GAS5 rs145204276 Ins/Del Polymorphism Is Associated with CRC Susceptibility in a Romanian Population †
Abstract
1. Introduction
2. Results
2.1. LncRNA Polymorphisms and CRC Susceptibility
2.2. Association of LncRNA Polymorphisms with Tumor Stage and Histological Grade
2.3. LncRNA Polymorphisms and Tumor Localization
Post Hoc Power Analysis
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Genotyping
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 2021, 14, 101174. [Google Scholar] [CrossRef]
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef]
- Hong, S.N. Genetic and epigenetic alterations of colorectal cancer. Intest. Res. 2018, 16, 327–337. [Google Scholar] [CrossRef]
- Schoen, R.E.; Razzak, A.; Yu, K.J.; Berndt, S.I.; Firl, K.; Riley, T.L.; Pinsky, P.F. Incidence and Mortality of Colorectal Cancer in Individuals with a Family History of Colorectal Cancer. Gastroenterology 2015, 149, 1438–1445.e1. [Google Scholar] [CrossRef]
- Peters, U.; Bien, S.; Zubair, N. Genetic architecture of colorectal cancer. Gut 2015, 64, 1623–1636. [Google Scholar] [CrossRef]
- Zheng, Y.; Song, D.; Xiao, K.; Yang, C.; Ding, Y.; Deng, W.; Tong, S. LncRNA GAS5 contributes to lymphatic metastasis in colorectal cancer. Oncotarget 2016, 7, 83727–83734. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, H.; Zhu, L.; Hao, B.; Zhang, W.; Hua, J.; Gu, H.; Jin, W.; Zhang, G. Helicobacter pylori infection related long noncoding RNA (lncRNA) AF147447 inhibits gastric cancer proliferation and invasion by targeting MUC2 and up-regulating miR-34c. Oncotarget 2016, 7, 82770–82782. [Google Scholar] [CrossRef]
- Li, W.; Huang, K.; Wen, F.; Cui, G.; Guo, H.; Zhao, S. Genetic variation of lncRNA GAS5 contributes to the development of lung cancer. Oncotarget 2017, 8, 91025–91029. [Google Scholar] [CrossRef]
- Lin, Y.; Zhao, W.; Lv, Z.; Xie, H.; Li, Y.; Zhang, Z. The functions and mechanisms of long non-coding RNA in colorectal cancer. Front. Oncol. 2024, 14, 1419972. [Google Scholar] [CrossRef]
- Kadian, L.K.; Verma, D.; Lohani, N.; Yadav, R.; Ranga, S.; Gulshan, G.; Pal, S.; Kumari, K.; Chauhan, S.S. Long non-coding RNAs in cancer: Multifaceted roles and potential targets for immunotherapy. Mol. Cell. Biochem. 2024, 479, 3229–3254. [Google Scholar] [CrossRef]
- Zhang, J.; Meng, X.; Zhou, Y.; Jiang, Z.; Chen, H.; Meng, Z.; Zhang, Q.; Chen, W. Lnc-LRRTM4 promotes proliferation, metastasis and EMT of colorectal cancer through activating LRRTM4 transcription. Cancer Cell Int. 2023, 23, 142. [Google Scholar] [CrossRef]
- Irfan, M.; Javed, Z.; Khan, K.; Khan, N.; Docea, A.O.; Calina, D.; Sharifi-Rad, J.; Cho, W.C. Apoptosis evasion via long non-coding RNAs in colorectal cancer. Cancer Cell Int. 2022, 22, 280. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, H.; Liu, X.; Xu, L.; Li, T.; Zhou, H.; Zhu, H.; Hao, C.; Lin, C.; Zhang, Y. The RP11-417E7.1/THBS2 signaling pathway promotes colorectal cancer metastasis by activating the Wnt/β-catenin pathway and facilitating exosome-mediated M2 macrophage polarization. J. Exp. Clin. Cancer Res. 2024, 43, 195. [Google Scholar] [CrossRef]
