The Cardioprotective Effect of Magnolia officinalis and Its Major Bioactive Chemical Constituents
Abstract
:1. Introduction
2. Research Methods
3. Cardiovascular Properties of M. officinalis Extract and Its Bioactive Compounds
3.1. Cardioprotective Actions (In Vitro and In Vivo Models)
3.2. Anti-Obesity Actions (In Vitro and In Vivo Models)
3.3. Antiatherosclerotic Actions (In Vitro and In Vivo Models)
3.4. Anti-Platelet Actions (In Vitro and In Vivo Models)
4. The Bioavailability and Safety of M. officinalis Extract and Its Bioactive Compounds
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Zhao, X.; Li, F.; Sun, W.; Gao, L.; Kim, K.S.; Kim, K.T.; Cai, L.; Zhang, Z.; Zheng, Y. Extracts of Magnolis species—Induced prevention of diabetic complications: A brief review. Int. J. Mol. Sci. 2016, 16, 1629. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Hou, Y.; Jiang, M.; Bai, G. The rich pharmacological activities of Magnolia officinalis and secondary effects based on significant intestinal contributions. J. Ethnopharmacol. 2021, 281, 114524. [Google Scholar] [CrossRef]
- Yan, R.; Wang, W.; Guo, J.; Liu, H.; Zhang, J.; Yang, B. Studies on the alkaloids of the bark of Magnolia officinalis: Isolation and on-line analysis by HPLC-ESI-MSn. Molecules 2013, 18, 7739–7750. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Yan, R.; Yang, B. Phenylethanoid glycosides and phenolic glycosides from stem bark of Magnolia officinalis. Phytochemistry 2016, 127, 5062. [Google Scholar] [CrossRef] [PubMed]
- Sarrica, A.; Kirika, N.; Romeo, M.; Salmona, M.; Diomede, L. Safety and toxicology of magnolol and honokiol. Planta Med. 2018, 84, 1151–1164. [Google Scholar] [CrossRef]
- Luo, H.; Wu, H.; Yu, X.; Zhang, X. A review of the phytochemistry and pharmacological activities of Magnoliae officinalis cortex. J. Ethnopharmacol. 2019, 236, 412–442. [Google Scholar] [CrossRef]
- Oufensou, S.; Scherm, B.; Pani, G.; Balmas, V.; Fabbri, D.; Dettori, M.A.; Carta, P.; Malbran, I.; Migheli, Q.; Delogu, G. Honokiol, magnolol and its monoacetyl derivative show strong antifungal effect on Fusarium isolates of clinical relevance. PLoS ONE 2019, 14, e0221249. [Google Scholar] [CrossRef]
- Lata, E.; Fulczyk, A.; Ott, P.G.; Kowalska, T.; Sajewicz, M.; Moricz, A.M. Thin-layer chromatographic quantification of magnolol and honokiol in dietary supplements and selected biological properties of these preparations. J. Chromatogr. A 2020, 1625, 461230. [Google Scholar] [CrossRef]
- Lin, H.L.; Cheng, W.T.; Chen, L.C.; Ho, H.O.; Lin, S.Y.; Hsieh, C.M. Honokiol/magnolol-loaded self-assembling lecithin-based mixed polymeric micelles (Ib MPMs) for improving solubility to enhance oral bioavailability. Int. J. Nanomed. 2021, 1, 651–665. [Google Scholar] [CrossRef]
- Rauf, A.; Olatunde, A.; Imran, M.; Alhumaydhi, F.A.; Aljohani, A.S.; Khan, S.A.; Uddin, M.S.; Mitra, S.; Emran, T.B.; Khayrullin, M.; et al. Honokiol: A review of its pharmacological potential and therapeutic insight. Phytomed 2021, 90, 153647. [Google Scholar] [CrossRef]
- Ma, L.; Chen, J.; Wang, X.; Liang, X.; Luo, Y.; Zhu, W.; Wang, T.; Peng, M.; Li, S.; Jie, S.; et al. Structural modification of honokiol, a biphenyl occurring in Magnolia officinalis: The evaluation of honokiol analogues as inhibitors of angiogenesis and for their cytotoxicity and structure-activity relationship. J. Med. Chem. 2001, 54, 6469–6481. [Google Scholar] [CrossRef]
- Esumi, T.; Makado, G.; Zhai, H.; Mitsumoto, Y.; Fukuyama, Y. Efficient synthesis and structure-activity relationship of honokiol, a neurotrophic biphenyl-type neolignane. Bioorganic Med. Chem. Lett. 2004, 14, 2621–2625. [Google Scholar] [CrossRef] [PubMed]
