Synergistic Insecticidal Activity Against Hyphantria cunea by Cry9Aa3 Mutants and Cry1Ah Combinations
Abstract
1. Introduction
2. Results
2.1. Cry9Aa Protein Has Insecticidal Activity Against H. cunea
2.2. Mutant of Cry9Aa3 Increased Insecticidal Activity Against H. cunea
2.3. Enhanced Insecticidal Activity of Cry9Aa3 Mutant Is Related to Higher Stability in Midgut Juice
2.4. No Significant Difference in the Binding Affinity of Cry9Aa3 and 316LRG318AAA to the BBMVs of H. cunea
2.5. Cry9Aa3 and Mutant 316LRG318AAA Exhibit Synergistic Effects with Cry1Ah
3. Discussion
4. Materials and Methods
4.1. Insect Populations
4.2. Strains and Mutant Proteins
4.3. Protein Expression and Purification
4.4. Bioassay
4.5. Stability Analysis of Cry9Aa3 and Mutant Proteins
4.6. Preparation of BBMVs
4.7. Saturation Binding Assays of Cry9Aa Proteins to BBMVs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, D.; Lu, X.; He, S.; Luo, Z.; Wu, H.; Song, Y. Analysis of the Spread Process and Trend of Hyphantria cunea Disaster in Northeast China. For. Pest Dis. 2023, 42, 9–15. (In Chinese) [Google Scholar]
- Ge, X.; He, S.; Zhu, C.; Wang, T.; Xu, Z.; Zong, S. Projecting the Current and Future Potential Global Distribution of Hyphantria cunea (Lepidoptera: Arctiidae) using CLIMEX. Pest Manag. Sci. 2019, 75, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Yu, C. Review of the Control Efforts Against Hyphantria cunea and Future Control Strategies. For. Pest Dis. 1993, 04, 35–37. (In Chinese) [Google Scholar]
- Wang, P.; Guo, T.; Wei, H.; Sun, B.; ZhuGe, Q. Analysis of the Insect Resistance of Bt-Transgenic ‘Nanlin 895’ Poplar Against Hyphantria cunea and Clostera anachoreta. Mol. Plant Breed. 2020, 18, 4645–4656. (In Chinese) [Google Scholar]
- Wu, N.; Zhang, S.; Li, X.; Cao, Y.; Liu, X.; Wang, Q.; Liu, Q.; Liu, H.; Hu, X.; Zhou, X.J.; et al. Fall Webworm Genomes Yield Insights into Rapid Adaptation of Invasive Species. Nat. Ecol. Evol. 2019, 3, 105–115. [Google Scholar]
- Edosa, T.T.; Jo, Y.H.; Keshavarz, M.; Anh, Y.S.; Noh, M.Y.; Han, Y.S. Current Status of the Management of Fall webworm, Hyphantria cunea: Towards the Integrated Pest Management Development. J. Appl. Entomol. 2019, 143, 1–10. [Google Scholar]
- Zhang, L.W.; Kang, K.; Jiang, S.C.; Zhang, Y.N.; Wang, T.T.; Zhang, J.; Sun, L.; Yang, Y.Q.; Huang, C.C.; Jiang, L.Y.; et al. Analysis of the Antennal Transcriptome and Insights into Olfactory Genes in Hyphantria cunea (Drury). PLoS ONE 2016, 11, e0164729. [Google Scholar]
- Tanino-Springsteen, M.M.; Vyas, D.K.; Mitchell, A.; Durso, C.; Murphy, S.M. Investigating the Effect of Host Plant Identity on Instar Number in Fall Webworm, a Common Generalist Herbivore. Environ. Entomol. 2024, 53, 188–194. [Google Scholar] [CrossRef]
