Cu-Ion Hybrid Porous Carbon with Nanoarchitectonics Derived from Heavy-Metal-Contaminated Biomass as Ultrahigh-Performance Supercapacitor
Abstract
:1. Introduction
2. Results and Discussion
2.1. Migration and Distribution of Heavy Metals and Their Effects on Hydrochar and Porous Carbon’s Elemental Compositions
2.2. Other Physical and Chemical Characterizations of CHNC Materials
2.3. Electrochemical Performance Evaluation
2.3.1. Electrode Test
2.3.2. Test on Symmetric Supercapacitor CHNC-700-4-25//CHNC-700-4-25
3. Materials and Methods
3.1. Materials and Reagents
3.2. Synthesis of Copper-Ion Hybrid Nanoporous Biochar
3.3. Materials Characterization
3.4. Electrochemical Measurements
3.4.1. Electrode Preparation
3.4.2. Electrochemical Performance Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, X.; Bol, R.; Chen, H.; Cui, Q.; Qiu, T.; Zhao, S.; Fang, L. A meta-analysis on crop growth and heavy metals accumulation with PGPB inoculation in contaminated soils. J. Hazard. Mater. 2024, 471, 134370. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Roy, A.; Manna, K.; Daniel, R.; Jagadevan, S.; Pal, S. Adsorption of Toxic Cd(II) on an Antibacterial Biopolymeric Gel toward Fabrication of a Gel Electrolyte-Based Supercapacitor Device. Ind. Eng. Chem. Res. 2024, 63, 3539–3553. [Google Scholar] [CrossRef]
- Chai, Y.; Bai, M.; Chen, A.; Peng, L.; Shao, J.; Shang, C.; Peng, C.; Zhang, J.; Zhou, Y. Thermochemical conversion of heavy metal contaminated biomass: Fate of the metals and their impact on products. Sci. Total Environ. 2022, 822, 153426. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Zhang, J.; Wang, X.; Pan, M.; Lin, Q.; Khan, K.Y.; Yan, B.; Li, T.; He, Z.; Yang, X.; et al. A review on the thermal treatment of heavy metal hyperaccumulator: Fates of heavy metals and generation of products. J. Hazard. Mater. 2021, 405, 123832. [Google Scholar] [CrossRef]
- Lang, T.; Tam, N.F.-Y.; Hussain, M.; Ke, X.; Wei, J.; Fu, Y.; Li, M.; Huang, X.; Huang, S.; Xiong, Z.; et al. Dynamics of heavy metals during the development and decomposition of leaves of Avicennia marina and Kandelia obovatain a subtropical mangrove swamp. Sci. Total Environ. 2023, 855, 158700. [Google Scholar] [CrossRef]
- Reeves, R.D. The discovery and global distribution of hyperaccumulator plants: A personal account. Ecol. Res. 2024, 39, 416–436. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, F.; Liu, J.-L.; Wu, H.-T.; Yang, H.; Shi, Y.; Liu, J.; Zhang, Y.-F.; Luo, Y.-R.; Chen, K.-M. Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation. Sci. Total Environ. 2022, 809, 151099. [Google Scholar] [CrossRef]
- Lopez, S.; van der Ent, A.; Sumail, S.; Sugau, J.B.; Buang, M.M.; Amin, Z.; Echevarria, G.; Morel, J.L.; Benizri, E. Bacterial community diversity in the rhizosphere of nickel hyperaccumulator plant species from Borneo Island (Malaysia). Environ. Microbiol. 2020, 22, 1649–1665. [Google Scholar] [CrossRef]
- Chai, Y.; Yuan, J.; Bai, M.; Chen, A.; Zhu, S.; Zhou, L.; Peng, L.; Shao, J.; Xiong, J.; Yang, Z.; et al. Production of furan chemicals from contaminated biomass using hydrothermal-assisted activated persulfate strategy: Exploring the critical role of heavy metals on products. Chem. Eng. J. 2023, 464, 142594. [Google Scholar] [CrossRef]
