Proteasome Inhibitors: Potential in Rheumatoid Arthritis Therapy?
Abstract
1. Rheumatoid Arthritis
1.1. Pathogenesis
1.2. Significance of the NF-κB Pathway in RA
1.3. Animal Models for RA
1.4. Current Therapeutic Approaches for RA
2. The Ubiquitin–Proteasome System (UPS)
3. The Immunoproteasome
4. Proteasome Inhibitors (PIs)
PI | Group | Binding | Subunit Specificity * | Animal Model/Disease | Ref. | Main Findings |
---|---|---|---|---|---|---|
Bortezomib (PS-341, Velcade®) | Peptide- boronates | Rev. | β5/β5i > β1/β1i > β2i | SCWIA 1 | [88] | (i) total arthritis index and hind paw edema ↓ (ii) inflammatory cell infiltration ↓ (iii) cartilage and subchondral bone degradation ↓ (iv) serum IL-6 and NO metabolites ↓ (v) NF-κB activation ↓ (vi) synovial hyperproliferation ↓ (vii) clonal expansion of T cells ↓ |
Zymosan-induced arthritis | [126] | (i) LPS-induced SAA1 expression (induced by NF-κB) ↓ (ii) zymosan-induced acute arthritis ↓ | ||||
CIA | [127] | (i) arthritis score and thickness of paws ↓ (ii) inflammatory cell infiltration ↓ (iii) erosion score ↓ (iv) TNFα, IL-1β, IL-6, MMP-3, iNOS, and COX-2 levels ↓ (v) joint destruction on micro-CT ↓ (vi) no adverse effects | ||||
PBMC of RA patients | [128] | (i) cytokine production (TNFα, IL-1β, IL-6, IL-10 induced by NF-κB) of activated T cells ↓ (ii) T-cell activation ↓ (iii) apoptosis of activated T cells ↑ | ||||
AIA | [129] | (i) proliferation of splenocytes and FLS ↓ (ii) FLS invasion ↓ (iii) apoptosis of FLS and splenic T cells ↑ (iv) proliferation ↓↓, apoptosis ↑↑ of activated cells (v) cytokine (IFNγ, TNFα, and IL-6 induced by NF-κB) production ↓ (vi) inflammatory cell infiltration (T cells, B cells, macrophages) ↓ (vii) bone erosion ↓ (viii) pannus formation ↓ (ix) expression of CD3, CD79a, CD11b, COX1, and factor VIII in the joints ↓ (x) expression of TLR-2, -3, -4 in the peripheral blood and cultured FLS ↓ (xi) disappearance of soft tissue swelling, focal osteopenia, and bone erosion on CT images | ||||
hTNFtg | [130] | (i) paw swelling ↑ (ii) grip strength ↓ (iii) area of inflammation ↑ (iv) cartilage proteoglycan loss ↑ (v) T cells ↑, B cells ↓, macrophages ↓ in the synovium (vi) CD8+ T cells ↑ in the spleen (vii) no significant change in TNFα, GM-CSF, IFNγ, IL-17, IL-4, and IL-10 in the serum (viii) synovial osteoclastogenesis ↑ (ix) serum levels and synovial expression of RANKL ↑ (x) no effect on the systemic bone architecture and turnover (xi) bone erosion ↑ (xii) osteoclastogenesis ↑, osteoclast apoptosis ↑ at higher cc (xiii) c-Fos and NFATc1 expression ↑ | ||||
RA + MM † | [131] | (i) RA activity ↓ (ii) joint symptoms ↓ (iii) DAS28-ESR improved | ||||
RA + MM † | [132] | (i) joint symptoms ↓ (ii) pain ↓ (iii) signs of inflammation ↓ | ||||
Delanzomib (CEP-18770) | Peptide- boronates | Rev. | β5/β5i > β1/β1i | CIA | [133] | (i) severity of arthritis ↓ (ii) TNFα, IL-6, and CRP levels ↓ (iii) elimination of adalimumab ↓ (iv) did not inhibit the production of anti-adalimumab antibodies (v) FcRn levels ↑ |
MG-132 | Peptidyl- aldehydes | Rev. | β5/β5i > β1/β1i | SCWIA | [134] | (i) IL-1β, IL-6, TNFα, and VCAM-1 (induced by NF-κB) ↓ (ii) TNFα- and FasL-induced apoptosis in RA synovium ↑ (iii) prevented the development of arthritis |
AIA | [135] | (i) arthritis severity ↓ (ii) pain behavior ↓ (iii) weight loss ↓ (iv) osteoporosis and bone erosion score ↓ (v) inflammatory cell infiltration ↓ (vi) synovial thickening ↓ (vii) no effect on joint space narrowing and cartilage destruction (viii) NF-κB and p50 homodimer DNA-binding activity ↓ (ix) p50-positive cells in the cartilage and in the synovium ↓ (x) sensory neuropeptide (SP, CGRP) production ↓ | ||||
RASFs of AIA | [136] | (i) MMP-2 activity ↓ (ii) sFKN production ↓ (iii) TNFα- and IFNγ-induced proteasome activation ↓ | ||||
AIA | [137] | (i) SP expression in DRG and in SC ↓ (ii) number of SP-positive cells in the DRG ↓ (iii) NF-κB DNA-binding activity in the SC ↓ | ||||
Carfilzomib (PR-171, Kyprolis®) | Epoxyketons | Irrev. | β5/β5i >> β2i∼β1i | PBMC of RA patients | [96] | resistance caused by the overexpression of Pgp |
ONX-0914 (PR-957) | Epoxyketons | Irrev. | β5i > β1i, β2i | CAIA and CIA | [138] | (i) reversed the signs of disease (ii) cytokine production of T cells (IL-2, IFNγ) and monocytes (IL-23) ↓ (iii) autoantibody levels ↓ (iv) inflammatory infiltration ↓ (v) bone erosion ↓ |
PBMC of RA patients | [96] | resistance caused by the overexpression of Pgp | ||||
PBMCs and FLSs of RA patients, CIA | [139] | (i) Th1, Th17↓; Th2, Treg↑ (ii) FLS apoptosis ↑ (iii) FLS invasiveness and viability ↓ (iv) inflammatory markers (IL-6, CCL2, MMP1, MMP3) ↓ (v) arthritis score ↓ (vi) synovial hyperproliferation ↓ (vii) articular injury ↓ (viii) serum TNFα, IL-1β, and IFNγ ↓ (ix) synovial cell apoptosis ↑ (x) BCL2, Vimentin, and VEGF expression in the synovium ↓ |
5. Proteasome Inhibitors in RA or Its Animal Models
5.1. Bortezomib
5.2. Delanzomib
5.3. MG-132
5.4. Carfilzomib
5.5. ONX-0914
6. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scott, D.L.; Wolfe, F.; Huizinga, T.W.J. Rheumatoid Arthritis. Lancet 2010, 376, 1094–1108. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.S.; Aletaha, D.; Barton, A.; Burmester, G.R.; Emery, P.; Firestein, G.S.; Kavanaugh, A.; McInnes, I.B.; Solomon, D.H.; Strand, V.; et al. Rheumatoid Arthritis. Nat. Rev. Dis. Primers 2018, 4, 18001. [Google Scholar] [CrossRef] [PubMed]
- Andersson, A.K.; Li, C.; Brennan, F.M. Recent Developments in the Immunobiology of Rheumatoid Arthritis. Arthritis Res. Ther. 2008, 10, 204. [Google Scholar] [CrossRef] [PubMed]
- Weyand, C.M.; Hicok, K.C.; Conn, D.L.; Goronzy, J.J. The Influence of HLA-DRB1 Genes on Disease Severity in Rheumatoid Arthritis. Ann. Intern. Med. 1992, 117, 801–806. [Google Scholar] [CrossRef]
- Raychaudhuri, S.; Sandor, C.; Stahl, E.A.; Freudenberg, J.; Lee, H.S.; Jia, X.; Alfredsson, L.; Padyukov, L.; Klareskog, L.; Worthington, J.; et al. Five Amino Acids in Three HLA Proteins Explain Most of the Association between MHC and Seropositive Rheumatoid Arthritis. Nat. Genet. 2012, 44, 291–296. [Google Scholar] [CrossRef]
- Trenkmann, M.; Brock, M.; Ospelt, C.; Gay, S. Epigenetics in Rheumatoid Arthritis. Clin. Rev. Allergy Immunol. 2010, 39, 10–19. [Google Scholar] [CrossRef]
- Klareskog, L.; Stolt, P.; Lundberg, K.; Källberg, H.; Bengtsson, C.; Grunewald, J.; Rönnelid, J.; Harris, H.E.; Ulfgren, A.K.; Rantapää-Dahlqvist, S.; et al. A New Model for an Etiology of Rheumatoid Arthritis: Smoking May Trigger HLA-DR (Shared Epitope)-Restricted Immune Reactions to Autoantigens Modified by Citrullination. Arthritis Rheum. 2006, 54, 38–46. [Google Scholar] [CrossRef]
- Okamoto, Y.; Devoe, S.; Seto, N.; Minarchick, V.; Wilson, T.; Rothfuss, H.M.; Mohning, M.P.; Arbet, J.; Kroehl, M.; Visser, A.; et al. Association of Sputum Neutrophil Extracellular Trap Subsets with IgA Anti–Citrullinated Protein Antibodies in Subjects at Risk for Rheumatoid Arthritis. Arthritis Rheumatol. 2022, 74, 38–48. [Google Scholar] [CrossRef]
- Cheng, Z.; Do, T.; Mankia, K.; Meade, J.; Hunt, L.; Clerehugh, V.; Speirs, A.; Tugnait, A.; Emery, P.; Devine, D. Dysbiosis in the Oral Microbiomes of Anti-CCP Positive Individuals at Risk of Developing Rheumatoid Arthritis. Ann. Rheum. Dis. 2021, 80, 162–168. [Google Scholar] [CrossRef]
- Jubair, W.K.; Hendrickson, J.D.; Severs, E.L.; Schulz, H.M.; Adhikari, S.; Ir, D.; Pagan, J.D.; Anthony, R.M.; Robertson, C.E.; Frank, D.N.; et al. Modulation of Inflammatory Arthritis in Mice by Gut Microbiota Through Mucosal Inflammation and Autoantibody Generation. Arthritis Rheumatol. 2018, 70, 1220–1233. [Google Scholar] [CrossRef]
- Kim, S.J.; Chen, Z.; Essani, A.B.; Elshabrawy, H.A.; Volin, M.V.; Fantuzzi, G.; McInnes, I.B.; Baker, J.F.; Finn, P.; Kondos, G.; et al. Differential Impact of Obesity on the Pathogenesis of RA or Preclinical Models Is Contingent on the Disease Status. Ann. Rheum. Dis. 2017, 76, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Van Oosterhout, M.; Bajema, I.; Levarht, E.W.N.; Toes, R.E.M.; Huizinga, T.W.J.; Van Laar, J.M. Differences in Synovial Tissue Infiltrates between Anti-Cyclic Citrullinated Peptide-Positive Rheumatoid Arthritis and Anti-Cyclic Citrullinated Peptide-Negative Rheumatoid Arthritis. Arthritis Rheum. 2008, 58, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Buzás, E.I.; Mikecz, K.; Glant, T.T. Aggrecan: A Target Molecule of Autoimmune Reactions. Pathol. Oncol. Res. 1996, 2, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Li, N.L.; Zhang, D.Q.; Zhou, K.Y.; Cartman, A.; Leroux, J.Y.; Poole, A.R.; Zhang, Y.P. Isolation and Characteristics of Autoreactive T Cells Specific to Aggrecan G1 Domain from Rheumatoid Arthritis Patients. Cell Res. 2000, 10, 39–49. [Google Scholar] [CrossRef]
- Zou, J. Predominant Cellular Immune Response to the Cartilage Autoantigenic G1 Aggrecan in Ankylosing Spondylitis and Rheumatoid Arthritis. Rheumatology 2003, 42, 846–855. [Google Scholar] [CrossRef]
- Myers, L.K.; Rosloniec, E.F.; Cremer, M.A.; Kang, A.H. Minireview: Collagen-Induced Arthritis, an Animal Model of Autoimmunity. Life Sci. 1997, 61, 1861–1878. [Google Scholar] [CrossRef]
- Glant, T.T.; Mikecz, K.; Arzoumanian, A.; Poole, A.R. Proteoglycan-Induced Arthritis in BALB/c Mice. Clinical Features and Histopathology. Arthritis Rheum. 1987, 30, 201–212. [Google Scholar] [CrossRef]
- Jang, S.; Kwon, E.J.; Lee, J.J. Rheumatoid Arthritis: Pathogenic Roles of Diverse Immune Cells. Int. J. Mol. Sci. 2022, 23, 905. [Google Scholar] [CrossRef]
- Bartok, B.; Firestein, G.S.; Bartok, B.; Firestein, G.S. Fibroblast-like Synoviocytes: Key Effector Cells in Rheumatoid Arthritis. Immunol. Rev. 2010, 233, 233–255. [Google Scholar] [CrossRef]
- Yoshitomi, H. Regulation of Immune Responses and Chronic Inflammation by Fibroblast-like Synoviocytes. Front. Immunol. 2019, 10, 1395. [Google Scholar] [CrossRef]
- Mellado, M.; Martínez-Muñoz, L.; Cascio, G.; Lucas, P.; Pablos, J.L.; Rodríguez-Frade, J.M. T Cell Migration in Rheumatoid Arthritis. Front. Immunol. 2015, 6, 384. [Google Scholar] [CrossRef] [PubMed]