- Ahmad, M.; Weiswald, L.-B.; Poulain, L.; Denoyelle, C.; Meryet-Figuiere, M. Involvement of lncRNAs in cancer cells migration, invasion and metastasis: Cytoskeleton and ECM crosstalk. J. Exp. Clin. Cancer Res. 2023, 42, 173. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, X. Long non-coding RNA signature in colorectal cancer: Research progression and clinical application. Cancer Cell Int. 2023, 23, 28. [Google Scholar] [CrossRef]
- Lei, Y.; Jing-jing, L.; Ke-nan, Z.; Qing-zhong, T.; Jin, L. A tumor suppressive role of lncRNA GAS5 in human colorectal cancer. Open Life Sci. 2016, 11, 105–109. [Google Scholar] [CrossRef]
- Ma, C.; Shi, X.; Zhu, Q.; Li, Q.; Liu, Y.; Yao, Y.; Song, Y. The growth arrest-specific transcript 5 (GAS5): A pivotal tumor suppressor long noncoding RNA in human cancers. Tumor Biol. 2016, 37, 1437–1444. [Google Scholar] [CrossRef]
- Yang, W.; Hong, L.; Xu, X.; Wang, Q.; Huang, J.; Jiang, L. LncRNA GAS5 suppresses the tumorigenesis of cervical cancer by downregulating miR-196a and miR-205. Tumor Biol. 2017, 39, 1010428317711315. [Google Scholar] [CrossRef]
- Li, G.; Qian, L.; Tang, X.; Chen, Y.; Zhao, Z.; Zhang, C. Long non-coding RNA growth arrest-specific 5 (GAS5) acts as a tumor suppressor by promoting autophagy in breast cancer. Mol. Med. Rep. 2020, 22, 2460–2468. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, Y.; Song, Y.; Shang, C. Long noncoding RNA GAS5 inhibits malignant proliferation and chemotherapy resistance to doxorubicin in bladder transitional cell carcinoma. Cancer Chemother. Pharmacol. 2017, 79, 49–55. [Google Scholar] [CrossRef]
- Cai, H.; Xu, W.; Zhang, X. LncRNA growth arrest-special 5 polymorphisms and predisposition to cancer: A meta-analysis. Int. J. Biol. Markers 2020, 35, 28–34. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, P.; Ruan, Z.; Li, J.; Zeng, S.; Zhong, M.; Tang, L. Association between long non-coding RNA (lncRNA) GAS5 polymorphism rs145204276 and cancer risk. J. Int. Med. Res. 2021, 49, 3000605211039798. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, Y.; Wang, X.; Liu, Y.; Zheng, K. A Genetic Variant of rs145204276 in the Promoter Region of Long Noncoding RNA GAS5 Is Associated with a Reduced Risk of Breast Cancer. Clin. Breast Cancer 2019, 19, e415–e421. [Google Scholar] [CrossRef]
- Xiang, X.; Chen, L.; He, J.; Ma, G.; Li, Y. LncRNA GAS5 rs145204276 Polymorphism Reduces Renal Cell Carcinoma Susceptibility in Southern Chinese Population. J. Inflamm. Res. 2022, 15, 1147–1158. [Google Scholar] [CrossRef]
- Weng, S.L.; Ng, S.C.; Lee, Y.C.; Hsiao, Y.H.; Hsu, C.F.; Yang, S.F.; Wang, P.H. The relationships of genetic polymorphisms of the long noncoding RNA growth arrest-specific transcript 5 with uterine cervical cancer. Int. J. Med. Sci. 2020, 17, 1187–1195. [Google Scholar] [CrossRef]
