WT1 Gene Pathogenic Variants: Clinical Challenges and Treatment Strategies in Pediatric Nephrology—One Center Practice
Abstract
1. Introduction
Aim
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, L.; Pietsch, S.; Englert, C. Towards an Understanding of Kidney Diseases Associated with WT1 Mutations. Kidney Int. 2015, 88, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Hohenstein, P.; Hastie, N.D. The many facets of the Wilms’ tumour gene, WT1. Hum. Mol. Genet. 2006, 15, 196–201. [Google Scholar]
- Lehnhardt, A.; Karnatz, C.; Ahlenstiel-Grunow, T.; Benz, K.; Benz, M.R.; Budde, K.; Kemper, M.J. Clinical and molecular characterization of patients with heterozygous mutations in Wilms tumor suppressor gene 1. Clin. J. Am. Soc. Nephrol. 2015, 10, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Xu, L.; Bi, Y.; Wang, J.; Zhang, Z.; Tang, X.; Xu, H. Early diagnosis of WT1 nephropathy and follow up in a Chinese multicenter cohort. Eur. J. Med. Genet. 2020, 63, 104047. [Google Scholar] [CrossRef]
- Chernin, G.; Vega-Warner, V.; Schoeb, D.S.; Heeringa, S.F.; Ovunc, B.; Saisawat, P.; GPN Study Group. Genotype/phenotype correlation in nephrotic syndrome caused by WT1 mutations. Clin. J. Am. Soc. Nephrol. 2010, 5, 1655–1662. [Google Scholar] [CrossRef]
- Huang, Y.C.; Tsai, M.C.; Tsai, C.R.; Fu, L.S. Frasier Syndrome: A Rare Cause of Refractory Steroid-Resistant Nephrotic Syndrome. Children 2021, 8, 617. [Google Scholar] [CrossRef] [PubMed]
- Denys, P.; Malvaux, P.; Van Den Berghe, H. Association d’un syndrome anatomo-pathologique de pseudohermaphrodisme masculin, d’une tumeur de Wilms, d’une nephropathie parenchymateuse et d’un mosaicisme XX/XY. Arch. Fr. Pediatr. 1967, 24, 729–739. [Google Scholar]
- Drash, A.; Sherman, F.; Hartmann, W.H.; Blizzard, R.M. A syndrome of pseudohermaphroditism, Wilms’ tumor, hypertension, and degenerative renal disease. J. Pediatr. 1970, 76, 585–593. [Google Scholar] [CrossRef]
- Bałasz-Chmielewska, I. Steroidooporny zespół nerczycowy u dzieci—patogeneza, diagnostyka i leczenie. Forum Nefrol. 2014, 7, 215–223. [Google Scholar]
- Szczepańska, M.; Bałasz-Chmielewska, I.; Grenda, R.; Musiał, K.; Ogarek, I.; Pańczyk-Tomaszewska, M.; Zachwieja, J.; Żurowska, A. PTNFD recommendations on the management of children with nephrotic syndrome. Ren. Dis. Transplant. Forum 2022, 15, 36–57. [Google Scholar]
- Trautmann, A.; Vivarelli, M.; Samuel, S.; Gipson, D.; Sinha, A.; Schaefer, F.; Hui, N.K.; Boyer, O.; Saleem, M.A.; Feltran, L.; et al. International Pediatric Nephrology Association. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr. Nephrol. 2020, 35, 1529–1561. [Google Scholar] [CrossRef] [PubMed]
- Boyer, O.; Schaefer, F.; Haffner, D.; Bockenhauer, D.; Hölttä, T.; Bérody, S.; Vivarelli, M. Management of congenital nephrotic syndrome: Consensus recommendations of the ERKNet-ESPN Working Group. Nat. Rev. Nephrol. 2021, 17, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Yue, Z.; Wang, H.; Lin, H.; Yang, J.; Liu, T.; Liu, Y.; Sun, L. WT1 mutation-associated nephropathy: A single-center experience. Clin. Nephrol. 2017, 87, 245–254. [Google Scholar] [CrossRef]
- Nagano, C.; Nozu, K. A review of the genetic background in complicated WT1-related disorders. Clin. Exp. Nephrol. 2024, 29, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jalanko, H.; Jahnukainen, T.; Ng, K.H. Congenital nephrotic syndrome. Pediatr. Nephrol. 2022, 285–299. [Google Scholar] [CrossRef]
- Waehle, V.; Ungricht, R.; Hoppe, P.S.; Betschinger, J. The tumor suppressor WT1 drives progenitor cell progression and epithelialization to prevent Wilms tumorigenesis in human kidney organoids. Stem Cell Rep. 2021, 16, 2107–2117. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, M.; Lin, J.; Lu, J.; Zhong, F.; Gao, X.; Liao, X. Genotype-phenotype correlation of WT1 mutation-related nephropathy in Chinese children. Front. Pediatr. 2023, 11, 1192021. [Google Scholar] [CrossRef]
- Hastie, N.D. Wilms’ tumour 1 (WT1) in development, homeostasis and disease. Development 2017, 144, 2862–2872. [Google Scholar] [CrossRef]
- Lipska-Ziętkiewicz, B.S. WT1 Disorder. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK556455/ (accessed on 30 April 2020).