- Kleinewietfeld, M.; Hafler, D.A. The Plasticity of Human Treg and Th17 Cells and Its Role in Autoimmunity. Semin. Immunol. 2013, 25, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Karin, M.; Ben-Neriah, Y. Phosphorylation Meets Ubiquitination: The Control of NF-κB Activity. Annu. Rev. Immunol. 2000, 18, 621–663. [Google Scholar] [PubMed]
- Pahl, H.L. Activators and Target Genes of Rel/NF-κB Transcription Factors. Oncogene 1999, 18, 6853–6866. [Google Scholar]
- Vincenti, M.P.; Coon, C.I.; Brinckerhoff, C.E. Nuclear Factor κB/P50 Activates an Element in the Distal Matrix Metalloproteinase 1 Promoter in Interleukin-1β-Stimulated Synovial Fibroblasts. Arthritis Rheum. 1998, 41, 1987–1994. [Google Scholar] [CrossRef]
- Bond, M.; Baker, A.H.; Newby, A.C. Nuclear Factor κB Activity Is Essential for Matrix Metalloproteinase-1 and -3 Upregulation in Rabbit Dermal Fibroblasts. Biochem. Biophys. Res. Commun. 1999, 264, 561–567. [Google Scholar] [CrossRef]
- Jimi, E.; Aoki, K.; Saito, H.; D’Acquisto, F.; May, M.J.; Nakamura, I.; Sudo, T.; Kojima, T.; Okamoto, F.; Fukushima, H.; et al. Selective Inhibition of NF-κB Blocks Osteoclastogenesis and Prevents Inflammatory Bone Destruction in Vivo. Nat. Med. 2004, 10, 617–624. [Google Scholar] [CrossRef]
- Makarov, S.S.; Johnston, W.N.; Olsen, J.C.; Watson, J.M.; Mondal, K.; Rinehart, C.; Haskill, J.S. NF-κB as a Target for Anti-Inflammatory Gene Therapy: Suppression of Inflammatory Responses in Monocytic and Stromal Cells by Stable Gene Transfer of IκBα CDNA. Gene Ther. 1997, 4, 846–852. [Google Scholar] [CrossRef]
- Bondeson, J.; Foxwell, B.; Brennan, F.; Feldmann, M. Defining Therapeutic Targets by Using Adenovirus: Blocking NF-κB Inhibits Both Inflammatory and Destructive Mechanisms in Rheumatoid Synovium but Spares Anti-Inflammatory Mediators. Proc. Natl. Acad. Sci. USA 1999, 96, 5668–5673. [Google Scholar] [CrossRef]
- Claudio, E.; Brown, K.; Park, S.; Wang, H.; Siebenlist, U. BAFF-Induced NEMO-Independent Processing of NF-κB2 in Maturing B Cells. Nat. Immunol. 2002, 3, 958–965. [Google Scholar] [CrossRef]
- Edwards, J.C.W.; Cambridge, G. B-Cell Targeting in Rheumatoid Arthritis and Other Autoimmune Diseases. Nat. Rev. Immunol. 2006, 6, 394–403. [Google Scholar] [PubMed]
- Maijer, K.I.; Noort, A.R.; De Hair, M.J.H.; Van Der Leij, C.; Van Zoest, K.P.M.; Choi, I.Y.; Gerlag, D.M.; Maas, M.; Tak, P.P.; Tas, S.W. Nuclear Factor-κB-Inducing Kinase Is Expressed in Synovial Endothelial Cells in Patients with Early Arthritis and Correlates with Markers of Inflammation: A Prospective Cohort Study. J. Rheumatol. 2015, 42, 1573–1581. [Google Scholar] [CrossRef] [PubMed]
- Aya, K.; Alhawagri, M.; Hagen-Stapleton, A.; Kitaura, H.; Kanagawa, O.; Novack, D.V. NF-κB-Inducing Kinase Controls Lymphocyte and Osteoclast Activities in Inflammatory Arthritis. J. Clin. Investig. 2005, 115, 1848–1854. [Google Scholar] [CrossRef] [PubMed]
- Goldring, S.R.; Gravallese, E.M. Pathogenesis of Bone Erosions in Rheumatoid Arthritis. Curr. Opin. Rheumatol. 2000, 12, 195–199. [Google Scholar]
- Wong, B.R.; Josien, R.; Choi, Y. TRANCE Is a TNF Family Member That Regulates Dendritic Cell and Osteoclast Function. J. Leukoc. Biol. 1999, 65, 715–724. [Google Scholar]
- Simmonds, R.E.; Foxwell, B.M. Signalling, Inflammation and Arthritis: NF-κB and Its Relevance to Arthritis and Inflammation. Rheumatology 2008, 47, 584–590. [Google Scholar] [CrossRef]
- Epinat, J.C.; Gilmore, T.D. Diverse Agents Act at Multiple Levels to Inhibit the Rel/NF-κB Signal Transduction Pathway. Oncogene 1999, 18, 6896–6909. [Google Scholar]
- Pasparakis, M.; Luedde, T.; Schmidt-Supprian, M. Dissection of the NF-κB Signalling Cascade in Transgenic and Knockout Mice. Cell Death Differ. 2006, 13, 861–872. [Google Scholar]
- Gerondakis, S.; Grumont, R.; Gugasyan, R.; Wong, L.; Isomura, I.; Ho, W.; Banerjee, A. Unravelling the Complexities of the NF-κB Signalling Pathway Using Mouse Knockout and Transgenic Models. Oncogene 2006, 25, 6781–6799. [Google Scholar]
- Tomita, T.; Takeuchi, E.; Tomita, N.; Morishita, R.; Kaneko, M.; Yamamoto, K.; Nakase, T.; Seki, H.; Kato, K.; Kaneda, Y.; et al. Suppressed Severity of Collagen-Induced Arthritis by in Vivo Transfection of Nuclear Factor κB Decoy Oligodeoxynucleotides as a Gene Therapy. Arthritis Rheum. 1999, 42, 2532–2542. [Google Scholar] [CrossRef]
- Ruocco, M.G.; Maeda, S.; Park, J.M.; Lawrence, T.; Hsu, L.C.; Cao, Y.; Schett, G.; Wagner, E.F.; Karin, M. IκB Kinase (IKK)β, but Not IKKα, Is a Critical Mediator of Osteoclast Survival and Is Required for Inflammation-Induced Bone Loss. J. Exp. Med. 2005, 201, 1677–1687. [Google Scholar] [CrossRef] [PubMed]
- Sehnert, B.; Burkhardt, H.; Dübel, S.; Voll, R.E. Cell-Type Targeted Nf-Kappab Inhibition for the Treatment of Inflammatory Diseases. Cells 2020, 9, 1627. [Google Scholar] [PubMed]
- Kohler, S.; Märschenz, S.; Grittner, U.; Alexander, T.; Hiepe, F.; Meisel, A. Bortezomib in Antibody-Mediated Autoimmune Diseases (TAVAB): Study Protocol for a Unicentric, Non-Randomised, Non-Placebo Controlled Trial. BMJ Open 2019, 9, e024523. [Google Scholar] [CrossRef] [PubMed]
