Comprehensive Analysis of Metabolites and Biological Endpoints Providing New Insights into the Tolerance of Wheat Under Sulfamethoxazole Stress
Abstract
1. Introduction
2. Results and Discussion
2.1. Morphological Characteristics
2.2. Reactive Oxygen Species (ROS)
2.3. Antioxidant Enzyme Responses
2.4. Metabolite Profiling and Response Analysis
3. Materials and Methods
3.1. ROS Levels
3.2. Antioxidant Enzyme
3.3. Metabolites
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sherpa, R.T.; Reese, C.J.; Montazeri Aliabadi, H. Application of ichip to grow “uncultivable” microorganisms and its impact on antibiotic discovery. J. Pharm. Pharm. Sci. 2015, 18, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Lv, G.C.; Li, Z.H.; Elliott, L.; Schmidt, M.J.; Macwilliams, M.P.; Zhang, B.G. Impact of tetracycline-clay interactions on bacterial growth. J. Hazard. Mater. 2019, 370, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Halling-Sørensen, B.; Nors Nielsen, S.; Lanzky, P.F.; Ingerslev, F.; Holten Lützhøft, H.C.; Jørgensen, S.E. Occurrence, fate and effects of pharmaceutical substances in the environment—A review. Chemosphere 1998, 36, 357–393. [Google Scholar] [CrossRef]
- Han, H.J.; Zheng, S.Y.; Ma, W.C.; Huang, J.H.; Chen, L.Y.; Liu, X.; Jia, S.Y.; Mu, J.M. The current situation and treatment and disposal techniques of antibiotic bacterial residues in China. Appl. Mech. Mater. 2014, 587–589, 820–823. [Google Scholar] [CrossRef]
- Cheng, W.X.; Li, J.N.; Wu, Y.; Xu, L.K.; Su, C.; Qian, Y.Y.; Zhu, Y.G.; Chen, H. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: A case study. J. Hazard. Mater. 2016, 304, 18–25. [Google Scholar] [CrossRef]
- Zakordonets, L.; Tolstanova, G.; Yankovskiy, D.; Dyment, H.; Kramarev, S. Different regimes of multiprobiotic for prevention of immediate and delayed side effects of antibiotic therapy in children. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 2194–2201. [Google Scholar]
- Kim, K.R.; Owens, G.; Kwon, S.I.; So, K.H.; Lee, D.B.; Ok, Y.S. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water Air Soil Pollut. 2011, 214, 163–174. [Google Scholar] [CrossRef]
- Wohlgemuth, I.; Garofalo, R.; Samatova, E.; Günenç, A.N.; Lenz, C.; Urlaub, H.; Rodnina, M.V. Translation error clusters induced by aminoglycoside antibiotics. Nat. Commun. 2021, 12, 1830. [Google Scholar] [CrossRef]
- Xu, K.H.; Wang, J.; Gong, H.; Li, Y.Z.; Zhou, L.; Yan, M.T. Occurrence of antibiotics and their associations with antibiotic resistance genes and bacterial communities in Guangdong coastal areas. Ecotoxicol. Environ. Saf. 2019, 186, 109796. [Google Scholar] [CrossRef]
- Han, T.; Sun, M.Y.; Zhao, J.J.; Dai, C.Y.; Li, Y.; Zhang, P.; Lang, D.M.; Zhou, J.G.; Li, X.Z.; Ge, S.D. The roles of cadmium on growth of seedlings by analysing the composition of metabolites in pumpkin tissues. Ecotoxicol. Environ. Saf. 2021, 226, 112817. [Google Scholar] [CrossRef]
- Guo, Q.; Qi, H.Z.; Zhou, Y.P. Metabonomics and the research of traditional Chinese Medicine. Adv. Mater. Res. 2012, 396–398, 1676–1679. [Google Scholar] [CrossRef]
- Zhang, L.; Qian, L.; Ding, L.; Wang, L.; Wong, M.H.; Tao, H. Ecological and toxicological assessments of anthropogenic contaminants based on environmental metabolomics. Environ. Sci. Ecotechnol. 2021, 5, 100081. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Liang, Y.P.; Wu, Z.N.; Zhang, L.; Liu, Z.W.; Li, Q.F.; Chen, X.J.; Guo, W.L.; Jiang, L.N.; Pan, F.F.; et al. Effects of tetracycline on growth, oxidative stress response, and metabolite pattern of ryegrass. J. Hazard. Mater. 2019, 380, 120885. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Mi, Z.R.; Chen, Z.; Zhao, J.J.; Zhang, H.G.; Lv, Y.; Du, S.Y.; Bu, R.F.; Zhou, J.G.; Li, X.Z.; et al. Multi-omics analysis reveals the influence of tetracycline on the growth of ryegrass root. J. Hazard. Mater. 2022, 435, 129019. [Google Scholar] [CrossRef]