- Fang, J.; Gan, W.; Wang, Z.; Zhang, R.; Zhang, S.; Liu, F.; Zhao, X.; Kong, X. Induction of Antiherbivore Defense Responses in Poplars using a Methyl Jasmonate and Mesoporous Silica Nanoparticle Complex. Pest Manag. Sci. 2024, 80, 6310–6321. [Google Scholar]
- Wen, M.; Wang, Y.; Ren, B. An Overview of Integrated Pest Management Research on The Invasive Pest, the Fall Webworm (Hyphantria cunea). Anhui Agric. Sci. Bull. 2019, 25, 65–69. (In Chinese) [Google Scholar]
- Sun, L.; Zhang, C.; Yan, L.; Wang, X.; Wang, Z.; Cao, C. Bursicon receptor gene HLGR2 as a Potential RNA Interference Target for Control of the Fall Webworm Hyphantria cunea. Pest Manag. Sci. 2022, 78, 1492–1499. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Yao, W.; Bao, F.; Li, J. Poplar Cultivation Techniques and Main Pest Control Strategies in Suining County. J. Agric. Catastrophol. 2023, 13, 25–27. (In Chinese) [Google Scholar]
- Zibaee, I.; Bandani, A.R.; Sendi, J.J.; Talaei-Hassanloei, R.; Kouchaki, B. Effects of Bacillus thuringiensis var. kurstaki and medicinal plants on Hyphantria cunea Drury (Lepidoptera: Arctiidae). Invert. Surviv. J. 2010, 7, 251–261. [Google Scholar]
- Aker, O.; Tuncer, C. Pathogenicity of Beauveria bassiana on Larvae of Fall Webworm, Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) at Different Temperatures. Int. J. Entomol. Res. 2016, 1, 16–20. [Google Scholar]
- Sun, L.; Yin, J.; Du, H.; Liu, P.; Cao, C. Characterisation of GST Genes from the Hyphantria cunea and Their Response to the Oxidative Stress Caused by the Infection of Hyphantria cunea Nucleopolyhedrovirus (HcNPV). Pestic. Biochem. Physiol. 2020, 163, 254–262. [Google Scholar] [CrossRef]
- Ragasruthi, M.; Balakrishnan, N.; Murugan, M.; Swarnakumari, N.; Harish, S.; Sharmila, D.J.S. Bacillus thuringiensis (Bt)-based Biopesticide: Navigating Success, Challenges, and Future Horizons in Sustainable Pest Control. Sci. Total Environ. 2024, 954, 176594. [Google Scholar] [CrossRef]
- Ferr, J.; Escriche, B.; Bel, Y.; Rie, J. Biochemistry and Genetics of Insect Resistance to Bacillus thuringiensis. FEMS Microbiol. Lett. 1995, 132, 1–7. [Google Scholar] [CrossRef]
- Rasko, D.A.; Altherr, M.R.; Han, C.S.; Ravel, J. Genomics of the Bacillus cereus Group of Organisms. FEMS Microbiol. Rev. 2005, 29, 303–329. [Google Scholar]
- Liu, C.X.; Li, Y.H.; Gao, Y.L.; Ning, C.M.; Wu, K.M. Cotton Bollworm Resistance to Bt Transgenic Cotton: A Case Analysis. Sci. China Life Sci. 2010, 53, 934–941. [Google Scholar] [CrossRef]
- Siegfried, B.D.; Hellmich, R.L. Understanding Successful Resistance Management: The European Corn Borer and Bt Corn in the United States. GM Crops Food 2012, 3, 184–193. [Google Scholar] [CrossRef]