- Alexander, T.; Sarfert, R.; Klotsche, J.; Kühl, A.A.; Rubbert-Roth, A.; Lorenz, H.M.; Rech, J.; Hoyer, B.F.; Cheng, Q.; Waka, A.; et al. The Proteasome Inhibitior Bortezomib Depletes Plasma Cells and Ameliorates Clinical Manifestations of Refractory Systemic Lupus Erythematosus. Ann. Rheum. Dis. 2015, 74, 1474–1478. [Google Scholar] [CrossRef]
- Amann, R.; Peskar, B.A. Anti-Inflammatory Effects of Aspirin and Sodium Salicylate. Eur. J. Pharmacol. 2002, 447, 1–9. [Google Scholar]
- Pierce, J.W.; Read, M.A.; Ding, H.; Luscinskas, F.W.; Collins, T. Salicylates Inhibit I Kappa B-Alpha Phosphorylation, Endothelial-Leukocyte Adhesion Molecule Expression, and Neutrophil Transmigration. J. Immunol. 1996, 156, 3961–3969. [Google Scholar] [CrossRef]
- Kavanaugh, A.; Wells, A.F. Benefits and Risks of Low-Dose Glucocorticoid Treatment in the Patient with Rheumatoid Arthritis. Rheumatology 2014, 53, 1742–1751. [Google Scholar]
- Bijlsma, J.W.J.; Buttgereit, F. Adverse Events of Glucocorticoids during Treatment of Rheumatoid Arthritis: Lessons from Cohort and Registry Studies. Rheumatology 2016, 55, ii3–ii5. [Google Scholar] [CrossRef]
- Di Paola, R.; Cuzzocrea, S. Predictivity and Sensitivity of Animal Models of Arthritis. Autoimmun. Rev. 2008, 8, 73–75. [Google Scholar] [CrossRef]
- Sakaguchi, N.; Takahashi, T.; Hata, H.; Nomura, T.; Tagami, T.; Yamazaki, S.; Sakihama, T.; Matsutani, T.; Negishi, I.; Nakatsuru, S.; et al. Altered Thymic T-Cell Selection Due to a Mutation of the ZAP-70 Gene Causes Autoimmune Arthritis in Mice. Nature 2003, 426, 454–460. [Google Scholar] [CrossRef]
- Keffer, J.; Probert, L.; Cazlaris, H.; Georgopoulos, S.; Kaslaris, E.; Kioussis, D.; Kollias, G. Transgenic Mice Expressing Human Tumour Necrosis Factor: A Predictive Genetic Model of Arthritis. EMBO J. 1991, 10, 4025–4031. [Google Scholar] [CrossRef] [PubMed]
- Boldizsar, F.; Kis-Toth, K.; Tarjanyi, O.; Olasz, K.; Hegyi, A.; Mikecz, K.; Glant, T.T. Impaired Activation-Induced Cell Death Promotes Spontaneous Arthritis in Antigen (Cartilage Proteoglycan)-Specific T Cell Receptor-Transgenic Mice. Arthritis Rheum. 2010, 62, 2984–2994. [Google Scholar] [CrossRef] [PubMed]
- Bárdos, T.; Zhang, J.; Mikecz, K.; David, C.S.; Glant, T.T. Mice Lacking Endogenous Major Histocompatibility Complex Class II Develop Arthritis Resembling Psoriatic Arthritis at an Advanced Age. Arthritis Rheum. 2002, 46, 2465–2475. [Google Scholar] [CrossRef] [PubMed]
- Trentham, D.E.; Townes, A.S.; Kang, A.H. Autoimmunity to type II collagen: An experimental model of arthritis. J. Exp. Med. 1977, 146, 857–868. [Google Scholar]
- Glant, T.T.; Radacs, M.; Nagyeri, G.; Olasz, K.; Laszlo, A.; Boldizsar, F.; Hegyi, A.; Finnegan, A.; Mikecz, K. Proteoglycan-Induced Arthritis and Recombinant Human Proteoglycan Aggrecan G1 Domain-Induced Arthritis in BALB/c Mice Resembling Two Subtypes of Rheumatoid Arthritis. Arthritis Rheum. 2011, 63, 1312–1321. [Google Scholar] [CrossRef]
- Kugyelka, R.; Kohl, Z.; Olasz, K.; Mikecz, K.; Rauch, T.A.; Glant, T.T.; Boldizsar, F. Enigma of IL-17 and Th17 Cells in Rheumatoid Arthritis and in Autoimmune Animal Models of Arthritis. Mediat. Inflamm. 2016, 2016, 6145810. [Google Scholar] [CrossRef]
- Terato, K.; Hasty, K.A.; Reife, R.A.; Cremer, M.A.; Kang, A.H.; Stuart, J.M. Induction of Arthritis with Monoclonal Antibodies to Collagen. J. Immunol. 1992, 148, 2103–2108. [Google Scholar] [CrossRef]
- Pearson, C.M. Development of Arthritis, Periarthritis and Periostitis in Rats given Adjuvants. Proc. Soc. Exp. Biol. Med. 1956, 91, 95–101. [Google Scholar] [CrossRef]
- Keystone, E.C.; Schorlemmer, H.U.; Pope, C.; Allison, A.C. Zymosan—Induced Arthritis. Arthritis Rheum. 1977, 20, 1396–1401. [Google Scholar] [CrossRef]
- Cromartie, W.J.; Craddock, J.G.; Schwab, J.H.; Anderle, S.K.; Yang, C.H. Arthritis in Rats after Systemic Injection of Streptococcal Cells or Cell Walls. J. Exp. Med. 1977, 146, 1585–1602. [Google Scholar] [CrossRef]
- Smolen, J.S.; Landewé, R.B.M.; Bergstra, S.A.; Kerschbaumer, A.; Sepriano, A.; Aletaha, D.; Caporali, R.; Edwards, C.J.; Hyrich, K.L.; Pope, J.E.; et al. EULAR Recommendations for the Management of Rheumatoid Arthritis with Synthetic and Biological Disease-Modifying Antirheumatic Drugs: 2022 Update. Ann. Rheum. Dis. 2023, 82, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Makarov, S.S. NF-κB in Rheumatoid Arthritis: A Pivotal Regulator of Inflammation, Hyperplasia, and Tissue Destruction. Arthritis Res. 2001, 3, 200. [Google Scholar] [PubMed]
- Ma, X.; Xu, S. TNF Inhibitor Therapy for Rheumatoid Arthritis. Biomed. Rep. 2013, 1, 177–184. [Google Scholar] [CrossRef]
- Mok, C.C. Rituximab for the Treatment of Rheumatoid Arthritis: An Update. Drug Des. Dev. Ther. 2013, 8, 87–100. [Google Scholar]
- Linsley, P.S.; Brady, W.; Urnes, M.; Grosmaire, L.S.; Damle, N.K.; Ledbetter, J.A. CTLA-4 Is a Second Receptor for the B Cell Activation Antigen B7. J. Exp. Med. 1991, 174, 561–569. [Google Scholar] [CrossRef]
- Yao, X.; Huang, J.; Zhong, H.; Shen, N.; Faggioni, R.; Fung, M.; Yao, Y. Targeting Interleukin-6 in Inflammatory Autoimmune Diseases and Cancers. Pharmacol. Ther. 2014, 141, 125–139. [Google Scholar] [CrossRef]