- Zheng, Z.; Liu, S.; Wang, C.; Han, X. A Functional Polymorphism rs145204276 in the Promoter of Long Noncoding RNA GAS5 Is Associated with an Increased Risk of Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2018, 27, 3535–3541. [Google Scholar] [CrossRef]
- Shen, Z.; She, Q. Association Between the Deletion Allele of Ins/Del Polymorphism (Rs145204276) in the Promoter Region of GAS5 with the Risk of Atherosclerosis. Cell. Physiol. Biochem. 2018, 49, 1431–1443. [Google Scholar] [CrossRef]
- Cui, Z.; Gao, M.; Yin, Z.; Yan, L.; Cui, L. Association between lncRNA CASC8 polymorphisms and the risk of cancer: A meta-analysis. Cancer Manag. Res. 2018, 10, 3141–3148. [Google Scholar] [CrossRef]
- Hu, L.; Chen, S.H.; Lv, Q.L.; Sun, B.; Qu, Q.; Qin, C.Z.; Fan, L.; Guo, Y.; Cheng, L.; Zhou, H.H. Clinical Significance of Long Non-Coding RNA CASC8 rs10505477 Polymorphism in Lung Cancer Susceptibility, Platinum-Based Chemotherapy Response, and Toxicity. Int. J. Environ. Res. Public Health 2016, 13, 545. [Google Scholar] [CrossRef]
- Yang, Y.; Junjie, P.; Sanjun, C.; Ma, Y. Long non-coding RNAs in Colorectal Cancer: Progression and Future Directions. J. Cancer 2017, 8, 3212–3225. [Google Scholar] [CrossRef]
- Yang, L.; Tang, L.; Min, Q.; Tian, H.; Li, L.; Zhao, Y.; Wu, X.; Li, M.; Du, F.; Chen, Y.; et al. Emerging role of RNA modification and long noncoding RNA interaction in cancer. Cancer Gene Ther. 2024, 31, 816–830. [Google Scholar] [CrossRef]
- Yang, M.H.; Hu, Z.Y.; Xu, C.; Xie, L.Y.; Wang, X.Y.; Chen, S.Y.; Li, Z.G. MALAT1 promotes colorectal cancer cell proliferation/migration/invasion via PRKA kinase anchor protein 9. Biochim. Biophys. Acta 2015, 1852, 166–174. [Google Scholar] [CrossRef]
- Ji, Q.; Cai, G.; Liu, X.; Zhang, Y.; Wang, Y.; Zhou, L.; Sui, H.; Li, Q. MALAT1 regulates the transcriptional and translational levels of proto-oncogene RUNX2 in colorectal cancer metastasis. Cell Death Dis. 2019, 10, 378. [Google Scholar] [CrossRef]
- Zheng, H.T.; Shi, D.B.; Wang, Y.W.; Li, X.X.; Xu, Y.; Tripathi, P.; Gu, W.L.; Cai, G.X.; Cai, S.J. High expression of lncRNA MALAT1 suggests a biomarker of poor prognosis in colorectal cancer. Int. J. Clin. Exp. Pathol. 2014, 7, 3174–3181. [Google Scholar]
- Shen, W.; Yu, Q.; Pu, Y.; Xing, C. Upregulation of Long Noncoding RNA MALAT1 in Colorectal Cancer Promotes Radioresistance and Aggressive Malignance. Int. J. Gen. Med. 2022, 15, 8365–8380. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, C.; Feng, M. Prognostic Value of LncRNA HOTAIR in Colorectal Cancer: A Meta-analysis. Open Med. 2020, 15, 76–83. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, L.; Liu, D. HOTAIR regulates colorectal cancer stem cell properties and promotes tumorigenicity by sponging miR-211-5p and modulating FLT-1. Cell Cycle 2021, 20, 1999–2009. [Google Scholar] [CrossRef]
- Hu, H.; Yang, H.; Fan, S.; Jia, X.; Zhao, Y.; Li, H. LncRNA HOTAIR promotes DNA damage repair and radioresistance by targeting ATR in colorectal cancer. Oncol. Res. 2024, 32, 1335–1346. [Google Scholar] [CrossRef]