- Talarek, S.; Listos, J.; Barreca, D.; Tellone, E.; Sureda, A.; Nabavi, S.F.; Braidy, N.; Nabavi, S.M. Neuroprotective effects of honokiol: From chemistry to medicine. BioFactors 2017, 43, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yuan, Z.; Wang, Y.; Wang, W.; Shi, J. Recent advances of honokiol: Pharmacikigical activities, manmade derivatives and structure-activity relationship. Eur. J. Med. Chem. 2024, 272, 116471. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Khoo, C.; Halstead, C.W.; Huynh, T.; Bensoussean, A. Liquid chromatographic determination of honokiol and magnolol in Hou Po (Magnolia officinalis) as the raw herb and dried aqueous extract. J. AOAC Int. 2007, 90, 1210–1218. [Google Scholar] [CrossRef]
- Ho, J.H.C.; Hong, C.Y. Cardiovascular protection of magnolol: Cell-type specificity and dose-related effects. J. Biomed. Sci. 2012, 19, 70. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Huang, X.; Shi, W.; Zhang, R.; Chen, M.; Huang, H.; Wu, L. Insights on the multifunctional activities of magnolol. BioMed Res. Inter. 2019, 1, 1847130. [Google Scholar] [CrossRef]
- Liou, K.T.; Lin, S.M.; Huang, S.S.; Chih, C.L.; Tsai, S.K. Honokiol ameliorates cerebral infarction from ischemia-reperfusion injury in rats. Plant Med. 2003, 69, 130–134. [Google Scholar] [CrossRef]
- Fried, L.E.; Arbiser, J.L. Honokiol, a multifunctional antiangiogenic and tumor agent. Antioxidnats Redox Signal. 2009, 11, 1139–1148. [Google Scholar] [CrossRef]
- Sulakhiya, K.; Kumar, P.; Gurjar, S.S.; Barua, C.C.; Hazarika, N.K. Beneficial effect of honokiol on lipopolysaccharide induced anxietylike behavior and liver damage in mice. Pharamcol. Biochem. Behav. 2015, 132, 79–87. [Google Scholar] [CrossRef]
- Li, W.L.; Zhao, X.C.; Zhao, Z.W.; Huang, Y.J.; Zhu, X.Z.; Meng, R.Z.; Shi, C.; Yu, L.; Guo, N. In vitro antimicrobial activity of honokiol against Staphylococcus aureus in biofilm mode. J. Asian Nat. Prod. Res. 2016, 18, 1178–1185. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.Y.; Chang, C.C.; Lu, W.J.; Yen, T.L.; Lin, K.H.; Geraldine, P.; Li, J.Y.; Sheu, J.R. Honokiol as a specific collagen receptor glycoprotein VI antagonist on human platelets: Functional ex vivo and in vivo studies. Sci. Rep. 2017, 7, 40002. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.K.; Huang, S.S.; Hong, C.Y. Myocardial protective effect of honokiol: An active component in Magnolia officinalis. Plant Med. 1996, 62, 503–506. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhou, X.; Wang, Y.; Wang, Y.; Teng, X.; Wang, S. Cardiovascular modulating effects of magnolol and honokiol, two polyphenolic compounds from traditional Chinese medicine—Magnolia officinalis. Curr. Drug Targets 2020, 21, 559–572. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.Y.; Huang, S.S.; Tsai, S.K. Magnolol reduces infarct size and suppresses ventricular arrhythmia in rats subjected to coronary ligation. Clin. Exp. Pharmacol. Physiol. 1996, 23, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.H.; Hong, C.Y.; Tsai, S.K.; Lai, S.T.; Weng, Z.C.; Chih, C.L.; Hsieh, Y.H. Intravenous pretreatment with magnolol protects myocardium against stunning. Plant Med. 2000, 66, 516–520. [Google Scholar] [CrossRef]
- Chen, L.; Li, W.; Qi, D.; Lu, L.; Zhang, Z.; Wang, D. Honokiol protects pulmonary microvascular endothelial barrier against lipopolysaccharide-induced ARDS partially via the SIRT3/AMPK signalling axis. Life Sci. 2018, 210, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Xing, W.; He, J.; Fu, F.; Zhang, W.; Su, F.; Lin, F.; Gao, F.; Lu, H.; Sun, X.; et al. Magnolol administration in normotensive young spontaneously hypertensive rats postpones the development of hypertension: Role of increased PPAR gamma, reduced TRB3 and resultant alleviative vascular insulin resistance. PLoS ONE 2015, 10, e0120366. [Google Scholar] [CrossRef]