- González-Villarreal, S.E.; García-Montelongo, M.; Ibarra, J.E. Insecticidal Activity of a Cry1Ca Toxin of Bacillus thuringiensis Berliner (Firmicutes: Bacillaceae) and Its Synergism with the Cyt1Aa Toxin Against Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 2020, 57, 1852–1856. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Arrizabalaga, M.; Villanueva, M.; Escriche, B.; Ancín-Azpilicueta, C.; Caballero, P. Insecticidal Activity of Bacillus thuringiensis Proteins Against Coleopteran Pests. Toxins 2020, 12, 430. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Cao, B.; Shu, C.; Geng, L.; Wang, Z.; Zhang, J. Advances in Bt Insecticidal Proteins Against Hemipteran Pests. Plant Prot. 2023, 49, 390–398. (In Chinese) [Google Scholar]
- Liliana, P.L.; Mario, S.; Alejandra, B. Bacillus thuringiensis Insecticidal Three-domain Cry Toxins: Mode of Action, Insect Resistance and Consequences for Crop Protection. FEMS Microbiol. Rev. 2012, 37, 3–22. [Google Scholar]
- Dandapat, A.; Bhattacharyya, J.; Gayen, S.; Chakraborty, A.; Banga, A.; Mukherjee, R.; Mandal, C.C.; Hossain, M.A.; Roy, S.; Basu, A.; et al. Variant cry1Ab Entomocidal Bacillus thuringiensis Toxin Gene Facilitates the Recovery of an Increased Number of Lepidopteran Insect Resistant Independent Rice Transformants Against Yellow Stem Borer (Scirpophaga incertulus) Inflicted Damage. J. Plant Biochem. Biot. 2013, 23, 81–92. [Google Scholar]
- Xu, L.; Pan, Z.Z.; Zhang, J.; Liu, B.; Zhu, Y.J.; Chen, Q.X. Proteolytic Activation of Bacillus thuringiensis Cry2Ab through a Belt-and-Braces Approach. J. Agric. Food Chem. 2016, 64, 7195–7200. [Google Scholar]
- Zhou, Z.; Liu, Y.; Liang, G.; Huang, Y.; Bravo, A.; Soberón, M.; Song, F.; Zhou, X.; Zhang, J. Insecticidal Specificity of Cry1Ah to Helicoverpa armigera is Determined by Binding of APN1 via Domain II Loops 2 and 3. Appl. Environ. Microbiol. 2017, 83, e02864-16. [Google Scholar]
- Gómez, I.; Ocelotl, J.; Sánchez, J.; Aguilar-Medel, S.; Peña-Chora, G.; Lina-Garcia, L.; Bravo, A.; Soberón, M. Bacillus thuringiensis Cry1Ab Domain III β-22 Mutants with Enhanced Toxicity to Spodoptera frugiperda (J. E. Smith). Appl. Environ. Microbiol. 2020, 86, e01580-20. [Google Scholar]
- Zhang, Y.; Zhao, D.; Yan, X.; Guo, W.; Bao, Y.; Wang, W.; Wang, X. Identification and Characterization of Hyphantria cunea Aminopeptidase N as a Binding Protein of Bacillus thuringiensis Cry1Ab35 Toxin. Int. J. Mol. Sci. 2017, 18, 2575. [Google Scholar] [CrossRef]
- Xu, C.; Wei, H.; Wang, L.; Yin, T.; Zhuge, Q. Optimization of the cry1Ah1 Sequence Enhances the Hyper-Resistance of Transgenic Poplars to Hyphantria cunea. Front. Plant Sci. 2019, 10, 335. [Google Scholar]
- Mccown, B.H.; Mccabe, D.E.; Russell, D.R.; Robison, D.J.; Barton, K.A.; Raffa, K.F. Stable Transformation of Populus and Incorporation of Pest Resistance by Electric Discharge Particle Acceleration. Plant Cell Rep. 1991, 9, 590–594. [Google Scholar] [PubMed]