- Li, H.; Watson, J.; Zhang, Y.; Lu, H.; Liu, Z. Environment-enhancing process for algal wastewater treatment, heavy metal control and hydrothermal biofuel production: A critical review. Bioresour. Technol. 2020, 298, 122421. [Google Scholar] [CrossRef]
- Qin, C.; Wang, H.; Yuan, X.; Xiong, T.; Zhang, J.; Zhang, J. Understanding structure-performance correlation of biochar materials in environmental remediation and electrochemical devices. Chem. Eng. J. 2020, 382, 122977. [Google Scholar] [CrossRef]
- Sivaranjanee, R.; Kumar, P.S.; Rangasamy, G. A recent advancement on hydrothermal carbonization of biomass to produce hydrochar for pollution control. Carbon Lett. 2023, 33, 1909–1933. [Google Scholar] [CrossRef]
- Beims, R.F.; Hu, Y.; Shui, H.; Xu, C. Hydrothermal liquefaction of biomass to fuels and value-added chemicals: Products applications and challenges to develop large-scale operations. Biomass Bioenergy 2020, 135, 105510. [Google Scholar] [CrossRef]
- Swetha, A.; ShriVigneshwar, S.; Gopinath, K.P.; Sivaramakrishnan, R.; Shanmuganathan, R.; Arun, J. Review on hydrothermal liquefaction aqueous phase as a valuable resource for biofuels, bio-hydrogen and valuable bio-chemicals recovery. Chemosphere 2021, 283, 131248. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, P.; Li, J.; Chen, D. Stabilization and separation of heavy metals in incineration fly ash during the hydrothermal treatment process. J. Hazard. Mater. 2015, 299, 149–157. [Google Scholar] [CrossRef]
- Sun, S.; Fang, T.; Xue, G.; He, Y.; Wang, X.; Song, Q.; Zang, X.; Wang, Y.; Zheng, S. Reduction and Heavy Metal Stabilization of River Sediment by Hydrothermal Treatment. J. Nanomater. 2022, 2022, 5303955. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Zhang, Y.; Shen, B.; Ma, J.; Liu, L. Stabilization of heavy metals in municipal solid waste incineration fly ash via hydrothermal treatment with coal fly ash. Waste Manag. 2022, 144, 285–293. [Google Scholar] [CrossRef]
- Farghali, M.; Osman, A.I.; Mohamed, I.M.A.; Chen, Z.; Chen, L.; Ihara, I.; Yap, P.-S.; Rooney, D.W. Strategies to save energy in the context of the energy crisis: A review. Environ. Chem. Lett. 2023, 21, 2003–2039. [Google Scholar] [CrossRef]
- Athanasiou, M.; Yannopoulos, S.N.; Ioannides, T. Biomass-derived graphene-like materials as active electrodes for supercapacitor applications: A critical review. Chem. Eng. J. 2022, 446, 137191. [Google Scholar] [CrossRef]
- Lamba, P.; Singh, P.; Singh, P.; Singh, P.; Bharti; Kumar, A.; Gupta, M.; Kumar, Y. Recent advancements in supercapacitors based on different electrode materials: Classifications, synthesis methods and comparative performance. J. Energy Storage 2022, 48, 103871. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, W.-H.; Saravanakumar, A.; Lin, K.-Y.A.; Zhang, Y. Comparison of torrefaction and hydrothermal carbonization of high-moisture microalgal feedstock. Renew. Energy 2024, 225, 120265. [Google Scholar] [CrossRef]
- Zhou, S.; Huo, X.; Hua, M.; Luo, G.; Fan, J.; Clark, J.H.; Zhang, S. Insights on the Effect of Heavy Metals on Subcritical Hydrothermal Recycling of Heavy Metal-Contaminated Biomass and Its Derived Porous Carbon Properties Using Cu as a Case. ACS EST Eng. 2022, 2, 2245–2253. [Google Scholar] [CrossRef]