- Chang, H.; Chang, C.Y.; Lee, H.J.; Chou, C.Y.; Chou, T.C. Magnolol ameliorates pneumonectomy and monocrotaline-induced pulmonary arterial hypertension in rats through inhibition of angiotension II and endothelin-1 expression. Phytomed 2018, 51, 205–213. [Google Scholar] [CrossRef]
- Liang, C.; Lee, C.; Sung, H. Magnolol reduced TNF-α-induced vascular cell adhesion molecule-1 expression in endothelial cells via JNK/p38 and TN-κB signaling pathways. Am. J. Chin. Med. 2014, 42, 619–637. [Google Scholar] [CrossRef]
- Pillai, V.B.; Samant, S.; Sundaresan, N.R.; Raghuraman, H.; Kim, G.; Bonner, M.Y.; Arbiser, J.L.; Walker, D.I.; Jones, D.P.; Gius, D.; et al. Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Nat. Commun. 2015, 6, 6656. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, R.Y.; Guo, Y.; Huang, F.; Yang, K.; Chen, L.; Huang, K.; Zhang, F.; Long, Q.; Yang, Q. Honokiol protects against doxorubicin cardiotoxicity via improving mitochondrial function in mouse hearts. Sci. Rep. 2017, 7, 11989. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, J.; Zhou, S.; Wang, S.; Cai, X.; Conklin, D.J.; Kim, K.S.; Kim, K.H.; Tan, Y.; Zheng, Y.; et al. Magnolia bioactive constituent 4-O-methyl-honokiol prevents the impairment of cardiac insulin signaling and the cardiac pathogenesis in high-fat diet-induced obese mice. Int. J. Biol. Sci. 2015, 11, 8769–8891. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Wang, J.N.; Gu, S.P.; Bu, J.; Kramer, M.P.; Baumgartner, L.; Fakrudin, N.; Ladurner, A.; Malainer, C.; Vuorinen, A.; et al. Honokiol: A non-adipogenic PPARγ agonist from nature. Biochem. Biophys. Acta 2013, 1830, 4813–4819. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, Z.; Chen, Q.; Yin, X.; Fu, Y.; Zheng, Y.; Cai, L.; Kim, K.S.; Kim, K.H.; Tan, Y.; et al. Magnolia extract (BL153) protection of heart from lipid accumulation caused cardiac oxidative damage, inflammation, and cell death in high-fat diet fed mice. Oxid. Med. Cell. Longev. 2014, 1, 205849. [Google Scholar]
- Al-Snafi, A.E.; Alfuraiji, N. Medicinal plants with anti-obesity effects: A special emphasis on their mode of action. Bahrain Med. Bull. 2023, 2, 1421–1427. [Google Scholar]
- Saglam, K.; Sekerler, T. A compherensive review of the anti-obesity properties of medicinal plants. Pharmed 2024, 1, 46–67. [Google Scholar]
- Yimam, M.; Jiao, P.; Hong, M.; Brownell, L.; Lee, Y.C.; Hyuan, E.J.; Kim, H.J.; Nam, J.B.; Kim, M.R.; Jia, Q. UP601, a standardized botanical composition composed of Morus alba, Yerba mate and Magnolia officinalis for weigh loss. BMC Complement. Altern. Med. 2017, 17, 114–120. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, J.; Jiang, X.; Wang, J.; Yan, X.; Zheng, Y.; Conkiln, D.J.; Kim, K.S.; Kim, K.H.; Tan, Y.; et al. The magnolia bioactive constituent 4-O-methylhonokiol protects against high-fat diet-induced obesity and systemic insulin resistance in mice. Oxid. Med. Cell. Longev. 2014, 1, 965954. [Google Scholar]
- Kim, Y.L.; Jung, U.J. Honokiol improves insulin resistance, hepatic steatosis, and inflammation in type 2 diabetic db/db mice. Int. J. Mol. Sci. 2019, 20, 2303. [Google Scholar] [CrossRef]
- Seo, M.S.; Kim, J.H.; Kim, H.J.; Chang, K.C.; Park, S.W. Honokiol activates the LKB1-AMPK signaling pathway and attenuates the lipid accumulation in hepatocytes. Toxicol. Appl. Pharmacol. 2015, 184, 113–124. [Google Scholar] [CrossRef]
- Parray, H.A.; Lone, J.; Park, J.P.; Choi, J.W.; Yun, J.W. Magnolol promotes thermogenesis and attenuates oxidative stress in 3T3-L1 adipocytes. Nutrition 2018, 50, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Gui, S.; Zheng, Y.; Zhao, J.; Zhao, Y.; Li, Y.; Chen, X. The natural compounds, magnolol or honokiol adipose tissue browning and resist obesity through modulating PPARα/γ activity. Eur. J. Pharmacol. 2024, 969, 176438. [Google Scholar] [CrossRef] [PubMed]
- Kuo, D.H.; Tsai, S.W.; Pan, M.H. Magnolol blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries. Food Chem. 2011, 127, 135–140. [Google Scholar] [CrossRef]
