Site-Directed Mutagenesis Increased the Catalytic Activity and Stability of Oenococcus oeni β-Glucosidase: Characterization of Enzymatic Properties and Exploration of Mechanisms
Abstract
1. Introduction
2. Results and Discussion
2.1. Screening of Mutation Sites and Mutants
2.2. Characterization of Enzymatic Properties
2.2.1. Effects of Temperature on Enzyme Activity
2.2.2. Effects of pH on Enzyme Activity
2.2.3. Effects of Different Sugars on Enzyme Activity
2.2.4. Effects of Metal Ions and Some Additives on Enzyme Activity
2.2.5. Analysis of Enzymatic Reaction Kinetic Constants and Substrate Specificity
2.3. Mechanism Analysis of Enzymatic Property Change
3. Materials and Methods
3.1. Bacterial Strains and Materials
3.2. Prediction of Mutation Sites
3.3. Construction of Recombinant Plasmid pMG36e-0224 and Its Mutants
3.4. Determination of Enzyme Activity
3.5. Determination of Optimal Temperature and Thermal Stability
3.6. Determination of Optimal pH and Acid Stability
3.7. Determination of Different Sugars on Enzyme Activity
3.8. Determination of Metal Ions and Some Additives on Enzyme Activity
3.9. Enzymatic Reaction Kinetics and Substrate Specificity
3.10. Mechanism Analysis
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mallerman, J.; Papinutti, V.L.; Levin, N. Characterization of β-glucosidase produced by the white rot fungus Flammulina velutipes. J. Microbiol. Biotech. 2014, 25, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, B.; Gu, H.; Xu, T.; Chen, Q.; Li, J.; Zhou, P.; Guan, X.; He, L.; Liang, Y. A mutant GH3 family β-glucosidase from Oenococcus oeni exhibits superior adaptation to wine stresses and potential for improving wine aroma and phenolic profiles. Food Microbiol. 2024, 119, 104458. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, N.; Xu, J.; Qi, Y.; Wei, X.; Fan, M. Homology analysis of 35 β-glucosidases in Oenococcus oeni and biochemical characterization of a novel β-glucosidase BGL0224. Food Chem. 2021, 334, 127593. [Google Scholar] [CrossRef]
- Capaldo, A.; Walker, M.; Ford, C.; Jiranek, V. β-Glucoside metabolism in Oenococcus oeni: Cloning and characterisation of the phospho-β-glucosidase bglD. Food Chem. 2011, 125, 476–482. [Google Scholar] [CrossRef]
- Florindo, R.N.; Souza, V.P.; Manzine, L.R.; Camilo, C.M.; Marana, S.R.; Polikarpov, I.I.; Nascimento, A.S. Structural and biochemical characterization of a GH3 β-glucosidase from the probiotic bacteria Bifidobacterium adolescentis. Biochimie 2018, 148, 107–115. [Google Scholar] [CrossRef]
- Bogati, K.; Walczak, M. The impact of drought stress on soil microbial community, enzyme activities and plants. Agronomy 2022, 12, 189. [Google Scholar] [CrossRef]
- De Lima, F.S.; Kurozawa, L.E.; Ida, E.I. The effects of soybean soaking on grain properties and isoflavones loss. LWT-Food Sci. Technol. 2014, 59, 1274–1282. [Google Scholar] [CrossRef]
- Şener, A. Extraction, partial purification and determination of some biochemical properties of β-glucosidase from Tea Leaves (Camellia sinensis L.). J. Food Sci. Tech. 2015, 52, 8322–8328. [Google Scholar] [CrossRef]