- Wu, N.; Fan, L. A Study of Suspended Particulate Matter in Lahore (Pakistan). Sci. Bull. 1991, 36, 705–708. (In Chinese) [Google Scholar]
- Wang, X.; Han, Y.; Dai, L.; Li, L.; Tian, Y. Studies on Insect Resistant Transgenic (P. × Euramericana) Plants. Sci. Silvae Sin. 1997, 33, 70–75. [Google Scholar]
- Li, W.; Wu, K.; Chen, X.; Feng, H.; Guo, Y.; Xu, Y. Effects of Transgenic Cotton Carrying Cry1A+CpTI and Cry1Ac genes on Diversity of Arthropod Communities in Cotton Fields in North China. Chin. J. Agric. Biotechnol. 2003, 1, 17–21. [Google Scholar]
- Gleave, A.P.; Mitra, D.S.; Markwick, N.P.; Morris, B.A.M.; Beuning, L.L. Enhanced Expression of the Shape Bacillus thuringiensis cry9Aa2 Gene in Transgenic Plants by Nucleotide Sequence Modification Confers Resistance to Potato Tuber Moth. Mol. Breed. 1998, 4, 459–472. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, L.; Zhou, Z.; Pacheco, S.; Gómez, I.; Song, F.; Soberón, M.; Zhang, J.; Bravo, A. Specific Binding Between Bacillus thuringiensis Cry9Aa and Vip3Aa Toxins Synergizes Their Toxicity Against Asiatic rice Borer (Chilo suppressalis). J. Biol. Chem. 2018, 293, 11447–11458. [Google Scholar]
- Naimov, S.; Nedyalkova, R.; Staykov, N.; Weemen-Hendriks, M.; Minkov, I.; de Maagd, R.A. A Novel Cry9Aa with Increased Toxicity for Spodoptera exigua (Hübner). J. Invertebr. Pathol. 2014, 115, 99–101. [Google Scholar]
- Lambert, B.; Buysse, L.; Decock, C.; Jansens, S.; Piens, C.; Saey, B.; Seurinck, J.; Van Audenhove, K.; Van Rie, J.; Van Vliet, A.; et al. A Bacillus thuringiensis Insecticidal Crystal Protein with a High Activity Against Members of the Family Noctuidae. Appl. Environ. Microbiol. 1996, 62, 80–86. [Google Scholar]
- Alcantara, E.P.; Aguda, R.M.; Curtiss, A.; Dean, D.H.; Cohen, M.B. Bacillus thuringiensis Delta-endotoxin Binding to Brush Border Membrane Vesicles of Rice Stem Borers. Arch. Insect Biochem. Physiol. 2004, 55, 169–177. [Google Scholar]
- Wang, Z. The Synergistic Mechanism of Bacillus Thuringiensis Insecticidal Proteins Against Lepidopteran Pests; Chinese Academy of Agricultural Sciences: Beijing, China, 2018. (In Chinese) [Google Scholar]
- Tabashnik, B.E.; Carrière, Y. Surge in Insect Resistance to Transgenic Crops and Prospects for Sustainability. Nat. Biotechnol. 2017, 35, 926–935. [Google Scholar]
- Zhang, C.; Wei, J.; Naing, Z.L.; Soe, E.T.; Tang, J.; Liang, G. Up-regulated Serpin Gene Involved in Cry1Ac resistance in Helicoverpa armigera. Pestic. Biochem. Physiol. 2022, 188, 105269. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Kang, S.; Zhou, J.; Sun, D.; Guo, L.; Qin, J.; Zhu, L.; Bai, Y.; Ye, F.; Akami, M.; et al. Reduced Expression of a Novel Midgut Trypsin Gene Involved in Protoxin Activation Correlates with Cry1Ac Resistance in a Laboratory-Selected Strain of Plutella xylostella (L.). Toxins 2020, 12, 76. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.Z.; Cao, J.; Li, Y.; Collins, H.L.; Roush, R.T.; Earle, E.D.; Shelton, A.M. Transgenic Plants Expressing Two Bacillus thuringiensis Toxins Delay Insect Resistance Evolution. Nat. Biotechnol. 2003, 21, 1493–1497. [Google Scholar] [CrossRef] [PubMed]