- Ou, H.C.; Chou, F.P.; Lin, T.M.; Yang, C.H.; Sheu, W.H.H. Protective effects of honokiol against oxidized LDL-induced cytotoxicity and adhesion molecule expression in endothelial cells. Chem. Biol. Interact. 2006, 161, 1–13. [Google Scholar] [CrossRef]
- Karki, R.; Ho, O.M.; Kim, D.W. Magnolol attenuates neointima formation by inducing cell cycle arrest via inhibition of ERK1/2 and NF-kappaB activation in vascular smooth muscle cells. Biochim. Biophys. Acta 2013, 1830, 2619–2628. [Google Scholar] [CrossRef]
- Karki, R.; Kim, S.B.; Kim, D.W. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation. Exp. Cell Res. 2013, 319, 3238–3250. [Google Scholar] [CrossRef]
- Wu, L.; Zou, H.; Xia, W.; Dong, Q.; Wang, L. Role of magnolol in the proliferation of vascular smooth muscle cells. Herz 2015, 40, 542–548. [Google Scholar] [CrossRef]
- Chen, S.C.; Chang, Y.L.; Wang, D.L.; Chen, J.J. Herbal remedy magnolol suppresses IL-6-induced STAT3 activation and gene expression in endothelial cells. Br. J. Pharmacol. 2006, 148, 226–232. [Google Scholar] [CrossRef]
- Chiang, C.K.; Sheu, M.L.; Hung, K.Y.; Wu, K.D.; Liu, S.H. Honokiol, a small molecular weight natural product, alleviates experimental mesangial proliferative glomerulonephritis. Kidney Int. 2006, 70, 682–689. [Google Scholar] [CrossRef]
- Yang, C.M.; Luo, S.F.; Hsieh, H.L.; Chi, P.L.; Lin, C.C.; Wu, C.C.; Hsiao, L.D. Interleukin-1β induces ICAM-1 expression enhancing of ERK, JNK, AP-1, and NF-κB. J. Cell. Physiol. 2010, 224, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.Y.; Qin, W.X.; Yu, S.; Li, C.; Yang, Y.H.; Pei, Y.H. Honokiol and magnolol: A review of structure-activity relationships of their derivatives. Phytochemistry 2024, 223, 114132. [Google Scholar] [CrossRef] [PubMed]
- Shih, C.Y.; Chou, T.C. The antiplatelet activity of magnolol is mediated by PPAR-beta/gamma. Biochem. Pharmacol. 2012, 84, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Shih, H.C.; Huang, M.S.; Lee, C.H. Magnolol attenuates the lung injury in hypertonic saline treatment from mesenteric ischemia reperfusion through diminishing iNOS. J. Surg. Res. 2012, 175, 305–311. [Google Scholar] [CrossRef]
- Dong, L.; Zhou, S.; Yang, X.; Chen, Q.; He, Y.; Huang, W. Magnolol protects against oxidative stress-mediated neural cell damage by modulating mitochondrial dysfunction and PI3K/Akt signaling. J. Mol. Neurosci. 2013, 50, 469–481. [Google Scholar] [CrossRef]
- Amorati, R.; Zotova, J.; Baschieri, A.; Valgimigli, L. Antioxidant activity of magnolol and honokiol: Kinetic and mechanistic investigations of their reaction with peroxyl radicals. J. Org. Chem. 2015, 80, 10651–10659. [Google Scholar] [CrossRef]
- Baschieri, A.; Pulvirenti, L.; Muccilli, V.; Amorati, R.; Tringali, C. Chain-breaking antioxidant activity of hydroxylated and methylated magnolol derivatives: The role of H-bonds. Org. Biomol. Chem. 2017, 15, 6177–6184. [Google Scholar] [CrossRef]
- Lo, Y.C.; Teng, C.M.; Chen, C.F.; Chen, C.C.; Hong, C.Y. Magnolol and honokiol isolated from Magnolia officinalis protect rat heart mitochondria against lipid peroxidation. Biochem. Pharmacol. 1994, 47, 549–553. [Google Scholar]
- Chen, Y.L.; Lin, K.F.; Shioa, M.S.; Chen, Y.T.; Hong, C.Y.; Lin, S.J. magnolol, a potent antioxidant from Magnolia officinalis, attenuates intimal thickening and MCP-1 expression after balloon injury of the aorta in cholesterol-fed rabbits. Basic. Res. Cardiol. 2001, 96, 353–363. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, Z.Q. Comparison of antioxidant abilities of magnolol and honokiol to scavenge radicals and to protect DNA. Biochimie 2011, 93, 1755–1760. [Google Scholar] [CrossRef]