- Biswal, B.K.; Balasubramanian, R. Adsorptive removal of sulfonamides, tetracyclines and quinolones from wastewater and water using carbon-based materials: Recent developments and future directions. J. Clean. Prod. 2022, 349, 131421. [Google Scholar] [CrossRef]
- Vercruysse, W.; Muniz, R.R.; Joos, B.; Hardy, A.; Hamed, H.; Desta, D.; Boyen, H.G.; Schreurs, S.; Safari, M.; Marchal, W.; et al. Co-pyrolysis of chicken feathers and macadamia nut shells, a promising strategy to create nitrogen-enriched electrode materials for supercapacitor applications. Bioresour. Technol. 2024, 396, 130417. [Google Scholar] [CrossRef]
- Zhang, Y.; Qu, J.; Yuan, Y.; Song, H.; Liu, Y.; Wang, S.; Tao, Y.; Zhao, Y.; Li, Z. Simultaneous scavenging of Cd(II) and Pb(II) from water by sulfide-modified magnetic pinecone-derived hydrochar. J. Clean. Prod. 2022, 341, 130758. [Google Scholar] [CrossRef]
- Liu, W.J.; Tian, K.; Jiang, H.; Zhang, X.S.; Ding, H.S.; Yu, H.Q. Selectively Improving the Bio-Oil Quality by Catalytic Fast Pyrolysis of Heavy-Metal-Polluted Biomass: Take Copper (Cu) as an Example. Environ. Sci. Technol. 2012, 46, 7849–7856. [Google Scholar] [CrossRef]
- Liu, W.J.; Zeng, F.X.; Jiang, H.; Zhang, X.S.; Yu, H.Q. Techno-economic evaluation of the integrated biosorption-pyrolysis technology for lead (Pb) recovery from aqueous solution. Bioresour. Technol. 2011, 102, 6260–6265. [Google Scholar] [CrossRef]
- Lu, J.; Watson, J.; Liu, Z.; Wu, Y. Elemental migration and transformation during hydrothermal liquefaction of biomass. J. Hazard. Mater. 2022, 423, 126961. [Google Scholar] [CrossRef]
- He, H.; Zhang, R.; Zhang, P.; Wang, P.; Chen, N.; Qian, B.; Zhang, L.; Yu, J.; Dai, B. Functional Carbon from Nature: Biomass-Derived Carbon Materials and the Recent Progress of Their Applications. Adv. Sci. 2023, 10, 2205557. [Google Scholar] [CrossRef]
- Xia, S.; Cai, N.; Wu, J.; Xiao, H.; Hu, J.; Chen, X.; Chen, Y.; Yang, H.; Wang, X.; Chen, H. Synthesis and formation mechanism of biomass-based mesoporous graphitic carbon. Fuel Process. Technol. 2020, 209, 106543. [Google Scholar] [CrossRef]
- Liang, C.; Li, C.; He, Y.; Li, G.; Yu, Y.; Lou, Y.; Shi, Z. Use of Hyperaccumulator to Enrich Metal Ions for Supercapacitor. Adv. Electron. Mater. 2019, 5, 1900094. [Google Scholar] [CrossRef]
- Wang, H.; Chen, H.; Hou, X.; Ye, H.; Guo, Z.; Chen, Z.; Jin, Y.; Du, Y.; Ren, P. MnO decorated biomass derived carbon based on hyperaccumulative characteristics as advanced electrode materials for high-performance supercapacitors. Diam. Relat. Mater. 2023, 136, 109888. [Google Scholar] [CrossRef]
- Li, W.; Wang, G.; Sui, W.; Xu, Y.; Parvez, A.M.; Si, C. Novel metal-lignin assembly strategy for one-pot fabrication of lignin-derived heteroatom-doped hierarchically porous carbon and its application in high-performance supercapacitor. Int. J. Biol. Macromol. 2023, 234, 123603. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wei, L.; Mastalerz, M.; Schimmelmann, A. The effect of analytical particle size on gas adsorption porosimetry of shale. Int. J. Coal Geol. 2015, 138, 103–112. [Google Scholar] [CrossRef]
- Ohba, T.; Kaneko, K. Cluster-associated filling of water molecules in slit-shaped graphitic nanopores. Mol. Phys. 2007, 105, 139–145. [Google Scholar] [CrossRef]