- Yang, L.; Qiu, M.; Xu, Y.; Wang, J.; Zheng, Y.; Li, M.; Xu, L.; Yin, R. Upregulation of long non-coding RNA PRNCR1 in colorectal cancer promotes cell proliferation and cell cycle progression. Oncol. Rep. 2016, 35, 318–324. [Google Scholar] [CrossRef]
- Cicek, M.; Slager, S.; Achenbach, S.; French, A.; Blair, H.; Fink, S.; Foster, N.; Kabat, B.; Halling, K.; Cunningham, J.; et al. Functional and Clinical Significance of Variants Localized to 8q24 in Colon Cancer. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2492–2500. [Google Scholar] [CrossRef]
- Li, L.; Sun, R.; Liang, Y.; Pan, X.; Li, Z.; Bai, P.; Zeng, X.; Zhang, D.; Zhang, L.; Gao, L. Association between polymorphisms in long non-coding RNA PRNCR1 in 8q24 and risk of colorectal cancer. J. Exp. Clin. Cancer Res. 2013, 32, 104. [Google Scholar] [CrossRef]
- Bardhan, K.; Liu, K. Epigenetics and colorectal cancer pathogenesis. Cancers 2013, 5, 676–713. [Google Scholar] [CrossRef]
- Tariq, K.; Ghias, K. Colorectal cancer carcinogenesis: A review of mechanisms. Cancer Biol. Med. 2016, 13, 120–135. [Google Scholar]
- Nguyen, L.H.; Goel, A.; Chung, D.C. Pathways of Colorectal Carcinogenesis. Gastroenterology 2020, 158, 291–302. [Google Scholar] [CrossRef]
- Ji, J.; Dai, X.; Yeung, S.J.; He, X. The role of long non-coding RNA GAS5 in cancers. Cancer Manag. Res. 2019, 11, 2729–2737. [Google Scholar] [CrossRef]
- Luo, G.; Liu, D.; Huang, C.; Wang, M.; Xiao, X.; Zeng, F.; Wang, L.; Jiang, G. LncRNA GAS5 Inhibits Cellular Proliferation by Targeting P27(Kip1). Mol. Cancer Res. 2017, 15, 789–799. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, H.; Yang, D.; Min, Q.; Wang, Y.; Zhang, W.; Zhan, Q. The m6A-induced lncRNA CASC8 promotes proliferation and chemoresistance via upregulation of hnRNPL in esophageal squamous cell carcinoma. Int. J. Biol. Sci. 2022, 18, 4824–4836. [Google Scholar] [CrossRef]
- Jiang, X.; Guan, J.; Xu, Y.; Ren, H.; Jiang, J.; Wudu, M.; Wang, Q.; Su, H.; Zhang, Y.; Zhang, B.; et al. Silencing of CASC8 inhibits non-small cell lung cancer cells function and promotes sensitivity to osimertinib via FOXM1. J. Cancer 2021, 12, 387–396. [Google Scholar] [CrossRef]
- Cucu, M.; Mire, C.S.; Diaconescu, M.; Gheorghe, A.; Mandache, B.P.; Burada, E.; Vilcea, A.M.; Streata, I.; Ioana, M.; Schenker, M. The GAS5 rs145204276 ins/del polymorphism is associated with increased susceptibility to colorectal cancer. In Proceedings of the 55th European Society of Human Genetics (ESHG) Conference, Vienna, Austria, 11–14 June 2022. [Google Scholar]
- Yang, X.; Xie, Z.; Lei, X.; Gan, R. Long non-coding RNA GAS5 in human cancer (Review). Oncol. Lett. 2020, 20, 2587–2594. [Google Scholar] [CrossRef]
- Ma, J.; Miao, H.; Zhang, H.; Ren, J.; Qu, S.; Da, J.; Xu, F.; Zhao, H. LncRNA GAS5 modulates the progression of non-small cell lung cancer through repressing miR-221-3p and up-regulating IRF2. Diagn. Pathol. 2021, 16, 46. [Google Scholar] [CrossRef]