- Olas, B. Gasomediators (·NO, CO, and H2S) and their role in hemostasis and thrombosis. Clin. Chim. Acta 2015, 445, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Teng, C.M.; Chen, C.G.; Ko, F.N.; Lee, L.G.; Huang, T.F.; Chen, Y.P.; Hsu, H.Y. Two antiplatelet agents from Magnolia officinalis. Thromb. Res. 1988, 50, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Teng, C.M.; Yu, S.M.; Chen, C.C.; Huang, Y.L.; Huang, T.F. EDRF-release and Ca+(+)-channel blockade by magnolol, an antiplatelet agent isolated from Chinese herb Magnolia officinalis, in rat thoracic aorta. Life Sci. 1990, 47, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Ren, J.; Zhi, W.; Liu, C.; Gao, N. Inhibition of CYP450 activity by honokiol and after four components of Chinese traditional medicine in vitro. Chin. J. Clin. Pharmacol. Ther. 2017, 22, 922–926. [Google Scholar]
- Fu, Y.; Liu, B.; Zhang, N.; Liu, Z.; Liang, D.; Li, F.; Cao, Y.; Feng, X.; Zhang, X.; Yang, Z. Magnolol inhibits lipopolysaccharide-induced inflammatory response by interfering with TLR4 mediated NF-κB and MAPKs signaling pathways. J. Ethnopharmacol. 2013, 145, 193–199. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Shin, E.M.; Guo, L.Y.; Youn, U.J.; Bae, K.; Kang, S.S.; Zou, L.B.; Kim, Y.S. Anti-inflammatory activity of 4-methoxyhonokiol is a function of the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via NF-kappaB, JNK and p38 MAPK inactivation. Eur. J. Pharmacol. 2008, 586, 340–349. [Google Scholar] [CrossRef]
- Lee, Y.S.; Choi, S.S.; Yonezawa, T.; Teruya, T.; Woo, J.T.; Kim, H.J.; Cha, B.Y. Honokiol, magnolol, and a combination of both compounds improve glucose metabolism in high-fat diet-induced obese mice. Food Sci. Biotechnol. 2015, 24, 1467–1474. [Google Scholar] [CrossRef]
- Tian, Y.; Feng, H.; Han, L.; Wu, L.; Lv, H.; Shen, B.; Li, Z.; Zhang, Q.; Liu, G. Magnolol alleviates inflammatory responses and lipid accumulation by AMP-activated protein kinase-dependent peroxisome proliferator-activated receptor alpha activation. Front. Immunol. 2018, 9, 147. [Google Scholar] [CrossRef]
- Kuk, H.; Arnold, C.; Meyer, R.; Hecker, M.; Korff, T. Magnolol inhibits venous remodeling in mice. Sci. Rep. 2017, 1, 17820. [Google Scholar] [CrossRef]
- Yang, B.; Xu, Y.; Yu, S.; Huang, Y.; Lu, L.; Liang, X. Anti-angiogenic and anti-inflammatory effects of magnolol in the oxygen-induced retinopathy model. Inflamm. Res. 2016, 65, 81–93. [Google Scholar] [CrossRef]
- Lin, M.H.; Chen, M.C.; Chen, T.H.; Chang, H.Y.; Chou, T.C. Magnolol ameliorates lipopolysaccharide-induced acute lung injury in rats through PPAR-γ-dependent inhibition of NF-κB activation. Int. Immunopharmacol. 2015, 28, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Lin, S.J.; Chen, J.W.; Chen, Y.L. Magnolol attenuates VCAM-1 expression in vitro in TNF-alpha-treated human aortic endothelial cells and in vivo in the aorta of cholesterol-fed rabbits. Br. J. Pharmacol. 2002, 135, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Song, Z.; Li, H.; Chang, L.; Pan, T.; Gu, X.; He, X.; Fan, Z. Honokiol ameliorates high-fat-diet-induced obesity of different sexes of mice by modulating the composition of the gut microbiota. Front. Immunol. 2019, 10, 2800. [Google Scholar] [CrossRef] [PubMed]
- Chinese Pharmacopoeia Commision. Chinese Phramacopoeia 2020 Edition; Chinese Pharmacopoeia Commision: Beijing, China, 2023. [Google Scholar]
- Liu, Z.; Zhang, X.; Cui, W.; Zhang, X.; Li, N.; Chen, J.; Wong, A.W.; Roberts, A. Evaluation of short-term and subchronic toxicity of magnolia bark extract in rats. Regul. Toxicol. Pharmacol. 2007, 49, 160–171. [Google Scholar] [CrossRef]
- Li, N.; Song, Y.; Zhang, W.; Wang, W.; Chen, J.; Wong, A.W.; Roberts, A. Evaluation of the in vitro and in vivo genotoxicity of magnolia bark extract. Regul. Toxicol. Pharmacol. 2007, 49, 154–159. [Google Scholar] [CrossRef]