- Raimondo, M.G.; Biggioggero, M.; Crotti, C.; Becciolini, A.; Favalli, E.G. Profile of Sarilumab and Its Potential in the Treatment of Rheumatoid Arthritis. Drug Des. Dev. Ther. 2017, 11, 1593–1603. [Google Scholar]
- Emery, P.; Rondon, J.; Parrino, J.; Lin, Y.; Pena-Rossi, C.; Van Hoogstraten, H.; Graham, N.M.H.; Liu, N.; Paccaly, A.; Wu, R.; et al. Safety and Tolerability of Subcutaneous Sarilumab and Intravenous Tocilizumab in Patients with Rheumatoid Arthritis. Rheumatology 2019, 58, 849–858. [Google Scholar] [CrossRef]
- Harrington, R.; Al Nokhatha, S.A.; Conway, R. Jak Inhibitors in Rheumatoid Arthritis: An Evidence-Based Review on the Emerging Clinical Data. J. Inflamm. Res. 2020, 13, 519–531. [Google Scholar]
- Nagy, G.; Roodenrijs, N.M.T.; Welsing, P.M.J.; Kedves, M.; Hamar, A.; Van Der Goes, M.C.; Kent, A.; Bakkers, M.; Blaas, E.; Senolt, L.; et al. EULAR Definition of Difficult-To-Treat Rheumatoid Arthritis. Ann. Rheum. Dis. 2021, 80, 31–35. [Google Scholar] [CrossRef]
- Hofman, Z.L.M.; Roodenrijs, N.M.T.; Nikiphorou, E.; Kent, A.L.; Nagy, G.; Welsing, P.M.J.; van Laar, J.M. Difficult-to-Treat Rheumatoid Arthritis: What Have We Learned and What Do We Still Need to Learn? Rheumatology 2025, 64, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Ciechanover, A. The Ubiquitin-Proteasome Pathway: On Protein Death and Cell Life. EMBO J. 1998, 17, 7151–7160. [Google Scholar] [PubMed]
- Hattori, K.; Hatakeyama, S.; Shirane, M.; Matsumoto, M.; Nakayama, K.I. Molecular Dissection of the Interactions among IκBα, FWD1, and Skp1 Required for Ubiquitin-Mediated Proteolysis of IκBα. J. Biol. Chem. 1999, 274, 29641–29647. [Google Scholar] [CrossRef]
- Kubiczkova, L.; Pour, L.; Sedlarikova, L.; Hajek, R.; Sevcikova, S. Proteasome Inhibitors—Molecular Basis and Current Perspectives in Multiple Myeloma. J. Cell. Mol. Med. 2014, 18, 947–961. [Google Scholar] [CrossRef] [PubMed]
- Seufert, W.; Jentsch, S. In Vivo Function of the Proteasome in the Ubiquitin Pathway. EMBO J. 1992, 11, 3077–3080. [Google Scholar] [CrossRef] [PubMed]
- Rechsteiner, M.C. Ubiquitin-Mediated Proteolysis: An Ideal Pathway for Systems Biology Analysis. In Advances in Systems Biology; Advances in Experimental Medicine and Biology; Opresko, L.K., Gephart, J.M., Mann, M.B., Eds.; Springer: Boston, MA, USA, 2004; Volume 547. [Google Scholar] [CrossRef]
- Hershko, A.; Ciechanover, A. The Ubiquitin System for Protein Degradation. Annu. Rev. Biochem. 1992, 61, 761–807. [Google Scholar]
- Hershko, A.; Ciechanover, A. The Ubiquitin System. Annu. Rev. Biochem. 1998, 67, 425–479. [Google Scholar]
- Glickman, M.H.; Ciechanover, A. The Ubiquitin-Proteasome Proteolytic Pathway: Destruction for the Sake of Construction. Physiol. Rev. 2002, 82, 373–428. [Google Scholar]
- Haas, A.L.; Warms, J.V.; Hershko, A.; Rose, I.A. Ubiquitin-Activating Enzyme. Mechanism and Role in Protein-Ubiquitin Conjugation. J. Biol. Chem. 1982, 257, 2543–2548. [Google Scholar] [CrossRef]
- Liu, W.; Tang, X.; Qi, X.; Fu, X.; Ghimire, S.; Ma, R.; Li, S.; Zhang, N.; Si, H. The Ubiquitin Conjugating Enzyme: An Important Ubiquitin Transfer Platform in Ubiquitin-Proteasome System. Int. J. Mol. Sci. 2020, 21, 2894. [Google Scholar] [CrossRef]
- Buetow, L.; Huang, D.T. Structural Insights into the Catalysis and Regulation of E3 Ubiquitin Ligases. Nat. Rev. Mol. Cell Biol. 2016, 17, 626–642. [Google Scholar] [PubMed]
- Toma-Fukai, S.; Shimizu, T. Structural Diversity of Ubiquitin E3 Ligase. Molecules 2021, 26, 6682. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xiaodan, Y. Regulation of Apoptosis: The Ubiquitous Way. FASEB J. 2003, 17, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Wade, M.; Li, Y.C.; Wahl, G.M. MDM2, MDMX and P53 in Oncogenesis and Cancer Therapy. Nat. Rev. Cancer 2013, 13, 83–96. [Google Scholar]
- Yee-Lin, V.; Pooi-Fong, W.; Soo-Beng, A.K. Nutlin-3, A P53-Mdm2 Antagonist for Nasopharyngeal Carcinoma Treatment. Mini-Rev. Med. Chem. 2018, 18, 173–183. [Google Scholar] [CrossRef]
- Jaffry, U.; Wells, G. Small Molecule and Peptide Inhibitors of ΒTrCP and the ΒTrCP–NRF2 Protein–Protein Interaction. Biochem. Soc. Trans. 2023, 51, 925–936. [Google Scholar]
- Palombella, V.J.; Conner, E.M.; Fuseler, J.W.; Destree, A.; Davis, J.M.; Stephen Laroux, F.; Wolf, R.E.; Huang, J.; Brand, S.; Elliott, P.J.; et al. Role of the Proteasome and NF-κB in Streptococcal Cell Wall-Induced Polyarthritis. Proc. Natl. Acad. Sci. USA 1998, 95, 15671–15676. [Google Scholar] [CrossRef]
- Goldberg, A.L. Functions of the Proteasome: From Protein Degradation and Immune Surveillance to Cancer Therapy. Biochem. Soc. Trans. 2007, 35, 12–17. [Google Scholar]
- Reyes-Turcu, F.E.; Ventii, K.H.; Wilkinson, K.D. Regulation and Cellular Roles of Ubiquitin-Specific Deubiquitinating Enzymes. Annu. Rev. Biochem. 2009, 78, 363–397. [Google Scholar]
- Schmidt, C.; Berger, T.; Groettrup, M.; Basler, M. Immunoproteasome Inhibition Impairs T and B Cell Activation by Restraining ERK Signaling and Proteostasis. Front. Immunol. 2018, 9, 2386. [Google Scholar] [CrossRef]