- Tong, D.-P.; Zhu, K.-X.; Guo, X.-N.; Peng, W.; Zhou, H.-M. The enhanced inhibition of water extract of black tea under baking treatment on α-amylase and α-glucosidase. Int. J. Biol. Macromol. 2018, 107, 129–136. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, T.; Zhao, N.; Xu, J.; Qi, Y.; Wei, X.; Fan, M. Performance of a novel β-glucosidase BGL0224 for aroma enhancement of Cabernet Sauvignon wines. LWT-Food Sci. Technol. 2021, 144, 111244. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Li, J.; Xu, J. Different influences of β-glucosidases on volatile compounds and anthocyanins of Cabernet Gernischt and possible reason. Food Chem. 2013, 140, 245–254. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Wang, S.; Zhang, Q.; Peng, S.; Li, X.; Zhang, Y.; Qiao, Y. In silico investigation of the association of the TRPM8 ion channel with the pungent flavor of Chinese herbs. J. Tradit. Chin. Med. 2016, 3, 248–255. [Google Scholar] [CrossRef]
- Mushtaq, A.; Azam, U.; Mehreen, S.; Naseer, M.M. Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges. Eur. J. Med. Chem. 2023, 249, 115119. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Bai, Y.; Shi, P. Improving the substrate affinity and catalytic efficiency of β-glucosidase Bgl3A from Talaromyces leycettanus JCM12802 by rational design. Biomolecules 2021, 11, 1882. [Google Scholar] [CrossRef] [PubMed]
- Teze, D.; Hendrickx, J.; Czjzek, M.; Ropartz, D.; Sanejouand, Y.-H.; Tran, V.; Tellier, C.; Dion, M. Semi-rational approach for converting a GH1 β-glycosidase into a β-transglycosidase. Protein Eng. Des. Sel. 2014, 27, 13–19. [Google Scholar] [CrossRef]
- Hassan, N.; Geiger, B.; Gandini, B.; Patel, B.K.; Kittl, R.; Haltrich, D.; Nguyen, T.-H.; Divne, C.; Tan, T.C. Engineering a thermostable Halothermothrix orenii β-glucosidase for improved galacto-oligosaccharide synthesis. Appl. Microbiol. Biot. 2016, 100, 3533–3543. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Q.; Zhou, Y.; Li, J.; Gao, J.; Guo, Z. Engineering T. naphthophila β-glucosidase for enhanced synthesis of galactooligosaccharides by site-directed mutagenesis. Biochem. Eng. J. 2017, 127, 1–8. [Google Scholar] [CrossRef]
- Lee, H.-L.; Chang, C.-K.; Jeng, W.-Y.; Wang, A.H.-J.; Liang, P.-H. Mutations in the substrate entrance region of β-glucosidase from Trichoderma reesei improve enzyme activity and thermostability. Protein Eng. Des. Sel. 2012, 25, 733–740. [Google Scholar] [CrossRef]
- Ranaei Siadat, S.O.; Mollasalehi, H.; Heydarzadeh, N. Substrate affinity and catalytic efficiency are improved by decreasing glycosylation sites in Trichoderma reesei cellobiohydrolase I expressed in Pichia pastoris. Biotechnol. Lett. 2016, 38, 483–488. [Google Scholar] [CrossRef]
- Kambiré, M.S.; Gnanwa, J.M.; Boa, D.; Kouadio, E.J.P.; Kouamé, L.P. Modeling of enzymatic activity of free β-glucosidase from Palm weevil, Rhynchophorus palmarum Linn. (Coleoptera: Curculionidae) larvae: Effects of pH and temperature. Biophys. Chem. 2021, 276, 106611. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Yu, X.; Hu, X.; Zhang, H. Engineering Leuconostoc mesenteroides dextransucrase by inserting disulfide bridges for enhanced thermotoleranc. Enzym. Microb. Tech. 2020, 139, 109603. [Google Scholar] [CrossRef]