- Garrison, R.; Chambliss, W.G. Effect of a proprietary Magnolia and Phellodendron extract on weight management: A pilot, double-blind, placebo-controlled clinical trial. Alter. Ther. Health Med. 2006, 12, 50–54. [Google Scholar]
- Yang, H.Y.; Chen, C.F. Pharmacology and toxicology of herbal medicine: Subacute toxicity of commonly used Chinese drugs. J. Toxicol. Sci. 1998, 23, 229–233. [Google Scholar] [CrossRef]
- Sheng, Y.L.; Xu, J.H.; Shi, C.H.; Li, W.; Xu, H.Y.; Li, N.; Zhao, Y.Q.; Zhang, X.R. UPLC-MS/MS-ESI assay for simultaneous determination of magnolol and honokiol in rat plasma: Application to pharmacokinetic study after administration emulsion of the isomer. J. Ethnopharmacol. 2014, 155, 1568–1574. [Google Scholar] [CrossRef]
- Lin, S.P.; Tsai, S.Y.; Lee Chao, P.D.; Chen, Y.C.; Hou, Y.C. Pharmacokinetics, bioavailability, and tissue distribution of magnolol following single and repeated dosing of magnolol to rats. Plant Med. 2011, 77, 1800–1805. [Google Scholar] [CrossRef]
- Wei, W.; Dejie, L.; Xiaojing, S.; Tiancheng, W.; Yongguo, C.; Zhengtao, Y.; Naisheng, Z. Magnolol inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model. Inflammation 2014, 38, 16–26. [Google Scholar] [CrossRef]
- Wu, C.; Wang, H.; Xu, J.; Huang, J.; Chen, X.; Liu, G. Magnolol inhibits tumor necrosis factor-α-induced ICAM-1 expression via suppressing NF-κB and MAPK signaling pathways in human lung epithelial cells. Inflammation 2014, 37, 1957–1967. [Google Scholar]
- Hsieh, S.F.; Chou, C.T.; Liang, W.Z.; Kuo, C.C.; Wang, J.L.; Hao, L.J.; Hao, L.J.; Jan, C.R. The effect of magnolol on Ca2+ homeostasis and its related physiology in human oral cancer cells. Arch. Oral. Biol. 2018, 89, 49–54. [Google Scholar] [CrossRef]
- Chen, Y.H.; Lu, M.H.; Guo, D.S.; Zhai, Y.Y.; Miao, D.; Yue, J.; Yuan, C.H.; Zhao, M.M.; An, D.R. Antifungal effect of magnolol and honokiol from Magnolia officinalis on Alternaria alternata causing Tobacco Brown Spot. Molecules 2019, 24, 2140. [Google Scholar] [CrossRef]
- Kim, Y.L.; Choi, M.S.; Cha, B.Y.; Woo, J.T.; Park, Y.B.; Km, S.R.; Jung, U.J. Long-term supplementation of honokiol and magnolol ameliorates body fat accumulation, insulin resistance and adipose inflammation in high-fat fed mice. Mol. Nutr. Res. 2013, 11, 1988–1998. [Google Scholar] [CrossRef]
- Tsai, T.H.; Chou, C.J.; Cheng, F.C.; Chen, C.F. Pharmacokinetics of honokiol after intravenous administration in rats assessed using high performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1994, 655, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Bohmdorfer, M.; Maier-Salamon, A.; Taferner, B.; Reznicek, G.; Thalhammer, T.; Hering, S.; Hufner, A.; Schuhly, W.; Jager, W. In vitro metabolism and disposition of honokiol in rat and human livers. J. Pharma Sci. 2011, 100, 3506–3516. [Google Scholar] [CrossRef]
- Wang, Y.J.; Chien, Y.C.; Wu, C.H.; Liu, D.M. Magnolol-loaded core-shell hydrogel nanoparticles: Drug release, intracellular uptake, and controlled cytotoxicity for the inhibition of migration of vascular muscle cells. Mol. Pharm. 2011, 8, 2339–2349. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.L.S.; An, L.Y.; Qui, N.; Luo, L.N.; Cai, B.J. Preparation and characterization of magnolol liposomes. Lishizhen Med. Mat. Med. Res. 2016, 27, 1647–1650. [Google Scholar]
- Stefanache, A.; Tantnru, G.; Ignat, M.; Creteanu, A.; Ochiuz, L. Development of mesoporous silicate nanoparticles as drug carrier for magnolol. Sect Micro Nao Teachnologies 2017, 17, 111–112. [Google Scholar]
- Yu, R.Q.; Zou, Y.; Liu, B.; Guo, Y.F.; Wang, X.T.; Han, M.H. Surface modification of pH-sensitive honokiol nanoparticles based on dopamine coating for targeted therapy of breast cancer. Colloids Surf. B Biointerfaces 2019, 177, 1–10. [Google Scholar] [CrossRef]