- Ge, X.; Shen, Z.; Yin, Y. Comprehensive review of LncRNA-mediated therapeutic resistance in non-small cell lung cancer. Cancer Cell Int. 2024, 24, 369. [Google Scholar] [CrossRef]
- Zhang, N.; Sun, Y.; Mei, Z.; He, Z.; Gu, S. Novel insights into mutual regulation between N6-methyladenosine modification and LncRNAs in tumors. Cancer Cell Int. 2023, 23, 127. [Google Scholar] [CrossRef]
- Pickard, M.R.; Williams, G.T. Molecular and Cellular Mechanisms of Action of Tumour Suppressor GAS5 LncRNA. Genes 2015, 6, 484–499. [Google Scholar] [CrossRef]
- Lambrou, G.I.; Hatziagapiou, K.; Zaravinos, A. The Non-Coding RNA GAS5 and Its Role in Tumor Therapy-Induced Resistance. Int. J. Mol. Sci. 2020, 21, 7633. [Google Scholar] [CrossRef]
- Yu, Y.; Hann, S.S. Novel Tumor Suppressor lncRNA Growth Arrest-Specific 5 (GAS5) in Human Cancer. OncoTargets Ther. 2019, 12, 8421–8436. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, B. GAS5-mediated regulation of cell signaling (Review). Mol. Med. Rep. 2020, 22, 3049–3056. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, Z.; Watabe, K.; Zhang, X.; Bai, C.; Xu, M.; Wu, F.; Mo, Y.Y. Negative regulation of lncRNA GAS5 by miR-21. Cell Death Differ. 2013, 20, 1558–1568. [Google Scholar] [CrossRef]
- Xie, J.; Wang, J.J.; Li, Y.J.; Wu, J.; Gu, X.J.; Yang, X.R. LncRNA GAS5 Suppresses Colorectal Cancer Progress by Target miR-21/LIFR Axis. Evid.-Based Complement. Altern. Med. 2022, 2022, 3298939. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Zhang, C.G.; Xiao, H.J.; Xiao, H.J.; Hu, J.M.; Hou, J.M.; He, J.D. Effect of long non-coding RNA Gas5 on proliferation, migration, invasion and apoptosis of colorectal cancer HT-29 cell line. Cancer Cell Int. 2018, 18, 4. [Google Scholar] [CrossRef]
- Li, Q.J.; Ma, G.; Guo, H.M.; Sun, S.H.; Xu, Y.; Wang, B.J. The Variant rs145204276 of GAS5 is Associated with the Development and Prognosis of Gastric Cancer. J. Gastrointestin. Liver Dis. 2018, 27, 19–24. [Google Scholar] [CrossRef]
- Kaur, J.; Salehen, N.; Norazit, A.; Rahman, A.A.; Murad, N.A.A.; Rahman, N.; Ibrahim, K. Tumor Suppressive Effects of GAS5 in Cancer Cells. Noncoding RNA 2022, 8, 39. [Google Scholar] [CrossRef]
- Yin, D.; He, X.; Zhang, E.; Kong, R.; De, W.; Zhang, Z. Long noncoding RNA GAS5 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. Med. Oncol. 2014, 31, 253. [Google Scholar] [CrossRef]
- Chang, L.; Li, C.; Lan, T.; Wu, L.; Yuan, Y.; Liu, Q.; Liu, Z. Decreased expression of long non-coding RNA GAS5 indicates a poor prognosis and promotes cell proliferation and invasion in hepatocellular carcinoma by regulating vimentin. Mol. Med. Rep. 2016, 13, 1541–1550. [Google Scholar] [CrossRef]
- Wang, C.; Ke, S.; Li, M.; Lin, C.; Liu, X.; Pan, Q. Downregulation of LncRNA GAS5 promotes liver cancer proliferation and drug resistance by decreasing PTEN expression. Mol. Genet. Genom. 2020, 295, 251–260. [Google Scholar] [CrossRef]