- Yang, P.; Zheng, D.; Zhu, P.; Jiang, F.; Bi, X. Biocarbon with large specific surface area and tunable pore structure from binary molten salt templating for supercapacitor applications. Chem. Eng. J. 2023, 472, 144785. [Google Scholar] [CrossRef]
- Zhang, G.; Guan, T.; Wang, N.; Wu, J.; Wang, J.; Qiao, J.; Li, K. Small mesopore engineering of pitch-based porous carbons toward enhanced supercapacitor performance. Chem. Eng. J. 2020, 399, 125818. [Google Scholar] [CrossRef]
- Peng, B.; Liu, Q.; Li, X.; Zhou, Z.; Wu, C.; Zhang, H. Co-pyrolysis of industrial sludge and rice straw: Synergistic effects of biomass on reaction characteristics, biochar properties and heavy metals solidification. Fuel Process. Technol. 2022, 230, 107211. [Google Scholar] [CrossRef]
- Wu, J.; Wang, T.; Shi, N.; Pan, W.-P. Insight into mass transfer mechanism and equilibrium modeling of heavy metals adsorption on hierarchically porous biochar. Sep. Purif. Technol. 2022, 287, 120558. [Google Scholar] [CrossRef]
- Li, Z.; Deng, L.; Kinloch, I.A.; Young, R.J. Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres. Prog. Mater. Sci. 2023, 135, 101089. [Google Scholar] [CrossRef]
- Zhang, M.M.; Huang, Z.Y.; Jiang, J.J.; Zhou, W.T.; Li, W.Y.; Xie, J.M.; Hu, Z.G.; Wang, Z.H.; Yan, Z.X. Boosting activity on copper functionalized biomass graphene by coupling nanocrystalline Nb2O5 as impressive rate capability for supercapacitor and outstanding catalytic activity for oxygen reduction. J. Colloid Interface Sci. 2023, 652, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Qi, P.; Su, Y.; Yang, L.; Wang, J.; Jiang, M.; Sun, X.; Zhang, P.; Xiong, Y. Nanoarchitectonics of hierarchical porous carbon based on carbonization of heavy fraction of bio-oil and its supercapacitor performance. J. Energy Storage 2023, 74, 109398. [Google Scholar] [CrossRef]
- Subramanian, N.; Viswanathan, B. Nitrogen- and oxygen-containing activated carbons from sucrose for electrochemical supercapacitor applications. RSC Adv. 2015, 5, 63000–63011. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, X.Y.; Chen, M.Z. Microwave-assisted synthesis of Cu-doped hierarchical porous carbon aerogels derived from lignin for high-performance supercapacitors. Mater. Res. Express 2018, 5, 095002. [Google Scholar] [CrossRef]
- Sun, H.Y.; Kong, X.; Wang, B.S.; Luo, T.B.; Liu, G.Y. Cu doped LiNi0.5Mn1.5-xCuxO4 (x = 0, 0.03, 0.05, 0.10, 0.15) with significant improved electrochemical performance prepared by a modified low temperature solution combustion synthesis method. Ceram. Int. 2018, 44, 4603–4610. [Google Scholar] [CrossRef]
- Buldu-Akturk, M.; Toufani, M.; Tufani, A.; Erdem, E. ZnO and reduced graphene oxide electrodes for all-in-one supercapacitor devices. Nanoscale 2022, 14, 3269–3278. [Google Scholar] [CrossRef]
- Uras, I.S.; Karsli, B.; Konuklugil, B.; Ocsoy, I.; Demirbas, A. Organic–Inorganic nanocomposites of aspergillus terreus extract and its compounds with antimicrobial properties. Sustainability 2023, 15, 4638. [Google Scholar] [CrossRef]
- An, Y.L.; Tian, Y.; Liu, C.K.; Xiong, S.L.; Feng, J.K.; Qian, Y.T. One-step, vacuum-assisted construction of micrometer-sized nanoporous silicon confined by uniform two-dimensional N-doped carbon toward advanced Li Ion and mXene-based Li metal batteries. ACS Nano 2022, 16, 4560–4577. [Google Scholar] [CrossRef]