- Li, G.Y.; Lu, Y.T.; Fan, Y.C.; Ning, Q.; Li, W.G. Enhanced oral bioavailability of magnolol via mixed micelles and nanosuspensions based on Soluplus®-Poloxamer188. Drug Deliv. 2020, 27, 1010–1017. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.H.; Quimque, M.T.J.; Macabeo, A.P.G.; Corpuz, M.J.A.T.; Wang, Y.M.; Lu, T.T.; Lin, C.H.; Villaflores, O.B. Enhanced oral bioavailability of the pharmacologically active lignin magnolol via Zr-based metal organic framework impregnation. Pharmaceutics 2020, 12, 437. [Google Scholar] [CrossRef]
- Sampieri-Moran, J.; Bravo-Alfaro, D.A.; Uribe-Lam, E.; Luna-Bacenas, G.; Montiel-Sanchez, M.; Velasco-Rodriguez, L.D.C.; Acosta-Osorio, A.A.; Ferrer, M.; Garcia, H.S. Delivery of magnolia bark extract in nanoemulsions formed by high and low energy methods improves the bioavailability of honokiol and magnolol. Eur. J. Pharm. Biopharm. 2025, 208, 114627. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Li, Y.; Zeng, Y.; Tian, B.; Qu, X.; Yuan, Q.; Song, Y. Pharmacology, toxicity, bioavailability, and formulation of magnolol: An update. Front. Pharmacol. 2021, 12, 632767. [Google Scholar] [CrossRef] [PubMed]
- Siudem, P.; Wasiak, A.; Zielinska, A.; Kowalska, V.; Paradowska, K. Using lignans from Magnolia officinalis bark in the assessment of the quality of dietary supplements—The application of 1H NMR and HPLC-DAD. Int. J. Mol. Sci. 2025, 26, 1659. [Google Scholar] [CrossRef]
- Kuribara, H.; Stavinoha, W.B.; Maruyama, Y. Behavioural pharmacological characteristics of honokiol, an anxiolytic agent present in extracts of magnolia bark, evaluated by an elevated plus-maze test in mice. J. Pharm. Pharmacol. 1998, 50, 819–826. [Google Scholar] [CrossRef]
Cardioprotective Action | ||||
---|---|---|---|---|
Extract/Bioactive Compound | Model | Dosage | Result | Reference |
In vitro models | ||||
Magnolol | Right coronary arteries from pig hearts | 1–100 µM | Relaxed the coronary artery and inhibited COX-2 and iNOS protein expression | [44] |
Magnolol | Human aortic smooth muscle cells | 10–20 µM | Inhibited migration of tested cells by suppressing cytoskeletal remodeling and neointima formation | [47] |
Magnolol | RAW 264.7 cells | 25–100 µM | Reduced the expression of TLR2, the production of ROS, and inflammatory cytokines | [64] |
Magnolol | Human aortic endothelial cells | 5 µM | Reduced leukocyte adhesion | [30] |
Magnolol | Vascular smooth muscle cells | 5–20 µM | Suppressed proliferation of tested cells and DNA synthesis by inhibiting ROS generation, as well as the expression of cyclin D1/E and cyclin-dependent kinases 2 and 4 | [48] |
Magnolol | LPS-induced RAW 264.7 cells | 15–60 µg/mL | Downregulating TLR4 expression, NF-κB and MAPK pathway activation, and proinflammatory cytokine excretion | [65] |
Magnolol | Vascular smooth muscle cells | 1–10 µM | Inhibited the expression of endothelin-1 | [29] |
Magnolol | Rabbit blood platelets | 20–60 µM | Inhibited blood platelet activation and aggregation | [53] |
Magnolol | Rat thoracic aorta | 10–100 µg/mL | Inhibited vascular contractions | [63] |
Magnolol | Endothelial cells | 1–30 µM | Inhibited IL-6-induced STAT3 activation and gene expression | [49] |
Magnolol | Isolated rat heart mitochondria | IC50 = 0.08 µM | Inhibited lipid peroxidation | [58] |
Magnolol | Mouse 3T3-L1 preadipocytes | 10–60 µM | Reduced triglyceride levels | [29] |
Magnolol and honokiol | Rabbit blood platelets | 1–100 µg/mL | Inhibited blood platelet activation, including arachidonic acid metabolism and intracellular calcium increase | [62] |
Honokiol | Cardiomyocytes | 5 and 10 µM | Activating mitochondrial Sirt3 | [31] |
Honokiol | H9c2 rat cardiomyocytes | 2.5 and 5 µM | Activated PPARγ and suppressed mitochondrial protein deacetylation | [32] |
Honokiol | Human umbilical vein endothelial cells | 2.5–20 µM | Resisted oxLDL-induced cytotoxicity and adhesion molecule expression | [45] |