- Ni, D.; Zhang, S.; Huang, Z.; Liu, X.; Xu, W.; Zhang, W.; Mu, W. Multistrategy engineering of an inulosucrase to enhance the activity and thermostability for efficient production of microbial inulin. J. Agric. Food Chem. 2024, 72, 18100–18109. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.E.; Borchert, T.V.; Vriend, G. The determinants of α-amylase pH-activity profiles. Protein Eng. Des. Sel. 2001, 14, 05–512. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Xie, Y.; Jiang, J.; Wang, N.; Li, Y.; Wang, X. Directed evolution and mutagenesis of glutamate decarboxylase from Lactobacillus brevis Lb85 to broaden the range of its activity toward a near-neutral pH. Enzym. Microb. Tech. 2014, 61–62, 35–43. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, R.; Sirisena, S.; Gan, R.; Fang, R. Beta-glucosidase activity of wine yeasts and its impacts on wine volatiles and phenolics: A mini-review. Food Microbiol. 2021, 100, 103859. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Cao, L.; Yang, X.; Wu, X.; Xu, S.; Liu, Y. Simultaneously optimizing multiple properties of β-glucosidase Bgl6 using combined (semi-) rational design strategies and investigation of the underlying mechanisms. Bioresour. Technol. 2023, 374, 128792. [Google Scholar] [CrossRef]
- Gutierrez-Gutierrez, D.A.; Fuentes-Garibay, J.A.; Viader-Salvadó, J.M.; Guerrero-Olazarán, M. Biochemical characterization of the β-glucosidase Glu1B from Coptotermes formosanus produced in Pichia pastoris. Enzym. Microb. Tech. 2023, 163, 110155. [Google Scholar] [CrossRef]
- Sun, J.; Wang, W.; Ying, Y.; Hao, J. A novel glucose-tolerant GH1 β-glucosidase and improvement of its glucose tolerance using site-directed mutation. Appl. Biochem. Biotech. 2020, 192, 999–1015. [Google Scholar] [CrossRef]
- Fabjanowicz, M.; Płotka-Wasylka, J. Metals and metal-binding ligands in wine: Analytical challenges in identification. Trends Food Sci. Tech. 2021, 112, 382–390. [Google Scholar] [CrossRef]
- Tonin, F.; Otten, L.G.; Arends, I.W. NAD+-Dependent Enzymatic Route for the Epimerization of Hydroxysteroids. ChemSusChem 2019, 12, 3192–3203. [Google Scholar] [CrossRef]
- Carlsson, A.C.C.; Scholfield, M.R.; Rowe, R.K.; Ford, M.C.; Alexander, A.T.; Mehl, R.A.; Ho, P.S. Increasing enzyme stability and activity through hydrogen bond-enhanced halogen bonds. Biochemistry 2018, 57, 4135–4147. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Liu, Q.; Chai, W.-M.; Xia, S.-S.; Yu, Z.-Y.; Wei, Q.-M. Inhibitory potential of 4-hexylresorcinol against α-glucosidase and non-enzymatic glycation: Activity and mechanism. J. Biosci. Bioeng. 2021, 131, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Gumpena, R.; Kishor, C.; Ganji, R.J.; Jain, N.; Addlagatta, A. Glu121-Lys319 salt bridge between catalytic and N-terminal domains is pivotal for the activity and stability of Escherichia coli aminopeptidase N. Protein Sci. 2012, 21, 727–736. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kinoshita, M.; Kume, S.; Gt, H.; Sugiki, T.; Ladbury, J.E.; Kojima, C.; Ikegami, T.; Kurisu, G.; Goto, Y. Non-covalent forces tune the electron transfer complex between ferredoxin and sulfite reductase to optimize enzymatic activity. Biochem. J. 2016, 473, 3837–3854. [Google Scholar] [CrossRef]