- Narciso, A.; Grenni, P.; Spataro, F.; De Carolis, C.; Rauseo, J.; Patrolecco, L.; Garbini, G.L.; Rolando, L.; Iannelli, M.A.; Bustamante, M.A.; et al. Effects of sulfamethoxazole and copper on the natural microbial community from a fertilized soil. Appl. Microbiol. Biot. 2024, 108, 516. [Google Scholar] [CrossRef]
- Mu, X.Y.; Chen, C.L.; Fan, Q.Y.; Zhang, W.H.; Liu, F.; Guo, J.X.; Qi, W.X.; Liu, H.J. Removal and ecological impact of sulfamethoxazole and N-acetyl sulfamethoxazole in mesocosmic wetlands dominated by submerged plants: Plant tolerance, microbial response, and nitrogen transformation. Sci. Total Environ. 2025, 958, 178034. [Google Scholar] [CrossRef]
- Jin, J.J. Ecotoxicological Mechanism of Sulfamethoxazole on Chinese Cabbage and Rice Seedlings. Master’s Thesis, Zhejiang Gongshang University, Hangzhou, China, 2023. (In Chinese with English Abstract). [Google Scholar]
- Ren, J.W.; Lu, H.B.; Lu, S.Y.; Huang, Z.G. Impacts of sulfamethoxazole stress on vegetable growth and rhizosphere bacteria and the corresponding mitigation mechanism. Front. Bioeng. Biotechnol. 2024, 12, 1303670. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.T.; Li, J.; Zhou, S.S.; Li, K.; Niu, L.L.; Zhao, L.; Xu, D.M. Analysis of the effects of sulfamethoxazole on the secondary metabolites and antioxidants in oilseed rape (Brassica napus L.) and the underlying mechanisms. Sci. Total Environ. 2023, 902, 165768. [Google Scholar] [CrossRef]
- Li, X. Study on Combined Toxicity of Micro/Nanoplastics and Sulfamethoxazole to Skeletonema costatum and Oryzias melastigma. Ph.D. Thesis, Nankai University, Tianjin, China, 2022. (In Chinese with English Abstract). [Google Scholar]
- Yin, S.Y.; Yang, S.L.; Sun, S.X. Effects of exogenous phosphorus on photosynthetic characteristics of Chrysopogon zizanioides (L.) Roberty under combined cadmium and sulfamethoxazole pollution. J. Hunan Agri. Univ. (Nat. Sci.) 2025, 51, 51–61, (In Chinese with English Abstract). [Google Scholar]
- Chen, Z.; Chen, L.Q.; Hu, F.X.; Zhou, H.L.; He, J.B.; Huo, P.H. Toxic effects of sulfamethoxazole on Perinereis aibuhitensis. Asian J. Ecotoxicol. 2024, 19, 350–359, (In Chinese with English Abstract). [Google Scholar]
- Yang, Y.; Jia, J.T.; Han, T.; Zhang, H.; Wang, Y.J.; Shao, L.Y.; Wang, X.Y. Integrated analysis of metabolites and biological endpoints bring new insights into sulfamethoxazole stress tolerance in ryegrass. Plants 2025, 14, 538. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.N.; Chen, C.; Li, G.D.; Liu, Q.Y.; Tian, L.L. Effects of Sulfamethoxazole (SMZ) on the Content of Chlorophylll (CHL) and Soluble Protein (SP), and the Superoxide Dismutases (SOD) Activity of Wheat, Triticum aestivum. Asian J. Ecotox. 2013, 8, 543–548, (In Chinese with English Abstract). [Google Scholar]
- Song, G.; Gao, Y.; Wu, H.; Hou, W.; Zhang, C.; Ma, H. Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ. Toxicol. Chem. 2012, 31, 2147–2152. [Google Scholar] [PubMed]
- Shih, C.M.; Ko, W.C.; Wu, J.S.; Wei, Y.H.; Wang, L.F.; Chang, E.E.; Lo, T.Y.; Cheng, H.H.; Chen, C.T. Mediating of caspase-independent apoptosis by cadmium through the mitochondria-ROS pathway in MRC-5 fibroblasts. J. Cell. Biochem. 2004, 91, 384–397. [Google Scholar]
- Serrander, L.; Cartier, L.; Bedard, K.; Banfi, B.; Lardy, B.; Plastre, O.; Sienkiewicz, A.; Fórró, L.; Schlegel, W.; Krause, K.H. NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem. J. 2007, 406, 105–114. [Google Scholar]
- Feng, P.F.; Cui, H.W.; Wang, C.Y.; Li, X.Y.; Duan, W.Y. Oxidative stress responses in two marine diatoms during sulfamethoxazole exposure and the toxicological evaluation using the IBRv2 index. Comp. Biochem. Phys. C 2023, 276, 1097. [Google Scholar]
- Rasool, S.; Ahmad, A.; Siddiqi, T.O.; Ahmad, P. Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol. Plant 2013, 35, 1039–1050. [Google Scholar] [CrossRef]