Honokiol | Isolated rat heart mitochondria | IC50 = 0.1 µM | Inhibited lipid peroxidation | [58] |
4-Methoxyhonokiol | RAW 264.7 cells | 1–30 µM | Suppressed COX-2 and iNOS | [66] |
In vivo models | ||||
Extract (Bioland Co., Ltd. (Korea)) | Obese mice | 2.5–10 mg/kg | Reduced cardiac lipid accumulation | [35] |
Magnolol | Obese mice | 100 mg/kg | Reduced dyslipidemia | [67] |
Magnolol | Human APOA5 knock-in mice | 30 mg/kg | Reduced triglyceride levels | [29] |
Magnolol | Mice with hyperlipidemia | 10 and 20 mg/kg | Reduced dyslipidemia | [68] |
Magnolol | Male Sprague Dawley rats | 1–100 µg/kg | Reduced ventricular fibrillation and animal mortality (for 10 µg/kg) and reduced proportion of myocardial ischemic necrosis area | [47] |
Magnolol | Mice with one first-order vein ligated | 20 µg/kg | Inhibited venous remodeling | [69] |
Magnolol | Rats with hypertension | 100 mg/kg | Decreased blood pressure | [28] |
Magnolol | Male Sprague Dawley rats | 50 and 100 µg/kg | Increased luminal area and attenuated neointima formation, intimal area, and intimal/medial ratio | [46] |
Magnolol | Male Sprague Dawley rats | 10 mg/kg | Regulated angiotensin-converting enzyme/angiotensin II/Ang II type 1 receptor cascade and angiotensin-converting enzyme 2 | [29] |
Magnolol | Male spontaneous hypertensive rats | 100 mg/kg | Decreased blood pressure through upregulated eNOS, Akt, and PPAR-γ and improved vascular insulin resistance | [30] |
Magnolol | C57BL/6J mice | 10–50 mg/kg | Decreased the expression of inflammatory cytokines | [70] |
Magnolol | LPS-induced Sprague Dawley rats | 10 and 20 mg/kg | Increased the expression of PPAR-γ, altered iNOS and COX-2 expression, ROS production, and proinflammatory factor concentrations | [71] |
Magnolol | Coronary occlusion and reperfusion model in Sprague Dawley rats | 0.001–0.1 µg/mL | Reduced infarct size and suppressed ventricular arrythmia | [25] |
Magnolol | Rabbits with coronary artery occlusion | 0.1 and 1 µg/kg | Protected myocardium against stunning | [26] |
Magnolol | Rats with pulmonary arterial hypertension | 10 mg/kg | Inhibited expression of angiotensin II | [29] |
Magnolol | Cholesterol-fed rabbits | 1 µg/kg | Suppressed monocyte chemoattractant protein-1 and intimal hyperplasia | [59] |
Magnolol | Cholesterol-fed rabbits | 1 µg/kg | Inhibited TNFα-induced intracellular adhesion molecule 1 expression | [72] |
Honokiol | Mice with obesity | 100 mg/kg | Reduced dyslipidemia | [67] |
Honokiol | Hypertrophic mice | 0.2 mg/kg | Reverse cardiac hypertrophy | [31] |
Honokiol | Mice with cardiac injury induced by doxorubicin | 0.2 mg/kg | Activated PPARγ and suppressed mitochondrial protein deacetylation | [32] |
Honokiol | Mice with obesity | 0.02% in diet | Reduced obesity | [73] |
4-Methoxyhonokiol | Male ICR mice | 20 and 100 mg/kg | Suppressed COX-2 and iNOS | [66] |
4-Methoxyhonokiol | Mice with obesity | 0.5 and 1 mg/kg | Reduced body fat and regulated lipid metabolism | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olas, B. The Cardioprotective Effect of Magnolia officinalis and Its Major Bioactive Chemical Constituents. Int. J. Mol. Sci. 2025, 26, 4380. https://doi.org/10.3390/ijms26094380
Olas B. The Cardioprotective Effect of Magnolia officinalis and Its Major Bioactive Chemical Constituents. International Journal of Molecular Sciences. 2025; 26(9):4380. https://doi.org/10.3390/ijms26094380
Chicago/Turabian StyleOlas, Beata. 2025. "The Cardioprotective Effect of Magnolia officinalis and Its Major Bioactive Chemical Constituents" International Journal of Molecular Sciences 26, no. 9: 4380. https://doi.org/10.3390/ijms26094380
APA StyleOlas, B. (2025). The Cardioprotective Effect of Magnolia officinalis and Its Major Bioactive Chemical Constituents. International Journal of Molecular Sciences, 26(9), 4380. https://doi.org/10.3390/ijms26094380