- Tiwari, M.K.; Hägglund, P.M.; Møller, I.M.; Davies, M.J.; Bjerrum, M.J. Copper ion/H2O2 oxidation of Cu/Zn-Superoxide dismutase: Implications for enzymatic activity and antioxidant action. Redox Biol. 2019, 26, 101262. [Google Scholar] [CrossRef]
- Der, B.S.; Kluwe, C.; Miklos, A.E. Alternative computational protocols for supercharging protein surfaces for reversible unfolding and retention of stability. PLoS ONE 2013, 8, e64363. [Google Scholar] [CrossRef] [PubMed]
- Guérin, F.; Barbe, S.; Pizzut-Serin, S. Structural investigation of the thermostability and product specificity of amylosucrase from the bacterium Deinococcus geothermalis. J. Biol. Chem. 2012, 287, 6642–6654. [Google Scholar] [CrossRef]
- Flannelly, D.F.; Aoki, T.G.; Aristilde, L. Short-time dynamics of pH-dependent conformation and substrate binding in the active site of beta-glucosidases: A computational study. J. Struct. Biol. 2015, 191, 352–364. [Google Scholar] [CrossRef]
- Kulkarni, T.S.; Khan, S.; Villagomez, R.; Mahmood, T.; Lindahl, S.; Logan, D.T.; Linares-Pastén, J.A.; Nordberg Karlsson, E. Crystal structure of β-glucosidase 1A from Thermotoga neapolitana and comparison of active site mutants for hydrolysis of flavonoid glucosides. Proteins 2017, 85, 872–884. [Google Scholar] [CrossRef]
- Song, W.; Li, Y.; Tong, Y.; Tao, J.; Rao, S.; Li, J.; Zhou, J.; Liu, S. Improving the catalytic efficiency of Aspergillus fumigatus glucoamylase toward raw starch by engineering its N-glycosylation sites and saturation mutation. J. Agric. Food Chem. 2022, 70, 12672–12680. [Google Scholar] [CrossRef]
- Troy, C. The Pandemic Threat of Emerging H5 and H7 Avian Influenza Viruses. Viruses 2018, 10, 461. [Google Scholar] [CrossRef] [PubMed]
- Samy, A.; Naguib, M. Avian respiratory coinfection and impact on avian influenza pathogenicity in domestic poultry: Field and experimental findings. Vet. Sci. 2018, 5, 23. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Fan, M.; Zhang, Z.; Xu, Y.; Li, A.; Wang, P.; Yang, P. Purification and characterization of β-glucosidase from Oenococcus oeni 31MBR. Eur. Food Res. Technol. 2014, 239, 995–1001. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Fang, Z. The 184th residue of β-glucosidase Bgl1B plays an important role in glucose tolerance. J. Biosci. Bioeng. 2011, 112, 447–450. [Google Scholar] [CrossRef]
- Zhou, C.; Dong, A.; Wang, Q.; Yu, Y.; Fan, X.; Cao, Y.; Li, T. Effect of common metal ions and anions on laccase catalysis of guaiacol and lignocellulosic fiber. BioResources 2017, 12, 5102–5117. [Google Scholar] [CrossRef]
Additives | Concentration (mM) | Wild-Type Enzyme | Mutant III | Mutant IV |
---|---|---|---|---|
IC50 (mM) | IC50 (mM) | IC50 (mM) | ||
K+ | 5 | Activator | Activator | 2.42 |
Na+ | 5 | Activator | 0.929 | Activator |
Li+ | 5 | Activator | Activator | Activator |
Ag+ | 5 | 7.43 | 3.03 | 2.93 |
Ca2+ | 5 | 4.09 | 3.38 | 3.28 |
Mg2+ | 5 | 8.92 | 3.37 | 5.35 |
Zn2+ | 5 | 3.87 | 3.19 | 2.94 |
Ba2+ | 5 | Activator | Activator | Activator |
Cu2+ | 5 | 3.12 | 3.48 | 1.58 |