- Tao, R.; Hu, S.; Wang, S.; Zhou, X.; Zhang, Q.; Wang, C.; Zhao, X.; Zhou, W.; Zhang, S.; Li, C.; et al. Association between indel polymorphism in the promoter region of lncRNA GAS5 and the risk of hepatocellular carcinoma. Carcinogenesis 2015, 36, 1136–1143. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, N.; Zheng, Y.; Chen, Y.D.; Liu, J.; Yang, M. LncRNA GAS5 Indel Genetic Polymorphism Contributes to Glioma Risk Through Interfering Binding of Transcriptional Factor TFAP2A. DNA Cell Biol. 2018, 37, 750–757. [Google Scholar] [CrossRef]
- Hutter, C.M.; Slattery, M.L.; Duggan, D.J.; Muehling, J.; Curtin, K.; Hsu, L.; Beresford, S.A.; Rajkovic, A.; Sarto, G.E.; Marshall, J.R.; et al. Characterization of the association between 8q24 and colon cancer: Gene-environment exploration and meta-analysis. BMC Cancer 2010, 10, 670. [Google Scholar] [CrossRef]
- Haerian, M.S.; Haerian, B.S.; Rooki, H.; Molanaei, S.; Kosari, F.; Obohhat, M.; Hosseinpour, P.; Azimzadeh, P.; Mohebbi, S.R.; Akbari, Z.; et al. Association of 8q24.21 rs10505477-rs6983267 haplotype and age at diagnosis of colorectal cancer. Asian Pac. J. Cancer Prev. 2014, 15, 369–374. [Google Scholar] [CrossRef]
- Haerian, M.S.; Baum, L.; Haerian, B.S. Association of 8q24.21 loci with the risk of colorectal cancer: A systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2011, 26, 1475–1484. [Google Scholar] [CrossRef]
- Yang, B.; Thyagarajan, B.; Gross, M.D.; Goodman, M.; Sun, Y.V.; Bostick, R.M. Genetic variants at chromosome 8q24, colorectal epithelial cell proliferation, and risk for incident, sporadic colorectal adenomas. Mol. Carcinog. 2014, 53 (Suppl. S1), E187–E192. [Google Scholar] [CrossRef]
- Li, L.; Lv, L.; Liang, Y.; Shen, X.; Zhou, S.; Zhu, J.; Ma, R. Association of 8q23-24 region (8q23.3 loci and 8q24.21 loci) with susceptibility to colorectal cancer: A systematic and updated meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 21001–21013. [Google Scholar] [PubMed]
- Hofer, P.; Hagmann, M.; Brezina, S.; Dolejsi, E.; Mach, K.; Leeb, G.; Baierl, A.; Buch, S.; Sutterlüty-Fall, H.; Karner-Hanusch, J.; et al. Bayesian and frequentist analysis of an Austrian genome-wide association study of colorectal cancer and advanced adenomas. Oncotarget 2017, 8, 98623–98634. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Hua, L.; Wei, L.; Meng, J.; Hu, J. Correlation Between CASC8, SMAD7 Polymorphisms and the Susceptibility to Colorectal Cancer: An Updated Meta-Analysis Based on GWAS Results. Medicine 2015, 94, e1884. [Google Scholar] [CrossRef] [PubMed]
- Gargallo, C.J.; Lanas, Á.; Carrera-Lasfuentes, P.; Ferrandez, Á.; Quintero, E.; Carrillo, M.; Alonso-Abreu, I.; García-Gonzalez, M.A. Genetic susceptibility in the development of colorectal adenomas according to family history of colorectal cancer. Int. J. Cancer 2019, 144, 489–502. [Google Scholar] [CrossRef]
Variable | Colorectal Cancer | Control |
---|---|---|
N | 156 | 195 |
Male/female | 89/67 | 143/90 |
Age (years), mean ± SD | 68.61 ± 9 | 66.69 ± 7.94 |
Location | ||
- proximal | 35 | |
- distal | 69 | |
- rectum | 52 | |
Tumor stage—Dukes stage | ||
- A + B | 89 | |