- Fencl, F.; Malina, M.; Stará, V.; Zieg, J.; Mixová, D.; Seeman, T.; Bláhová, K. Discordant expression of a new WT1 gene mutation in a family with monozygotic twins presenting with congenital nephrotic syndrome. Eur. J. Pediatr. 2012, 171, 121–124. [Google Scholar] [CrossRef]
- Lipska, B.S.; Ranchin, B.; Iatropoulos, P. Genotype-phenotype associations in WT1 glomerulopathy. Kidney Int. 2014, 85, 1169–1178. [Google Scholar] [CrossRef]
- Kaneko, Y.; Okita, H.; Haruta, M.; Arai, Y.; Oue, T.; Tanaka, Y.; Horie, H.; Hinotsu, S.; Koshinaga, T.; Yoneda, A.; et al. A high incidence of WT1 abnormality in bilateral Wilms tumours in Japan, and the penetrance rates in children with WT1 germline mutation. Br. J. Cancer 2015, 112, 1121–1133. [Google Scholar] [CrossRef] [PubMed]
- Boyer, O.; Dorval, G.; Servais, A. Hereditary podocytopathies in adults: The next generation. Kidney Dis. 2017, 3, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Parejo Drayer, P.; Seeherunvong, W.; Katsoufis, C.P.; DeFreitas, M.J.; Seeherunvong, T. Spectrum of Clinical Manifestations in Children With WT1 Mutation: Case Series and Literature Review. Front. Pediatr. 2022, 10, 847295. [Google Scholar] [CrossRef] [PubMed]
- de la Paz-Gallardo, M.J.; García, F.S.; de Haro-Muñoz, T.; Padilla-Vinuesa, M.C.; Zafra-Ceres, M.; Gomez-Capilla, J.A.; Gomez-Llorente, C. Quantitative-Fluorescent-PCR versus Full Karyotyping in Prenatal Diagnosis of Common Chromosome Aneuploidies in Southern Spain. Clin. Chem. Lab. Med. 2015, 53, 1333–1338. [Google Scholar] [CrossRef]
- Sanford, E.; Wong, T.; Ellsworth, K.A.; Ingulli, E.; Kingsmore, S.F. Clinical utility of ultra-rapid whole-genome sequencing in an infant with atypical presentation of WT1-associated nephrotic syndrome type 4. Cold Spring Harb Mol. Case Stud. 2020, 6, a005470. [Google Scholar] [CrossRef]
- Stark, Z.; Schofield, D.; Alam, K.; Wilson, W.; Mupfeki, N.; Macciocca, I.; Shrestha, R.; White, S.M.; Gaff, C. Prospective comparison of the cost-effectiveness of clinical whole-exome sequencing with that of usual care overwhelmingly supports early use and reimbursement. Genet. Med. 2017, 19, 867–874. [Google Scholar] [CrossRef]
- Siji, A.; Pardeshi, V.C.; Ravindran, S.; Vasudevan, A.; Vasudevan, A. Screening of WT1 mutations in exon 8 and 9 in children with steroid resistant nephrotic syndrome from a single centre and establishment of a rapid screening assay using high-resolution melting analysis in a clinical setting. BMC Med. Genet. 2017, 18, 3. [Google Scholar] [CrossRef]
- Li, Y.; Tian, C.; Wang, Y.; Ma, G.; Chen, R. Isolated steroid-resistant nephrotic syndrome in a Chinese child carrying a de novo mutation in WT1 gene: A case report and literature review. BMC Pediatr. 2022, 22, 349. [Google Scholar] [CrossRef]
- Park, E.; Lee, C.; Kim, N.K.D.; Ahn, Y.H.; Park, Y.S.; Lee, J.H.; Cheong, H.I. Genetic study in Korean pediatric patients with steroid-resistant nephrotic syndrome or focal segmental glomerulosclerosis. J. Clinic. Med. 2020, 9, 2013. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, Y.; Yu, Z.; Yu, L.; Huang, W.; Sun, S.; Ding, J. The Clinical and Genetic Features in Chinese Children With Steroid-Resistant or Early-Onset Nephrotic Syndrome: A Multicenter Cohort Study. Front. Med. 2022, 9, 885178. [Google Scholar] [CrossRef]