Mn2+ | 5 | 3.76 | Activator | Activator |
Fe2+ | 5 | 2.83 | 3.96 | 4.43 |
Fe3+ | 5 | 0.31 | 2.81 | 2.42 |
EDTA | 5 | 6.41 | 6.89 | 7.16 |
SDS | 5 | 7.89 | 6.72 | 6.29 |
DTT | 5 | 7.93 | 5.49 | 6.17 |
Triton-X100 | 0.2% | - | - | - |
Tween-80 | 0.2% | - | - | - |
Substrates | Enzyme | Vmax (μM/min/mg) | Km (mM) | Kcat (S−1) | Kcat/Km (S−1·mM−1) |
---|---|---|---|---|---|
pNP-β-glu | wild-type enzyme | 363.46 ± 4.13 c | 0.33 ± 0.03 c | 333.99 ± 3.80 c | 1012.09 c |
mutant III | 532.82 ± 6.51 b | 0.27 ± 0.05 b | 489.77 ± 5.98 b | 1813.96 b | |
mutant IV | 841.65 ± 3.82 a | 0.22 ± 0.03a | 773.64 ± 3.52 a | 3516.54 a | |
pNP-β-gal | wild-type enzyme | 230.97 ± 5.71 c | 0.81 ± 0.16 b | 212.24 ± 5.25 c | 262.02 c |
mutant III | 349.18 ± 4.83 a | 0.52 ± 0.17 a | 320.97 ± 4.44 a | 617.25 a | |
mutant IV | 257.38 ± 5.47 b | 0.87 ± 0.24 c | 236.85 ± 5.03 b | 272.24 b | |
pNP-β-xyl | wild-type enzyme | 307.72 ± 3.64 c | 1.31 ± 0.22 c | 282.77 ± 3.34 c | 215.85 c |
mutant III | 337.28 ± 4.61 b | 1.24 ± 0.13 b | 310.03 ± 4.24 b | 250.02 b | |
mutant IV | 358.83 ± 3.88 a | 1.17 ± 0.16 a | 330.21 ± 3.57 a | 282.23 a | |
pNP-α-glu | wild-type enzyme | 29.61 ± 1.83 a | 1.07 ± 0.20 a | 27.21 ± 1.68 a | 25.43 a |
mutant III | 25.81 ± 2.06 b | 1.19 ± 0.23 b | 23.73 ± 1.89 b | 19.94 b | |
mutant IV | 19.93 ± 1.98 c | 1.27 ± 0.19 c | 18.35 ± 1.82 c | 14.45 c |
Different Enzyme | Salt Bridge | Salt Bridge Connected to p-NPG |
---|---|---|
wild-type | 22 | - |
mutant III | 18 | - |
mutant IV | 18 | - |
wild-type-p-NPG | 22 | 0 |
mutant III-p-NPG | 18 | 1 |
mutant IV-p-NPG | 18 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, J.; Zhang, J.; Ma, H.; Zhang, Y.; Li, P.; Wu, Y.; Tian, P.; Fan, Q.; Cao, L.; Sun, J.; et al. Site-Directed Mutagenesis Increased the Catalytic Activity and Stability of Oenococcus oeni β-Glucosidase: Characterization of Enzymatic Properties and Exploration of Mechanisms. Int. J. Mol. Sci. 2025, 26, 3983. https://doi.org/10.3390/ijms26093983
Zuo J, Zhang J, Ma H, Zhang Y, Li P, Wu Y, Tian P, Fan Q, Cao L, Sun J, et al. Site-Directed Mutagenesis Increased the Catalytic Activity and Stability of Oenococcus oeni β-Glucosidase: Characterization of Enzymatic Properties and Exploration of Mechanisms. International Journal of Molecular Sciences. 2025; 26(9):3983. https://doi.org/10.3390/ijms26093983
Chicago/Turabian StyleZuo, Junpeng, Jie Zhang, Hongyu Ma, Yanqi Zhang, Pengyan Li, Ying Wu, Pingping Tian, Qiuxia Fan, Li Cao, Jianrui Sun, and et al. 2025. "Site-Directed Mutagenesis Increased the Catalytic Activity and Stability of Oenococcus oeni β-Glucosidase: Characterization of Enzymatic Properties and Exploration of Mechanisms" International Journal of Molecular Sciences 26, no. 9: 3983. https://doi.org/10.3390/ijms26093983
APA StyleZuo, J., Zhang, J., Ma, H., Zhang, Y., Li, P., Wu, Y., Tian, P., Fan, Q., Cao, L., Sun, J., & Gu, S. (2025). Site-Directed Mutagenesis Increased the Catalytic Activity and Stability of Oenococcus oeni β-Glucosidase: Characterization of Enzymatic Properties and Exploration of Mechanisms. International Journal of Molecular Sciences, 26(9), 3983. https://doi.org/10.3390/ijms26093983