- Bravo, A.; Soberón, M. How to Cope with Insect Resistance to Bt Toxins? Trends Biotechnol. 2008, 26, 573–579. [Google Scholar] [CrossRef]
- He, X.; Yang, Y.; Soberón, M.; Bravo, A.; Zhang, L.; Zhang, J.; Wang, Z. Bacillus thuringiensis Cry9Aa Insecticidal Protein Domain I Helices α3 and α4 are Two Core Regions Involved in Oligomerization and Toxicity. J. Agric. Food Chem. 2024, 72, 1321–1329. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, K.; Bravo, A.; Soberón, M.; Cai, J.; Shu, C.; Zhang, J. Coexistence of cry9 with the vip3A Gene in an Identical Plasmid of Bacillus thuringiensis Indicates Their Synergistic Insecticidal Toxicity. J. Agric. Food Chem. 2020, 68, 14081–14090. [Google Scholar] [CrossRef]
- Cai, J.; Shu, C.; Song, F.; Huang, B.; Zhang, J. Ereening of Synergistic Combination Between Cry1 and Cry9 Toxins Against Plutella xylostella. Plant Prot. 2013, 39, 66–70. (In Chinese) [Google Scholar]
- Rausch, M.A.; Chougule, N.P.; Deist, B.R.; Bonning, B.C. Modification of Cry4Aa Toward Improved Toxin Processing in the Gut of the Pea Aphid, Acyrthosiphon pisum. PLoS ONE 2016, 11, e0155466. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Zhou, Y.; Li, C.; Wang, G.; Wang, H.; Zhang, J.; Liang, G.; Lang, Z. Expression of cry2Ah1 and Two Domain II Mutants in Transgenic Tobacco Confers High Resistance to Susceptible and Cry1Ac-resistant Cotton Bollworm. Sci. Rep. 2018, 8, 508. [Google Scholar] [CrossRef]
- Shao, E.; Lin, L.; Chen, C.; Chen, H.; Zhuang, H.; Wu, S.; Sha, L.; Guan, X.; Huang, Z. Loop Replacements with Gut-binding Peptides in Cry1Ab Domain II Enhanced Toxicity Against the Brown Planthopper, Nilaparvata lugens (Stål). Sci. Rep. 2016, 6, 20106. [Google Scholar] [CrossRef]
- Gómez, I.; Ocelotl, J.; Sánchez, J.; Lima, C.; Martins, E.; Rosales-Juárez, A.; Aguilar-Medel, S.; Abad, A.; Dong, H.; Monnerat, R.; et al. Enhancement of Bacillus thuringiensis Cry1Ab and Cry1Fa Toxicity to Spodoptera frugiperda by Domain III Mutations Indicates There Are Two Limiting Steps in Toxicity as Defined by Receptor Binding and Protein Stability. Appl. Environ. Microbiol. 2018, 84, e01393-18. [Google Scholar] [PubMed]
- Boonserm, P.; Davis, P.; Ellar, D.J.; Li, J. Crystal Structure of the Mosquito-larvicidal Toxin Cry4Ba and Its Biological Implications. J. Mol. Biol. 2005, 348, 363–382. [Google Scholar] [PubMed]
- Jenkins, J.L.; Dean, D.H. Exploring the Mechanism of Action of Insecticidal Proteins by Genetic Engineering Methods. Genet. Eng. 2000, 22, 33–54. [Google Scholar]