- Noone, D.G.; Iijima, K.; Parekh, R. Idiopathic nephrotic syndrome in children. Lancet 2018, 392, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Downie, M.L.; Gallibois, C.; Parekh, R.S.; Noone, D.G. Nephrotic syndrome in infants and children: Pathophysiology and management. Paediatr. Int. Child Health 2017, 37, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Faul, C.; Donnelly, M.; Merscher-Gomez, S.; Chang, Y.H.; Franz, S.; Delfgaauw, J.; Mundel, P. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med. 2008, 14, 931–938. [Google Scholar] [CrossRef]
- Bensman, A.; Niaudet, P. Non-immunologic mechanisms of calcineurin inhibitors explain its antiproteinuric effects in genetic glomerulopathies. Pediatr. Nephrol. 2010, 25, 1197–1199. [Google Scholar] [CrossRef] [PubMed]
- Büscher, A.K.; Beck, B.B.; Melk, A.; Hoefele, J.; Kranz, B.; Bamborschke, D.; Baig, S.; Lange-Sperandio, B.; Jungraithmayr, T.; Weber, L.T.; et al. German Pediatric Nephrology Association (GPN). Rapid Response to Cyclosporin A and Favorable Renal Outcome in Nongenetic Versus Genetic Steroid-Resistant Nephrotic Syndrome. Clin. J. Am. Soc. Nephrol. 2016, 11, 245–253. [Google Scholar] [CrossRef]
- Mason, A.E.; Saleem, M.A.; Bierzynska, A. A critical re-analysis of cases of post-transplantation recurrence in genetic nephrotic syndrome. Pediatr. Nephrol. 2021, 36, 3757–3769. [Google Scholar] [CrossRef] [PubMed]
- Roca, N.; Munoz, M.; Cruz, A.; Vilalta, R.; Lara, E.; Ariceta, G. Long-term outcome in a case series of Denys-Drash syndrome. Clin. Kidney J. 2019, 12, 836–839. [Google Scholar] [CrossRef]
- Imeri, F.; Stepanovska Tanturovska, B.; Schwalm, S.; Saha, S.; Zeng-Brouwers, J.; Pavenstädt, H.; Huwiler, A. Loss of sphingosine kinase 2 enhances wilm’s tumor suppressor gene 1 and nephrin expression in podocytes and protects from streptozotocin-induced podocytopathy and albuminuria in mice. Matrix Biol. 2021, 98, 32–48. [Google Scholar] [CrossRef]
- Zoja, C.; Garcia, P.B.; Rota, C.; Conti, S.; Gagliardini, E.; Corna, D.; Morigi, M. Mesenchymal stem cell therapy promotes renal repair by limiting glomerular podocyte and progenitor cell dysfunction in Adriamycin-induced nephropathy. Am. J. Physiol. Ren. Physiol. 2012, 303, F1370–F1381. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the ACMG and AMP. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
Patient | Gene | Protein Change | Variation | Variant Type | Classification | ACMG Classification Criteria ** | |
---|---|---|---|---|---|---|---|
Male | 1 | WT1 | - | c.1339+1G>A | Splice variant | Likely pathogenic | PVS1, PM2 |
2 | WT1 | Arg467Trp | c.1399C>T (before c.1384C>T) | Missense variant | Pathogenic | PS1, PM2, PP3 | |
Female | 3 | WT1 | Arg467Trp | c.1399C>T (before c.1384C>T) | Missense variant | Pathogenic | PS1, PM2, PP3 |
4 | WT1 | Arg458X | c.1372C>T | Nonsense variant | Likely pathogenic | PVS1, PM2 | |
5 | WT1 | Not known | c.1447+5G>A (before 1432+5G>A) | Splice variant | Pathogenic | PVS1, PP3, PP4 | |
6 | WT1 | Thr446Ile | c.1337C>T | Missense variant | VUS * | PM2, PP3 | |
7 | WT1 | - | c.1447+5G>A (before 1432+5G>A) | Splice variant | Pathogenic | PVS1, PP3, PP4 |
Patient | Year of Diagnosis * | Observation Period [Years] | Cancer History | Renal Dysfunction | Applied Treatment of NS | Nephrectomy | Additional Disorders | Kidney Transplantation | |