- Basler, M.; Claus, M.; Klawitter, M.; Goebel, H.; Groettrup, M. Immunoproteasome Inhibition Selectively Kills Human CD14+ Monocytes and as a Result Dampens IL-23 Secretion. J. Immunol. 2019, 203, 1776–1785. [Google Scholar] [CrossRef]
- Kloetzel, P.M. The Proteasome and MHC Class I Antigen Processing. Biochim. Biophys. Acta Mol. Cell Res. 2004, 1695, 225–233. [Google Scholar] [PubMed]
- Griffin, T.A.; Nandi, D.; Cruz, M.; Fehling, H.J.; Van Kaer, L.; Monaco, J.J.; Colbert, R.A. Immunoproteasome Assembly: Cooperative Incorporation of Interferon γ (IFN-γ)-Inducible Subunits. J. Exp. Med. 1998, 187, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Verbrugge, S.E.; Assaraf, Y.G.; Dijkmans, B.A.C.; Scheffer, G.L.; Al, M.; den Uyl, D.; Oerlemans, R.; Chan, E.T.; Kirk, C.J.; Peters, G.J.; et al. Inactivating PSMB5 Mutations and P-Glycoprotein (Multidrug Resistance-Associated Protein/ATP-Binding Cassette B1) Mediate Resistance to Proteasome Inhibitors: Ex Vivo Efficacy of (Immuno)Proteasome Inhibitors in Mononuclear Blood Cells from Patients with. J. Pharmacol. Exp. Ther. 2012, 341, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Huber, E.; Basler, M.; Schwab, R.; Heinemeyer, W.; Kirk, C.; Groettrup, M.; Groll, M. Constitutive and Immunoproteasome Crystal Structures Reveal Differences in Substrate and Inhibitor Specificity. Mol. Immunol. 2012, 51, 18–19. [Google Scholar] [CrossRef]
- Verbrugge, S.E.; Emal, D.; Al, M.; Lougheed, S.; Chan, E.; Kirk, C.; Dijkmans, B.; Scheper, R.; de Gruijl, T. Targeting the Immunoproteasome with the Second Generation Proteasome Inhibitor ONX 0914: Effects on IFN-Alpha-Induced Monocyte-Derived Dendritic Cells (119.4). J. Immunol. 2012, 188, 119.4. [Google Scholar] [CrossRef]
- Scheffler, S.; Kuckelkorn, U.; Egerer, K.; Dörner, T.; Reiter, K.; Soza, A.; Burmester, G.R.; Feist, E. Autoimmune Reactivity against the 20S-Proteasome Includes Immunosubunits LMP2 (Β1i), MECL1 (Β2i) and LMP7 (Β5i). Rheumatology 2008, 47, 622–626. [Google Scholar] [CrossRef]
- Egerer, T.; Martinez-Gamboa, L.; Dankof, A.; Stuhlmüller, B.; Dörner, T.; Krenn, V.; Egerer, K.; Rudolph, P.E.; Burmester, G.R.; Feist, E. Tissue-Specific up-Regulation of the Proteasome Subunit Β5i (LMP7) in Sjögren’s Syndrome. Arthritis Rheum. 2006, 54, 1501–1508. [Google Scholar] [CrossRef]
- Vigneron, N.; Ferrari, V.; Stroobant, V.; Habib, J.A.; Van Den Eynde, B.J. Peptide Splicing by the Proteasome. J. Biol. Chem. 2017, 292, 21170–21179. [Google Scholar]
- Tomaru, U.; Ishizu, A.; Murata, S.; Miyatake, Y.; Suzuki, S.; Takahashi, S.; Kazamaki, T.; Ohara, J.; Baba, T.; Iwasaki, S.; et al. Exclusive Expression of Proteasome Subunit Β5t in the Human Thymic Cortex. Blood 2009, 113, 5186–5191. [Google Scholar] [CrossRef]
- Basler, M.; Youhnovski, N.; van den Broek, M.; Przybylski, M.; Groettrup, M. Immunoproteasomes Down-Regulate Presentation of a Subdominant T Cell Epitope from Lymphocytic Choriomeningitis Virus. J. Immunol. 2004, 173, 3925–3934. [Google Scholar] [CrossRef] [PubMed]
- Basler, M.; Groettrup, M. No Essential Role for Tripeptidyl Peptidase II for the Processing of LCMV-Derived T Cell Epitopes. Eur. J. Immunol. 2007, 37, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Hatakeyama, S.; Kitagawa, M.; Nakayama, K.; Shirane, M.; Matsumoto, M.; Hattori, K.; Higashi, H.; Nakano, H.; Okumura, K.; Onoé, K.; et al. Ubiquitin-Dependent Degradation of IκBα Is Mediated by a Ubiquitin Ligase Skp1/Cul 1/F-Box Protein FWD1. Proc. Natl. Acad. Sci. USA 1999, 96, 3859–3863. [Google Scholar] [CrossRef] [PubMed]
- Petroski, M.D. The Ubiquitin System, Disease, and Drug Discovery. BMC Biochem. 2008, 9, S7. [Google Scholar] [CrossRef]
- Ciechanover, A.; Brundin, P. The Ubiquitin Proteasome System in Neurodegenerative Diseases: Sometimes the Chicken, Sometimes the Egg. Neuron 2003, 40, 427–446. [Google Scholar] [CrossRef]
- Mohty, M.; Brissot, E.; Savani, B.N.; Gaugler, B. Effects of Bortezomib on the Immune System: A Focus on Immune Regulation. Biol. Blood Marrow Transplant. 2013, 19, 1416–1420. [Google Scholar] [CrossRef]
- Wu, J. On the Role of Proteasomes in Cell Biology and Proteasome Inhibition as a Novel Frontier in the Development of Immunosuppressants. Am. J. Transplant. 2002, 2, 904–912. [Google Scholar] [CrossRef]
- Ōmura, S.; Fujimoto, T.; Otoguro, K.; Matsuzaki, K.; Moriguchi, R.; Tanaka, H.; Sasaki, Y. Lactacystin, a Novel Microbial Metabolite, Induces Neurito-Genesis of Neuroblastoma Cells. J. Antibiot. 1991, 44, 113–116. [Google Scholar] [CrossRef]
- Fenteany, G.; Standaert, R.F.; Lane, W.S.; Choi, S.; Corey, E.J.; Schreiber, S.L. Inhibition of Proteasome Activities and Subunit-Specific Amino-Terminal Threonine Modification by Lactacystin. Science 1995, 268, 726–731. [Google Scholar] [CrossRef]
- Dick, L.R.; Cruikshank, A.A.; Grenier, L.; Melandri, F.D.; Nunes, S.L.; Stein, R.L. Mechanistic Studies on the Inactivation of the Proteasome by Lactacystin: A Central Role for Closto-Lactacystin β-Lactone. J. Biol. Chem. 1996, 271, 7273–7276. [Google Scholar] [CrossRef]