- Weisany, W.; Sohrabi, Y.; Heidari, G.; Siosemardeh, A.; Ghassemi-Golezani, K. Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics J. 2012, 5, 60–67. [Google Scholar]
- Cui, Y.; Zhao, N. Oxidative stress and change in plant metabolism of maize (Zea mays L.) growing in contaminated soil with elemental sulfur and toxic effect of zinc. Plant Soil Environ. 2011, 57, 34–39. [Google Scholar] [CrossRef]
- Kachout, S.S.; Mansoura, A.B.; Leclerc, J.C.; Mechergui, R.; Rejeb, M.N.; Ouerghi, Z. Effects of heavy metals on antioxidant activities of Atriplex hortensis and A. Rosea. J. Food Agric. Environ 2009, 7, 938–945. [Google Scholar]
- Han, T.; Wang, B.S.; Wu, Z.N.; Dai, C.Y.; Zhao, J.J.; Mi, Z.R.; Lv, Y.; Zhang, C.; Miao, X.Y.; Zhou, J.G.; et al. Providing a view for toxicity mechanism of tetracycline by analysis of the connections between metabolites and biologic endpoints of wheat. Ecotoxicol. Environ. Saf. 2021, 212, 111998. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Naqvi, F.N. Effect of water stress on lipid peroxidation and antioxidant enzymes in local bread wheat hexaploids. J. Sci. Food Agric. 2010, 8, 521–526. [Google Scholar]
- Zeeshan, M.; Iqbal, A.; Salam, A.; Hu, Y.X.; Khan, A.H.; Wang, X.; Miao, X.R.; Chen, X.Y.; Zhang, Z.X.; Zhang, P.W. Zinc oxide nanoparticle-mediated root metabolic reprogramming for arsenic tolerance in Soybean. Plants 2024, 13, 3142. [Google Scholar] [CrossRef] [PubMed]
- Wise, D.R.; Thompson, C.B. Glutamine addiction: A new therapeutic target in cancer, Trends Biochem. Sci. 2010, 35, 427–433. [Google Scholar]
- Tanaka, K.; Sasayama, T.; Irino, Y.; Takata, K.; Naqashima, H.; Satoh, N.; Kyotani, K.; Mizowaki, T.; Imahori, T.; Ejima, Y.; et al. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J. Clin. Invest. 2015, 125, 1591–1602. [Google Scholar] [PubMed]
- Mortimer, M.; Kasemets, K.; Vodovnik, M.; Marinsek-Loqar, R.; Kahru, A. Exposure to CuO nanoparticles changes the fatty acid composition of protozoa Tetrahymena thermophile. Environ. Sci. Technol. 2011, 45, 6617–6624. [Google Scholar]
- Cheng, S.T.; Shi, M.M.; Xing, L.J.; Wang, X.M.; Gao, H.Z.; Sun, Y.M. Sulfamethoxazole affects the microbial composition and antibiotic resistance gene abundance in soil and accumulates in lettuce. Environ. Sci. Pollut. Res. 2020, 27, 29257–29265. [Google Scholar] [CrossRef]
- Li, T.; Li, C.Y.; Wang, Y.F.; Zhang, J.N.; Li, H.; Wu, H.F.; Yang, X.L.; Song, H.L. Insights to the cooperation of double-working potential electroactive biofilm for performance of sulfamethoxazole removal: ARG fate and microorganism communities. J. Hazard. Mater. 2024, 477, 135357. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Jia, J.; Han, T.; Zhang, H.; Wang, Y.; Shao, L.; Wang, X. Comprehensive Analysis of Metabolites and Biological Endpoints Providing New Insights into the Tolerance of Wheat Under Sulfamethoxazole Stress. Int. J. Mol. Sci. 2025, 26, 4257. https://doi.org/10.3390/ijms26094257
Yang Y, Jia J, Han T, Zhang H, Wang Y, Shao L, Wang X. Comprehensive Analysis of Metabolites and Biological Endpoints Providing New Insights into the Tolerance of Wheat Under Sulfamethoxazole Stress. International Journal of Molecular Sciences. 2025; 26(9):4257. https://doi.org/10.3390/ijms26094257
Chicago/Turabian StyleYang, Yong, Jiangtao Jia, Tao Han, Heng Zhang, Yvjie Wang, Luying Shao, and Xinyi Wang. 2025. "Comprehensive Analysis of Metabolites and Biological Endpoints Providing New Insights into the Tolerance of Wheat Under Sulfamethoxazole Stress" International Journal of Molecular Sciences 26, no. 9: 4257. https://doi.org/10.3390/ijms26094257
APA StyleYang, Y., Jia, J., Han, T., Zhang, H., Wang, Y., Shao, L., & Wang, X. (2025). Comprehensive Analysis of Metabolites and Biological Endpoints Providing New Insights into the Tolerance of Wheat Under Sulfamethoxazole Stress. International Journal of Molecular Sciences, 26(9), 4257. https://doi.org/10.3390/ijms26094257