- Liang, J.; Tang, D.; Huang, L.; Chen, Y.; Ren, W.; Sun, J. High oxygen reduction reaction performance nitrogen-doped biochar cathode: A strategy for comprehensive utilizing nitrogen and carbon in water hyacinth. Bioresour. Technol. 2018, 267, 524–531. [Google Scholar] [CrossRef]
- Thomas, D.; Fernandez, N.B.; Mullassery, M.; Surya, R. Biochar-ZnO/polyaniline composite in energy storage application: Synthesis, characterization and electrochemical analysis. Results Chem. 2023, 6, 101061. [Google Scholar] [CrossRef]
- Xia, G.; Liu, Z.; He, J.; Huang, M.; Zhao, L.; Zou, J.; Lei, Y.; Yang, Q.; Liu, Y.; Tian, D.; et al. Modulating three-dimensional porous carbon from paper mulberry juice by a hydrothermal process for a supercapacitor with excellent performance. Renew. Energy 2024, 227, 120478. [Google Scholar] [CrossRef]
- Jalalah, M.; Han, H.; Mahadani, M.; Nayak, A.K.; Harraz, F.A. Novel interconnected hierarchical porous carbon derived from biomass for enhanced supercapacitor application. J. Electroanal. Chem. 2023, 935, 117355. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Zheng, H.; Wang, Q.; Huang, Y.T.; Li, W.Q.; Xiang, J.; Huang, W.J.; Yuan, P.; Xue, H.; Wang, S.Y.; et al. 3-Dimensional porous carbon derived from waste aucklandia lappa straw for high-performance liquid and all-solid-state supercapacitors. J. Electroanal. Chem. 2024, 953, 117992. [Google Scholar] [CrossRef]
- Zhang, S.J.; Ma, X.X.; Du, Y.L.; Li, Y.T.; Lin, J.; Chen, S.L. Wheat-bran-based hierarchically porous biochar as electrode materials for supercapacitors. Adv. Powder Technol. 2023, 34, 104221. [Google Scholar] [CrossRef]
- Senthilkumar, A.K.; Kumar, M.; Chen, C.L.; Murugan, S.; Ho, M.S.; Chang, J.H. A novel chemical-free porous carbon micro-rods derived from used wooden chopsticks (CS) for solid-state symmetric supercapacitor device. Diam. Relat. Mater. 2024, 141, 110732. [Google Scholar] [CrossRef]
- Rawat, S.; Boobalan, T.; Sathish, M.; Hotha, S.; Thallada, B. Utilization of CO2 activated litchi seed biochar for the fabrication of supercapacitor electrodes. Biomass Bioenergy 2023, 171, 106747. [Google Scholar] [CrossRef]
- Kwarteng, F.A.; Abdel-Aty, A.A.R.; Mohamed, S.R.E.; Hassan, M.A.; Ohashi, H.; López-Salas, N.; Semida, W.M.; Khalil, A.S.G. Novel onion flower-derived biochar for high-performance sustainable supercapacitor applications. Diam. Relat. Mater. 2024, 150, 111703. [Google Scholar] [CrossRef]
- Dong, L.L.; Pan, C.H.; Ji, Y.F.; Ren, S.X.; Lei, T.Z. Corncob-derived activated carbon as electrode material for high-performance supercapacitor. Materials 2024, 17, 4341. [Google Scholar] [CrossRef]
Sample | Content of Cu (mg/g) | Yield a (%) | Original Cu Distribution (%) |
---|---|---|---|
PSPH-0 | 0 | 59.96 | 0 |
PSPH-25 | 49.08 | 49.56 | 97.31 |
PSPH-50 | 91.63 | 47.75 | 87.48 |
CHNC-600-4-25 | 10.62 | 17.65 | 7.51 |
CHNC-700-2-25 | 17.10 | 20.44 | 14.53 |
CHNC-700-4-0 | 0 | 9.33 | 0 |
CHNC-700-4-25 | 26.47 | 12.85 | 13.64 |
CHNC-700-4-50 | 49.79 | 14.08 | 14.32 |
CHNC-800-4-25 | 68.58 | 6.78 | 18.59 |
Sample | N (%) | C (%) | H (%) | O (%) a | H/C | O/C |
---|---|---|---|---|---|---|
PSPH-0 | 2.06 | 58.56 | 5.96 | 33.42 | 1.22 | 0.43 |
PSPH-25 | 1.96 | 62.22 | 5.05 | 30.77 | 0.97 | 0.37 |
PSPH-50 | 1.56 | 61.99 | 5.27 | 31.18 | 1.02 | 0.38 |
CHNC-600-4-25 | 1.76 | 62.03 | 3.27 | 32.94 | 0.63 | 0.40 |