- Corey, E.J.; Li, W.D.Z. Total Synthesis and Biological Activity of Lactacystin, Omuralide and Analogs. Chem. Pharm. Bull. 1999, 47, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kisselev, A.F.; Goldberg, A.L. Proteasome Inhibitors: From Research Tools to Drug Candidates. Chem. Biol. 2001, 8, 739–758. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Goldberg, A.L. Selective Inhibitors of the Proteasome-Dependent and Vacuolar Pathways of Protein Degradation in Saccharomyces Cerevisiae. J. Biol. Chem. 1996, 271, 27280–27284. [Google Scholar] [CrossRef] [PubMed]
- Kane, R.C.; Bross, P.F.; Farrell, A.T.; Pazdur, R. Velcade®: U.S. FDA Approval for the Treatment of Multiple Myeloma Progressing on Prior Therapy. Oncologist 2003, 8, 508–513. [Google Scholar] [CrossRef]
- Adams, J.; Kauffman, M. Development of the Proteasome Inhibitor VelcadeTM (Bortezomib). Cancer Investig. 2004, 22, 304–311. [Google Scholar] [CrossRef]
- Meister, S.; Schubert, U.; Neubert, K.; Herrmann, K.; Burger, R.; Gramatzki, M.; Hahn, S.; Schreiber, S.; Wilhelm, S.; Herrmann, M.; et al. Extensive Immunoglobulin Production Sensitizes Myeloma Cells for Proteasome Inhibition. Cancer Res. 2007, 67, 1783–1792. [Google Scholar] [CrossRef]
- McConkey, D.J.; Zhu, K. Mechanisms of Proteasome Inhibitor Action and Resistance in Cancer. Drug Resist. Updates 2008, 11, 164–179. [Google Scholar] [CrossRef]
- Palombella, V.J.; Rando, O.J.; Goldberg, A.L.; Maniatis, T. The Ubiquitinproteasome Pathway Is Required for Processing the NF-κB1 Precursor Protein and the Activation of NF-κB. Cell 1994, 78, 773–785. [Google Scholar] [CrossRef]
- Qureshi, N.; Perera, P.-Y.; Shen, J.; Zhang, G.; Lenschat, A.; Splitter, G.; Morrison, D.C.; Vogel, S.N. The Proteasome as a Lipopolysaccharide-Binding Protein in Macrophages: Differential Effects of Proteasome Inhibition on Lipopolysaccharide-Induced Signaling Events. J. Immunol. 2003, 171, 1515–1525. [Google Scholar] [CrossRef]
- Shirley, M. Ixazomib: First Global Approval. Drugs 2016, 76, 405–411. [Google Scholar] [CrossRef]
- Teicher, B.A.; Tomaszewski, J.E. Competitive Landscape Report. Biochem. Pharmacol. 2015, 96, 1–9. [Google Scholar] [PubMed]
- Moore, B.S.; Eustáquio, A.S.; McGlinchey, R.P. Advances in and Applications of Proteasome Inhibitors. Curr. Opin. Chem. Biol. 2008, 12, 434–440. [Google Scholar]
- Chaudhari, S.; Hui, J.; Zou, S.; Huang, L.; Ma, R. Promoting Ubiquitination-mediated Degradation of Orai1 Protein by High Glucose in Glomerular Mesangial Cells. FASEB J. 2018, 32, 620.4. [Google Scholar] [CrossRef]
- Goldberg, A.L.; Akopian, T.N.; Kisselev, A.F.; Lee, D.H.; Rohrwild, M. New Insights into the Mechanisms and Importance of the Proteasome in Intracellular Protein Degradation. Biol. Chem. 1997, 378, 131–140. [Google Scholar] [PubMed]
- Zhang, N.; Ahsan, M.H.; Purchio, A.F.; West, D.B. Serum Amyloid A-Luciferase Transgenic Mice: Response to Sepsis, Acute Arthritis, and Contact Hypersensitivity and the Effects of Proteasome Inhibition. J. Immunol. 2005, 174, 8125–8134. [Google Scholar] [CrossRef]
- Lee, S.-W.; Kim, J.-H.; Park, Y.-B.; Lee, S.-K. Bortezomib Attenuates Murine Collagen-Induced Arthritis. Ann. Rheum. Dis. 2009, 68, 1761–1767. [Google Scholar] [CrossRef]
- van der Heijden, J.W.; Oerlemans, R.; Lems, W.F.; Scheper, R.J.; Dijkmans, B.A.C.; Jansen, G. The Proteasome Inhibitor Bortezomib Inhibits the Release of NFkappaB-Inducible Cytokines and Induces Apoptosis of Activated T Cells from Rheumatoid Arthritis Patients. Clin. Exp. Rheumatol. 2009, 27, 92–98. [Google Scholar]
- Yannaki, E.; Papadopoulou, A.; Athanasiou, E.; Kaloyannidis, P.; Paraskeva, A.; Bougiouklis, D.; Palladas, P.; Yiangou, M.; Anagnostopoulos, A. The Proteasome Inhibitor Bortezomib Drastically Affects Inflammation and Bone Disease in Adjuvant-Induced Arthritis in Rats. Arthritis Rheum. 2010, 62, 3277–3288. [Google Scholar] [CrossRef]
- Polzer, K.; Neubert, K.; Meister, S.; Frey, B.; Baum, W.; Distler, J.H.; Gückel, E.; Schett, G.; Voll, R.E.; Zwerina, J. Proteasome Inhibition Aggravates Tumor Necrosis Factor-Mediated Bone Resorption in a Mouse Model of Inflammatory Arthritis. Arthritis Rheum. 2011, 63, 670–680. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Chen, M.; Kuang, L. Bortezomib Followed by Autologous Stem Cell Transplantation in a Patient with Rheumatoid Arthritis: A Case Report and Review of the Literature. Medicine 2016, 95, e5760. [Google Scholar] [CrossRef]
- Lassoued, S.; Moyano, C.; Beldjerd, M.; Pauly, P.; Lassoued, D.; Billey, T. Bortezomib Improved the Joint Manifestations of Rheumatoid Arthritis in Three Patients. Jt. Bone Spine 2019, 86, 381–382. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, L.; Hong, X.; Liu, D.; Cheng, Z. Delanzomib, a Novel Proteasome Inhibitor, Combined with Adalimumab Drastically Ameliorates Collagen-Induced Arthritis in Rats by Improving and Prolonging the Anti-TNF-α Effect of Adalimumab. Front. Pharmacol. 2021, 12, 782385. [Google Scholar] [CrossRef]