- C + D | 67 | |
Differentiation grade | ||
- G1—well | 23 | |
- G2—moderate | 113 | |
- G3—poor | 20 |
Polymorphism | MAF | χ2 | p |
---|---|---|---|
Control | |||
GAS5 rs145204276 ins/del (CAAGG>-) | 0.07 | 0.007 | 0.93 |
CASC8 rs10505477 A>G | 0.47 | 0.09 | 0.76 |
Cases | |||
GAS5 rs145204276 ins/del (CAAGG>-) | 0.14 | 0.42 | 0.52 |
CASC8 rs10505477 A>G | 0.46 | 0.56 | 0.45 |
Polymorphism | Colorectal Cancer (n = 156) | Control (n = 195) | OR (95% CI) | p Value |
---|---|---|---|---|
GAS5 rs145204276 ins/del (CAAGG>-) | ||||
Codominant | ||||
ins/ins | 115 (73.72%) | 167 (85.64%) | Reference | - |
ins/del | 39 (25.00%) | 27 (13.85%) | 2.09 (1.22–3.62) | 0.007 |
del/del | 2 (1.28%) | 1 (0.51%) | 2.90 (0.26–32.41) | 0.36 |
Dominant | ||||
ins/ins | 115 (73.72%) | 167 (85.64%) | Reference | - |
del/del + ins/del | 41 (26.28%) | 28 (14.36%) | 2.13 (1.24–3.63) | 0.005 |
Recessive | ||||
ins/ins + ins/del | 154 (98.72%) | 194 (99.49%) | Reference | - |
del/del | 2 (1.28%) | 1 (0.51%) | 0.39 (0.03–4.42) | 0.437 |
Allelic | ||||
ins | 269 (86.22%) | 361 (92.56%) | Reference | - |
del | 43 (13.78%) | 29 (7.44%) | 1.99 (1.21–3.27) | 0.006 |
CASC8 rs10505477 A>G | ||||
Codominant | ||||
AA | 30 (19.23%) | 44 (22.56%) | Reference | - |
AG | 82 (52.56%) | 95 (48.72%) | 1.27 (0.73–2.19) | 0.40 |
GG | 44 (28.21%) | 56 (28.72%) | 1.15 (0.63–2.12) | 0.65 |
Dominant | ||||
AA | 30 (19.23%) | 44 (22.56%) | Reference | - |
GG + AG | 126 (80.77%) | 151 (77.44%) | 1.22 (0.73–2.06) | 0.45 |
Recessive | ||||
AA + AG | 112 (71.79%) | 139 (71.28%) | Reference | - |
GG | 44 (28.21%) | 56 (28.72%) | 0.97 (0.61–1.56) | 0.92 |
Allelic | ||||
A | 142 (45.51%) | 183 (46.92%) | Reference | - |
G | 170 (54.49%) | 207 (53.08%) | 1.06 (0.79–1.43) | 0.71 |
Polymorphism | Tumor Stage I + II (A + B = 89) (%) | OR (95% CI); p | Tumor Stage III + IV (C + D = 67) (n %) | OR (95% CI); p |
---|---|---|---|---|
GAS5 rs145204276 ins/del (CAAGG>-) | ||||
ins/ins | 68 (76.40%) | Reference | 47 (70.15%) | Reference |
ins/del | 21 (23.60%) | 1.91 (1.01–3.61); 0.049 | 18 (26.87%) | 2.37 (1.20–4.67); 0.0015 |
del/del | 0 (0%) | / | 2 (2.98%) | 7.11 (0.63–80.1); 0.101 |
del carriers | 21 (23.60%) | 1.84 (0.98–3.47); 0.06 | 20 (29.85%) | 2.54 (1.31–4.91); 0.007 |
CASC8 rs10505477 A>G | ||||
AA | 16 (17.98%) | Reference | 14 (20.90%) | Reference |
AG | 50 (56.18%) | 1.45 (0.74–2.82); 0.27 | 32 (47.76%) | 1.06 (0.51–2.18); 0.88 |
GG | 23 (25.84%) | 1.13 (0.53–2.39); 0.75 | 21 (31.34%) | 1.18 (0.54–2.58); 0.68 |
G carriers | 73 (82.02%) | 1.33 (0.70–2.51); 0.37 | 53 (79.10%) | 1.10 (0.56–2.17); 0.78 |
G1 | G2 | G3 | |||||||
---|---|---|---|---|---|---|---|---|---|
SNP | N = 23 | OR (95% CI) | p | N = 113 | OR (95% CI) | p | N = 20 | OR (95% CI) | p |
GAS5 rs145204276 | |||||||||
ins/ins | 16 | Reference | 87 | Reference | 12 | Reference | 0.007 | ||
ins/del | 6 | 2.32 (0.83–6.45) | 0.125 | 25 | 1.78 (0.97–3.25) | 0.06 | 8 | 4.12 (1.54–11.01) | 0.007 |
del/del | 1 | 10.44 (0.62–174.9) | 0.13 | 1 | 1.92 (0.12–31.06) | 0.65 | 0 | / | / |