- Adegawa, S.; Nakama, Y.; Endo, H.; Shinkawa, N.; Kikuta, S.; Sato, R. The Domain II Loops of Bacillus thuringiensis Cry1Aa form an Overlapping Interaction Site for Two Bombyx mori Larvae Functional Receptors, ABC Transporter C2 and Cadherin-like Receptor. Biochim. Biophys. Acta Proteins Proteom. 2017, 1865, 220–231. [Google Scholar]
- Wu, S.J.; Koller, C.N.; Miller, D.L.; Bauer, L.S.; Dean, D.H. Enhanced Toxicity of Bacillus thuringiensis Cry3A Delta-endotoxin in Coleopterans by Mutagenesis in a Receptor Binding Loop. FEBS Lett. 2000, 473, 227–232. [Google Scholar]
- Rausell, C.; Pardo-López, L.; Sánchez, J.; Muñoz-Garay, C.; Morera, C.; Soberón, M.; Bravo, A. Unfolding Events in the Water-soluble Monomeric Cry1Ab Toxin during Transition to Oligomeric Pre-pore and Membrane-inserted Pore Channel. J. Biol. Chem. 2004, 279, 55168–55175. [Google Scholar]
- Yang, X.; Wang, Z.; Geng, L.; Chi, B.; Liu, R.; Li, H.; Gao, J.; Zhang, J. Vip3Aa Domain IV and V Mutants Confer Higher Insecticidal Activity Against Spodoptera frugiperda and Helicoverpa armigera. Pest Manag. Sci. 2022, 78, 2324–2331. [Google Scholar]
- Zheng, J.; Liang, H.; Tian, Y.; Gao, B.; Wang, Y. Selection and Insect Resistance of Transgenic Hybrid Poplar 741 Carrying Two Insect Resistant Genes. Sci. Silvae Sin. 2000, 36, 13–19. (In Chinese) [Google Scholar]
- Wang, Z.; Zhou, Z.; He, K.; Shu, C.; Song, F.; Zhang, J. Cross-resistance of Ostrinia furnacalis to Cry9Ee and Cry1Ab Proteins. Chin. J. Biol. Control 2015, 31, 882–888. [Google Scholar]
- Xue, J.; Liang, G.; Crickmore, N.; Li, H.; He, K.; Song, F.; Feng, X.; Huang, D.; Zhang, J. Cloning and Characterization of a Novel Cry1A Toxin from Bacillus thuringiensis with High Toxicity to the Asian Corn Borer and Other Lepidopteran Insects. FEMS Microbiol. Lett. 2008, 280, 95–101. [Google Scholar]
- Su, H. Expression and Insecticidal Activity of Novel cry9 Genes from Bacillus thuringiensis; Chinese Academy of Agricultural Sciences: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Fang, L.; Wang, X.; Shu, C.; Song, F.; Huang, B.; Zhang, J. The Minimal Active Fragment of the Cry9Aa3 Toxin Against Plutella xylostella and Ostrinia furnacalis. Plant Prot. 2015, 41, 80–85. (In Chinese) [Google Scholar]
- Liang, G.; Tan, W.; Guo, Y. An Improvement in the Technique of Artificial Rearing of the Cotton Bollworm. Plant Prot. 1999, 25, 15–17. [Google Scholar]
- Tabashnik, B.E. Evaluation of Synergism among Bacillus thuringiensis Toxins. Appl. Environ. Microbiol. 1992, 58, 3343–3346. [Google Scholar] [PubMed]
- Finney, D.J. Journal of the Royal Statistical Society Series D: The Statistician. In Probit Analysis; Wiley-Blackwell Publishing Ltd.: Hoboken, NJ, USA, 1972; Volume 21. [Google Scholar]