CHNC-700-2-25 | 2.35 | 66.23 | 3.366 | 28.054 | 0.61 | 0.32 |
CHNC-700-4-0 | 1.7 | 87.62 | 1.464 | 9.216 | 0.20 | 0.08 |
CHNC-700-4-25 | 1.72 | 81.67 | 1.301 | 15.309 | 0.19 | 0.12 |
CHNC-700-4-50 | 2.77 | 63.04 | 2.216 | 31.974 | 0.42 | 0.38 |
CHNC-800-4-25 | 2.53 | 87.4 | 2.238 | 7.832 | 0.31 | 0.07 |
Sample | SBET a (m2 g−1) | Vtotal b (cm3 g−1) | Vmicro c (cm3 g−1) | Vmicro/Vtotal (%) | Vmeso d (cm3 g−1) | Capacity (F g−1) |
---|---|---|---|---|---|---|
CHNC-600-4-25 | 1987.52 | 1.12 | 0.83 | 0.74 | 0.29 | 548 |
CHNC-700-2-25 | 1620.26 | 0.73 | 0.62 | 0.85 | 0.11 | 503 |
CHNC-700-4-0 | 2746.78 | 1.54 | 1.13 | 0.73 | 0.41 | 463 |
CHNC-700-4-25 | 2650.69 | 1.52 | 1.09 | 0.72 | 0.43 | 562 |
CHNC-700-4-50 | 2147.67 | 1.29 | 0.89 | 0.69 | 0.4 | 444 |
CHNC-800-4-25 | 3019.95 | 2.12 | 1.22 | 0.58 | 0.9 | 233 |
Biomass-Derived Electrode Materials | SSA (m2 g−1) | Specific Capacitance (F g−1) | Current Density (A g−1) | Energy Density (W h kg−1) | Power Density (W kg−1) | Cycle Stability (%) | Refs. |
---|---|---|---|---|---|---|---|
CHNC-700-4-25 | 2650.69 | 562 | 1 | 24.39 | 649.98 | 92.41/10,000 cycles | This work |
AHCT8C180 (Paper mulberry fruit juice; O and P doped) | 3543.8 | 428 | 0.5 | 9.56 | 125 | 93.7/10,000 cycles | [51] |
HAPC (Leaves of Enhydra fluctuant; multi-heteroatom doped) | 1082.8 | 428 | 1 | 73.88 | 5.11 | 94/10,000 cycles | [52] |
ASC-3 (Aucklandia lappa straw) | 2427 | 341 | 0.5 | 19.59 | 52.03 | 89.47/10,000 cycles | [53] |
WBPC1-2-600 (The wheat bran) | 544 | 312 | 0.5 | 16.63 | 250 | 91.2/3000 cycles | [54] |
CS-7 (Wooden chopsticks) | 83 | 185 | 0.3 | 0.083 | 300 | 96/10,000 cycles | [55] |
LSB-700 (litchi seeds) | 372.02 | 190 | 1 | 24.6 | 600 | 90/10,000 cycles | [56] |
Act_OFSCBC (onion flower seed) | 2538.31 | 200 | 1 | 21.94 | 500 | 74.4/10,000 cycles | [57] |
CAC700-4 (corncob) | 1945.7 | 260 | 1 | 14.3 | 250 | 95.5/10,000 cycles | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Han, X.; Zhang, S.; Hou, H.; Wei, C.; Liu, C.; Cao, L.; Zhang, J.; Wang, L.; Zhang, S. Cu-Ion Hybrid Porous Carbon with Nanoarchitectonics Derived from Heavy-Metal-Contaminated Biomass as Ultrahigh-Performance Supercapacitor. Int. J. Mol. Sci. 2025, 26, 569. https://doi.org/10.3390/ijms26020569
Wang J, Han X, Zhang S, Hou H, Wei C, Liu C, Cao L, Zhang J, Wang L, Zhang S. Cu-Ion Hybrid Porous Carbon with Nanoarchitectonics Derived from Heavy-Metal-Contaminated Biomass as Ultrahigh-Performance Supercapacitor. International Journal of Molecular Sciences. 2025; 26(2):569. https://doi.org/10.3390/ijms26020569
Chicago/Turabian StyleWang, Jieni, Xiaobo Han, Shuqin Zhang, Haodong Hou, Chenlin Wei, Chenxiao Liu, Leichang Cao, Jinglai Zhang, Li Wang, and Shicheng Zhang. 2025. "Cu-Ion Hybrid Porous Carbon with Nanoarchitectonics Derived from Heavy-Metal-Contaminated Biomass as Ultrahigh-Performance Supercapacitor" International Journal of Molecular Sciences 26, no. 2: 569. https://doi.org/10.3390/ijms26020569
APA StyleWang, J., Han, X., Zhang, S., Hou, H., Wei, C., Liu, C., Cao, L., Zhang, J., Wang, L., & Zhang, S. (2025). Cu-Ion Hybrid Porous Carbon with Nanoarchitectonics Derived from Heavy-Metal-Contaminated Biomass as Ultrahigh-Performance Supercapacitor. International Journal of Molecular Sciences, 26(2), 569. https://doi.org/10.3390/ijms26020569