimus and IVIG. | Alive |
| L12 | Exon 30 | c.4759_4762delACTA | p.Thr1587ArgfsTer28 | Homo | between WD1 and DUF1088 | PVS1, PM2, PM3, PP5 (Pathogenic Ib) | [19] | Insulin for 10 months for T1D. Refractory Evans at 2 years, treated with methylprednisolone, rituximab, azathioprine, vincristine, and IVIG for hypogammaglobulinemia. | Transplant offered but declined. Died from pneumonia and ARDS. |
| L13 | Exon 30; Exon 26 | c.4759_4762delACTA; c.4300_4301delAT | p.Thr1587ArgfsTer28; p.Met1434ValfsTer33 | Comp Het | between WD1 and DUF1088 | PVS1, PM2, PM3, PP5 (Pathogenic Ib) PVS1, PM2 (Likely Pathogenic-I) | [19,28] | Sirolimus for AIHA, partial response. Abatacept initiated with poor response. | Underwent successful HSCT. Alive |
| L14 | Exon 20 | c.2449C>T | p.Gln817Ter | Homo | between DUF4704 and WD40 | PVS1, PM2, PM3, PP5 (Pathogenic Ib) | [19] | Lost to follow-up. | - |
| L15 | Intron 11 | c.1494-2A>G | 3′ splice site | Homo | - | PVS1, PM2 (Likely Pathogenic-I) | Novel | Corticosteroids for autoimmune manifestations and insulin for T1D. | Alive |
| L16 | Intron 25 | c. 4159-1 G>T | 3′ splice site | Homo | - | PVS1, PM2, PM3, PP5 (Pathogenic Ib) | Novel | Treated with rituximab, IVIG, and sirolimus for autoimmune manifestations. | Alive |
| L17 | Exon 25; Exon 55 | c.4124T>G; c.8128T>C | p.Ile1375Arg; p.Cys2710Arg | Comp Het | between DUF4704 and WD40; WD4 | PM2, PP3 (VUS); PM2, PP3 (VUS) | Novel | Steroid, IVIG, methotrexate, cotrimoxazole. | Alive |
| C1 | Exon 2 | c.223C>T | p.Arg75Trp | Het | LBD * | PS1, PS4, PP1, PM2, PM1, PP2, PP3 (Pathogenic II) | [29] | Monthly IVIG for hypogammaglobulinemia for 1 year. | Alive |
| C2 | Exon 2 | c.346delA | p.Ile116SerfsTer4 | Het | LBD * | PVS1, PM2, PP4 (Pathogenic Ic) | Novel | Transfusion-dependent, post-diagnosis was started on abatacept, responded. | Alive |
| C3 | Exon 2 | c.221T>C | p.Leu74Pro | Het | LBD * | PM2, PM1, PP2 (Likely Pathogenic V) | Novel | IV antibiotics. Developed Hodgkin’s, on chemotherapy. | Alive |
| C4 | Exon 2 | c.401T>G | p.Met134Arg | Het | LBD * | PM2, PM1, PP2 (Likely Pathogenic V) | [13] | AIHA and IBD phenotype managed with low-dose Sirolimus and steroid. | Alive |
| C5 | Exon 2 | c.436G>A | p.Gly146Arg | Het | LBD * | PS1, PS2, PS4, PM2, PM1, PP2 (Pathogenic II) | [30] | Lost to follow-up. | - |
| C6 | Exon 2 | c.221T>C | p.Leu74Pro | Het | LBD * | PM2, PM1, PP2, PP4 (Likely Pathogenic V) | Novel | Cotrimoxazole for pneumonia and diarrhoea. | Alive |
| C7 | Exon 2 | c.416A>G | p.Tyr139Cys | Het | LBD * | PS4, PM2, PM1, PM5, PP2 (Pathogenic IIIa) | [31] | - | - |
| C8 | Exon 2 | c.416A>G | p.Tyr139Cys | Het | LBD * | PS4, PM2, PM1, PM5, PP2 (Pathogenic IIIa) | [31] | - | - |
| C9 | Exon 2 | c.416A>G | p.Tyr139Cys | Het | LBD * | PS4, PM2, PM1, PM5, PP2 (Pathogenic IIIa) | [31] | - | - |
| C10 | Exon 2 | c.151 C>T | p.Arg51Ter | Het | LBD * | PS4, PVS1, PM2 (Pathogenic Ia) | [32] | Received multiple therapies for colitis, autoimmune manifestations, steroids, sirolimus, and azathioprine. | Alive |
| C11 | Exon 2 | c.151 C>T | p.Arg51Ter | Het | LBD * | PS4, PVS1, PM2 (Pathogenic Ia) | [32] | IVIG *** for ITP. | Alive |
| C12 | Exon 3 | c.529del | p.Tyr177IlefsTer10 | Het | TmD ** | PVS1, PM2 (Likely Pathogenic I) | Novel | Platelet transfusion-dependent, managed with eltrambopag and menabol for pancytopenia. | Expired due to unknown reasons |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Setia, P.; Bargir, U.A.; Desai, M.; Dalvi, A.; Shinde, S.; Jodhawat, N.; Gaikwad, P.; Bhattad, S.; Shainmukhaih, C.; Gupta, M.; et al. Clinical, Genetic, and Immunological Spectrum of CHAI and LATAIE Patients from a Tertiary Referral Centre in India. Int. J. Mol. Sci. 2026, 27, 14. https://doi.org/10.3390/ijms27010014
Setia P, Bargir UA, Desai M, Dalvi A, Shinde S, Jodhawat N, Gaikwad P, Bhattad S, Shainmukhaih C, Gupta M, et al. Clinical, Genetic, and Immunological Spectrum of CHAI and LATAIE Patients from a Tertiary Referral Centre in India. International Journal of Molecular Sciences. 2026; 27(1):14. https://doi.org/10.3390/ijms27010014
Chicago/Turabian StyleSetia, Priyanka, Umair Ahmed Bargir, Mukesh Desai, Aparna Dalvi, Shweta Shinde, Neha Jodhawat, Pallavi Gaikwad, Sagar Bhattad, Chandrakala Shainmukhaih, Maya Gupta, and et al. 2026. "Clinical, Genetic, and Immunological Spectrum of CHAI and LATAIE Patients from a Tertiary Referral Centre in India" International Journal of Molecular Sciences 27, no. 1: 14. https://doi.org/10.3390/ijms27010014
APA StyleSetia, P., Bargir, U. A., Desai, M., Dalvi, A., Shinde, S., Jodhawat, N., Gaikwad, P., Bhattad, S., Shainmukhaih, C., Gupta, M., Dhawale, A., Kambli, P., Yadav, R. M., Kalra, M., Gangadharan, H., Sivasankaran, M., Bafna, V., Kumar, P., Sarvanan, P., ... Madkaikar, M. (2026). Clinical, Genetic, and Immunological Spectrum of CHAI and LATAIE Patients from a Tertiary Referral Centre in India. International Journal of Molecular Sciences, 27(1), 14. https://doi.org/10.3390/ijms27010014