- Wolfersberger, M.; Luethy, P.; Maurer, A.; Parenti, P.; Sacchi, F.V.; Giordana, B.; Hanozet, G.M. Preparation and Partial Characterization of Amino Acid Trans-porting Brush Border Membrane Vesicles from the Larval Midgut of the Cabbage Butterfly (Pieris brassicae). Arch. Insect Biochem. 1987, 86, 301–308. [Google Scholar]
Proteins | Concentration (μg/g) | Corrected Mortality (Mean ± SD, %) | Proteins | Concentration (μg/g) | Corrected Mortality (Mean ± SD, %) |
---|---|---|---|---|---|
R313A | 5 | 23.08 ± 7.25 d | 307PIG309AAA | 5 | 23.08 ± 7.25 d |
10 | 64.61 ± 6.53 bc | 10 | 31.66 ± 2.37 d | ||
S314A | 5 | 38.46 ± 0.00 bcd | 316LRG318AAA | 5 | 76.92 ± 3.63 a |
10 | 59.42 ± 7.88 bc | 10 | 100.00 ± 0.00 a | ||
R368A | 5 | 45.15 ± 3.63 bcd | 364TDR3666AAA | 5 | 25.64 ± 3.63 d |
10 | 74.74 ± 6.71 b | 10 | 61.98 ± 4.25 bc | ||
V369A | 5 | 33.33 ± 3.63 bcd | 393HTT365AAA | 5 | 48.72 ± 7.25 b |
10 | 67.11 ± 3.00 bc | 10 | 74.61 ± 7.61 b | ||
R403A | 5 | 41.03 ± 3.63 bcd | 416NDT418AAA | 5 | 20.51 ± 3.63 d |
10 | 74.61 ± 7.61 b | 10 | 49.29 ± 8.06 c | ||
S498A | 5 | 41.03 ± 3.63 bcd | 422VNR424AAA | 5 | 41.03 ± 3.63 bcd |
10 | 72.11 ± 4.07 b | 10 | 77.18 ± 3.99 b | ||
R569A | 5 | 28.21 ± 7.25 cd | Cry9Aa3 | 5 | 51.28 ± 3.63 b |
10 | 64.48 ± 7.79 bc | 10 | 77.24 ± 3.18 b | ||
Q571A | 5 | 39.46 ± 7.25 bdc | - | ||
10 | 74.74 ± 6.71 b |
Proteins | Observed LC50 (μg/g) | Chi-Squared | Slope | Expected LC50 (μg/g) | Synergistic Factor |
---|---|---|---|---|---|
Cry9Aa3 | 5.48 (4.86–6.13) | 11.19 | 1.68 | - | - |
316LRG318AA | 3.69 (3.21–4.13) | 8.96 | 1.34 | - | - |
Cry1Ah | 4.36 (3.42–5.42) | 11.23 | 0.97 | - | - |
Cry9Aa3 + Cry1Ah | 1.02 (0.68–1.45) | 5.54 | 0.85 | 4.76 | 4.76 |
316LRG318AA + Cry1Ah | 0.48 (0.01–0.84) | 8.02 | 1.32 | 4.00 | 8.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, P.; Wang, Z.; Zhang, Y.; Han, J.; Shu, C.; Liao, M.; Zhang, J.; Geng, L. Synergistic Insecticidal Activity Against Hyphantria cunea by Cry9Aa3 Mutants and Cry1Ah Combinations. Int. J. Mol. Sci. 2025, 26, 3497. https://doi.org/10.3390/ijms26083497
Xu P, Wang Z, Zhang Y, Han J, Shu C, Liao M, Zhang J, Geng L. Synergistic Insecticidal Activity Against Hyphantria cunea by Cry9Aa3 Mutants and Cry1Ah Combinations. International Journal of Molecular Sciences. 2025; 26(8):3497. https://doi.org/10.3390/ijms26083497
Chicago/Turabian StyleXu, Pengdan, Zeyu Wang, Ying Zhang, Jiaxing Han, Changlong Shu, Min Liao, Jie Zhang, and Lili Geng. 2025. "Synergistic Insecticidal Activity Against Hyphantria cunea by Cry9Aa3 Mutants and Cry1Ah Combinations" International Journal of Molecular Sciences 26, no. 8: 3497. https://doi.org/10.3390/ijms26083497
APA StyleXu, P., Wang, Z., Zhang, Y., Han, J., Shu, C., Liao, M., Zhang, J., & Geng, L. (2025). Synergistic Insecticidal Activity Against Hyphantria cunea by Cry9Aa3 Mutants and Cry1Ah Combinations. International Journal of Molecular Sciences, 26(8), 3497. https://doi.org/10.3390/ijms26083497