del carriers | 7 | 2.61 (0.98–6.91) | 0.07 | 26 | 1.78 (0.98–3.23) | 0.06 | 8 | 3.98 (1.49–10.59) | 0.009 |
CASC8 rs10505477 | |||||||||
AA | 3 | Reference | 24 | Reference | 3 | Reference | |||
AG | 13 | 2.01 (0.54–7.40) | 0.27 | 61 | 1.18 (0.65–2.13) | 0.59 | 8 | 1.24 (0.31–4.88) | 0.76 |
GG | 7 | 1.83 (0.45–7.50) | 0.39 | 28 | 0.92 (0.47–1.80) | 0.80 | 9 | 2.36 (0.60–9.23) | 0.19 |
G carriers | 20 | 1.94 (0.55–6.84) | 0.27 | 89 | 1.08 (0.62–1.89) | 0.79 | 17 | 1.65 (0.46–5.89) | 0.42 |
Polymorphism | Proximal CRC | Distal CRC | Rectal CRC | |||
---|---|---|---|---|---|---|
N = 35 | OR (95% CI); p | N = 69 | OR (95% CI); p | N = 52 | OR (95% CI); p | |
GAS5 rs145204276 | ||||||
ins/ins | 29 | Reference | 46 | Reference | 40 | Reference |
ins/del | 5 | 1.07 (0.38–2.99); 0.90 | 22 | 2.96 (1.54–5.67); 0.001 | 12 | 1.86 (0.87–3.98); 0.12 |
del/del | 1 | 5.76 (0.35–94.68); 0.25 | 1 | 3.63 (0.22–59.17); 0.38 | 0 | / |
del carriers | 6 | 1.23 (0.47–3.24); 0.67 | 23 | 2.98 (1.57–5.66); 0.001 | 12 | 1.79 (0.84–3.82); 0.14 |
CASC8 rs10505477 | ||||||
AA | 7 | Reference | 13 | Reference | 10 | Reference |
AG | 19 | 1.26 (0.49–3.21); 0.63 | 37 | 1.32 (0.64–2.73); 0.45 | 26 | 1.20 (0.53–2.71); 0.65 |
GG | 9 | 1.01 (0.35–2.93); 0.98 | 19 | 1.15 (0.51–2.56); 0.74 | 16 | 1.26 (0.52–3.04); 0.61 |
G carriers | 28 | 1.17 (0.48–2.85); 0.73 | 56 | 1.26 (0.63–2.50); 0.51 | 42 | 1.22 (0.57–2.64); 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirea, C.S.; Schenker, M.; Petre-Mandache, B.; Cucu, M.-G.; Camen, G.-C.; Vîlcea, I.D.; Albu, B.C.; Obleagă, C.V.; Ciorbagiu, M.C.; Streață, I.; et al. GAS5 rs145204276 Ins/Del Polymorphism Is Associated with CRC Susceptibility in a Romanian Population. Int. J. Mol. Sci. 2025, 26, 3078. https://doi.org/10.3390/ijms26073078
Mirea CS, Schenker M, Petre-Mandache B, Cucu M-G, Camen G-C, Vîlcea ID, Albu BC, Obleagă CV, Ciorbagiu MC, Streață I, et al. GAS5 rs145204276 Ins/Del Polymorphism Is Associated with CRC Susceptibility in a Romanian Population. International Journal of Molecular Sciences. 2025; 26(7):3078. https://doi.org/10.3390/ijms26073078
Chicago/Turabian StyleMirea, Cecil Sorin, Michael Schenker, Bianca Petre-Mandache, Mihai-Gabriel Cucu, Georgiana-Cristiana Camen, Ionică Daniel Vîlcea, Bogdan Cristian Albu, Cosmin Vasile Obleagă, Mihai Călin Ciorbagiu, Ioana Streață, and et al. 2025. "GAS5 rs145204276 Ins/Del Polymorphism Is Associated with CRC Susceptibility in a Romanian Population" International Journal of Molecular Sciences 26, no. 7: 3078. https://doi.org/10.3390/ijms26073078
APA StyleMirea, C. S., Schenker, M., Petre-Mandache, B., Cucu, M.-G., Camen, G.-C., Vîlcea, I. D., Albu, B. C., Obleagă, C. V., Ciorbagiu, M. C., Streață, I., Pleșea, R. M., Riza, A.-L., & Burada, F. (2025). GAS5 rs145204276 Ins/Del Polymorphism Is Associated with CRC Susceptibility in a Romanian Population. International Journal of Molecular Sciences, 26(7), 3078. https://doi.org/10.3390/ijms26073078