- Miagkov, A.V.; Kovalenko, D.V.; Bnown, C.E.; Didsbury, J.R.; Cogswell, J.P.; Stimpson, S.A.; Baldwin, A.S.; Makarov, S.S. NF-κB Activation Provides the Potential Link between Inflammation and Hyperplasia in the Arthritic Joint. Proc. Natl. Acad. Sci. USA 1998, 95, 13859–13864. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.S.; Li, J.; Ahmed, M.; Hua, L.; Yakovleva, T.; Ossipov, M.H.; Bakalkin, G.; Stark, A. Attenuation of Pain and Inflammation in Adjuvant-Induced Arthritis by the Proteasome Inhibitor MG132. Arthritis Rheum. 2010, 62, 2160–2169. [Google Scholar] [CrossRef]
- Jones, B.A.; Riegsecker, S.; Rahman, A.; Beamer, M.; Aboualaiwi, W.; Khuder, S.A.; Ahmed, S. Role of ADAM-17, P38 MAPK, Cathepsins, and the Proteasome Pathway in the Synthesis and Shedding of Fractalkine/CX3CL1 in Rheumatoid Arthritis. Arthritis Rheum. 2013, 65, 2814–2825. [Google Scholar] [CrossRef]
- Ahmed, A.S.; Ahmed, M.; Li, J.; Gu, H.F.; Bakalkin, G.; Stark, A.; Harris, H.E. Proteasome Inhibitor MG132 Modulates Inflammatory Pain by Central Mechanisms in Adjuvant Arthritis. Int. J. Rheum. Dis. 2017, 20, 25–32. [Google Scholar] [CrossRef]
- Muchamuel, T.; Basler, M.; Aujay, M.A.; Suzuki, E.; Kalim, K.W.; Lauer, C.; Sylvain, C.; Ring, E.R.; Shields, J.; Jiang, J.; et al. A Selective Inhibitor of the Immunoproteasome Subunit LMP7 Blocks Cytokine Production and Attenuates Progression of Experimental Arthritis. Nat. Med. 2009, 15, 781–787. [Google Scholar] [CrossRef]
- Liu, Q.; Shen, J.; Wang, J.; Xia, J.; Yin, J.; Cheng, G.; Qian, X.; Jiang, Y.; Ge, X.; Wang, Q. PR-957 Retards Rheumatoid Arthritis Progression and Inflammation by Inhibiting LMP7-Mediated CD4+ T Cell Imbalance. Int. Immunopharmacol. 2023, 124, 110860. [Google Scholar] [CrossRef]
- Fierabracci, A. Proteasome Inhibitors: A New Perspective for Treating Autoimmune Diseases. Curr. Drug Targets 2012, 13, 1665–1675. [Google Scholar] [CrossRef]
- Meng, L.; Mohan, R.; Kwok, B.H.B.; Elofsson, M.; Sin, N.; Crews, C.M. Epoxomicin, a Potent and Selective Proteasome Inhibitor, Exhibits in Vivo Antiinflammatory Activity. Proc. Natl. Acad. Sci. USA 1999, 96, 10403–10408. [Google Scholar] [CrossRef]
- Kisselev, A.F. Site-Specific Proteasome Inhibitors. Biomolecules 2022, 12, 54. [Google Scholar]
- Garrett, I.R.; Chen, D.; Gutierrez, G.; Zhao, M.; Escobedo, A.; Rossini, G.; Harris, S.E.; Gallwitz, W.; Kim, K.B.; Hu, S.; et al. Selective Inhibitors of the Osteoblast Proteasome Stimulate Bone Formation in Vivo and in Vitro. J. Clin. Investig. 2003, 111, 1771–1782. [Google Scholar] [CrossRef]
- Steele, J.M. Carfilzomib: A New Proteasome Inhibitor for Relapsed or Refractory Multiple Myeloma. J. Oncol. Pharm. Pract. 2013, 19, 348–354. [Google Scholar] [PubMed]
- Chauhan, D.; Catley, L.; Li, G.; Podar, K.; Hideshima, T.; Velankar, M.; Mitsiades, C.; Mitsiades, N.; Yasui, H.; Letai, A.; et al. A Novel Orally Active Proteasome Inhibitor Induces Apoptosis in Multiple Myeloma Cells with Mechanisms Distinct from Bortezomib. Cancer Cell 2005, 8, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, D.J.; Chen, Q.; Voorhees, P.M.; Strader, J.S.; Shenk, K.D.; Sun, C.M.; Demo, S.D.; Bennett, M.K.; Van Leeuwen, F.W.B.; Chanan-Khan, A.A.; et al. Potent Activity of Carfilzomib, a Novel, Irreversible Inhibitor of the Ubiquitin-Proteasome Pathway, against Preclinical Models of Multiple Myeloma. Blood 2007, 110, 3281–3290. [Google Scholar] [CrossRef]
- Bross, P.F.; Kane, R.; Farrell, A.T.; Abraham, S.; Benson, K.; Brower, M.E.; Bradley, S.; Gobburu, J.V.; Goheer, A.; Lee, S.L.; et al. Approval Summary for Bortezomib for Injection in the Treatment of Multiple Myeloma. Clin. Cancer Res. 2004, 10, 3954–3964. [Google Scholar] [CrossRef]
- Muchamuel, T.; Kapur, S.; Kirk, C.J.; Jiang, J.; Lee, S.; Bennett, M.K.; Lewis, E.; Yang, J.; Jumaa, M.; Ring, E.; et al. Dose Intensive Administration of PR-047, a Novel Orally Bioavailable Inhibitor of the 20S Proteasome, Is Well Tolerated in Experimental Animals. Blood 2009, 114, 4910. [Google Scholar] [CrossRef]
- Jones, B.; Koch, A.E.; Ahmed, S. Pathological Role of Fractalkine/CX3CL1 in Rheumatic Diseases: A Unique Chemokine with Multiple Functions. Front. Immunol. 2012, 2, 1764. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarjányi, O.; Olasz, K.; Rátky, F.; Sétáló, G.; Boldizsár, F. Proteasome Inhibitors: Potential in Rheumatoid Arthritis Therapy? Int. J. Mol. Sci. 2025, 26, 2943. https://doi.org/10.3390/ijms26072943
Tarjányi O, Olasz K, Rátky F, Sétáló G, Boldizsár F. Proteasome Inhibitors: Potential in Rheumatoid Arthritis Therapy? International Journal of Molecular Sciences. 2025; 26(7):2943. https://doi.org/10.3390/ijms26072943
Chicago/Turabian StyleTarjányi, Oktávia, Katalin Olasz, Fanni Rátky, György Sétáló, and Ferenc Boldizsár. 2025. "Proteasome Inhibitors: Potential in Rheumatoid Arthritis Therapy?" International Journal of Molecular Sciences 26, no. 7: 2943. https://doi.org/10.3390/ijms26072943
APA StyleTarjányi, O., Olasz, K., Rátky, F., Sétáló, G., & Boldizsár, F. (2025). Proteasome Inhibitors: Potential in Rheumatoid Arthritis Therapy? International Journal of Molecular Sciences, 26(7), 2943. https://doi.org/10.3390/ijms26072943