---|---|---|---|---|---|---|---|---|---|
Male | 1 | 2014 | 4 | Wilms’ tumor | ESRD | GCS + MMF + CNIs | Bilateral nephrectomy | Cryptorchidism | Yes |
2 | 2008 | 14 | Wilms’ tumor | SRNS; ESRD | GCS | Right-sided nephrectomy | Hypospadias; cryptorchidism | No | |
Female | 3 | 2003 | 18 | Wilms’ tumor | SRNS; ESRD | GCS + MMF + CNIs | Bilateral nephrectomy | Anemia at diagnosis | Yes |
4 | 2017 | 5 | Wilms’ tumor | Proteinuria | GCS + nephroprotection | Right-sided nephrectomy + left-sided heminephrectomy | - | No | |
5 | 2013 | 8 | No | Proteinuria | Nephroprotection only ** | No | - | No | |
6 **** | 2012 | 2 | No | SRNS; ESRD | GCS | Bilateral nephrectomy | Anemia at diagnosis; bilateral vesicoureteral reflux; CGD; FS | Outcome shortage *** | |
7 | 1997 | 15 | No | SRNS; ESRD | GCS + CNIs | No | Anemia | Outcome shortage *** |
Patient | Gender Genotype | Age * [Years] | Height [cm] | Height Percentile | Weight [kg] | Weight Percentile | BMI [kg/m2] | Hypertension | |
---|---|---|---|---|---|---|---|---|---|
Male | 1 | XY | 0.5 | 77 | 25–50 | 10.5 | 50–75 | 17.6 | Yes |
2 | XY | 8 | 117 | <3 | 19.8 | <3 | 14.5 | No | |
Female | 3 | XX | 14 | 156 | 10–25 | 42 | 10 | 17.3 | No |
4 | XX | 0.3 | 71 | >97 | 8 | >97 | 15.9 | Yes | |
5 | XX | 2.9 | 86 | <3 | 11.2 | <3 | 15.1 | Yes | |
6 ** | XY | 0.3 | 57 | <3 | 5.5 | <3 | 16.9 | No | |
7 | XX | 7 | 126 | 50–75 | 27.3 | 75 | 17.2 | Yes |
Patient | Creatinine [µmol/L] | Urea [mmol/L] | Total Cholesterol [mmol/L] | Total Protein [g/L] | Serum Albumin [g/L] | |
---|---|---|---|---|---|---|
Male | 1 | 399 | 12.2 | 5.5 | 52.6 | 36.04 |
2 | 66.4 | 9.15 | 4.74 | 67.7 | 37.7 | |
Female | 3 | 557 | 31.9 | 6.01 | 57.6 | 33.32 |
4 | 40 | 1.2 | 5.1 | 57.6 | 37.23 | |
5 | 30 | 3.1 | 4.88 | 63.5 | 40.98 | |
6 | 417 | 10.7 | 4.38 | 53.2 | 39.1 | |
7 | 53 | 4.87 | 6.18 | 56.9 | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janek, A.; Badeński, A.; Badeńska, M.; Szuster, M.; Szymańska-Kurek, K.; Trembecka-Dubel, E.; Szczepańska, M. WT1 Gene Pathogenic Variants: Clinical Challenges and Treatment Strategies in Pediatric Nephrology—One Center Practice. Int. J. Mol. Sci. 2025, 26, 3642. https://doi.org/10.3390/ijms26083642
Janek A, Badeński A, Badeńska M, Szuster M, Szymańska-Kurek K, Trembecka-Dubel E, Szczepańska M. WT1 Gene Pathogenic Variants: Clinical Challenges and Treatment Strategies in Pediatric Nephrology—One Center Practice. International Journal of Molecular Sciences. 2025; 26(8):3642. https://doi.org/10.3390/ijms26083642
Chicago/Turabian StyleJanek, Artur, Andrzej Badeński, Marta Badeńska, Martyna Szuster, Karolina Szymańska-Kurek, Elżbieta Trembecka-Dubel, and Maria Szczepańska. 2025. "WT1 Gene Pathogenic Variants: Clinical Challenges and Treatment Strategies in Pediatric Nephrology—One Center Practice" International Journal of Molecular Sciences 26, no. 8: 3642. https://doi.org/10.3390/ijms26083642
APA StyleJanek, A., Badeński, A., Badeńska, M., Szuster, M., Szymańska-Kurek, K., Trembecka-Dubel, E., & Szczepańska, M. (2025). WT1 Gene Pathogenic Variants: Clinical Challenges and Treatment Strategies in Pediatric Nephrology—One Center Practice. International Journal of Molecular Sciences, 26(8), 3642. https://doi.org/10.3390/ijms26083642