Menthol in Livestock: Unveiling Its Multifaceted Properties and Future Potential for Sustainable Agriculture
Abstract
1. Introduction
2. Physical, Chemical, and Biological Properties of Menthol
3. Impact of Menthol and Menthol-Rich Supplements on Feed Intake, Growth Performance, and Animal Production
3.1. Feed Intake and Feeding Behavior
3.2. Growth Performance and Animal Production
4. Anti-Inflammation, Immune System Modulation, and Anti-Oxidation Properties of Menthol
4.1. Anti-Inflammation
4.2. Immune System Modulation
4.3. Anti-Oxidation
5. Antimicrobial and Pesticidal Action of Menthol
5.1. Antimicrobial Activity Against Skin Mucosal, Topical, and Environmental Pathogens
5.2. Bactericidal Activity Against Gut Pathogens
5.3. Pesticidal Activity
6. Impact of Menthol on Digestive Tract Microbial Ecosystem and Function
6.1. Impact on Rumen Microbial Ecosystem and Function
6.1.1. Digestibility in Ruminants
6.1.2. Modulation of Rumen Microbiota
6.1.3. Ruminal pH Modulation
6.1.4. Methane Production and Acetate to Propionate (a/p) Ratio
6.1.5. Ammonia Production
6.2. Impact on Gut Microbial Ecosystem and Function in Poultry
6.2.1. Digestibility in Poultry
6.2.2. Modulation of Gut Microbiota in Poultry
7. Impact of Menthol on Metabolism
7.1. Serum Urea
7.2. Serum Protein and Amino Acids
7.3. Serum Glucose
7.4. Serum Triglycerides and Cholesterol
7.5. Serum Calcium
8. Current Gaps and Future Directions
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kamatou, G.P.P.; Vermaak, I.; Viljoen, A.M.; Lawrence, B.M. Menthol: A Simple Monoterpene with Remarkable Biological Properties. Phytochemistry 2013, 96, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Gholamipourfard, K.; Salehi, M.; Banchio, E. Mentha piperita Phytochemicals in Agriculture, Food Industry and Medicine: Features and Applications. S. Afr. J. Bot. 2021, 141, 183–195. [Google Scholar] [CrossRef]
- Dylong, D.; Hausoul, P.J.C.; Palkovits, R.; Eisenacher, M. Synthesis of (−)-menthol: Industrial Synthesis Routes and Recent Development. Flavour. Fragr. J. 2022, 37, 195–209. [Google Scholar] [CrossRef]
- Kotan, R.; Kordali, S.; Cakir, A. Screening of Antibacterial Activities of Twenty-One Oxygenated Monoterpenes. Z. Naturforschung C 2007, 62, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Shushni, M.A.M.; Belkheir, A. Antibacterial and Antioxidant Activities of Mentha piperita L. Arab. J. Chem. 2015, 8, 322–328. [Google Scholar] [CrossRef]
- Azmi, N.A.N.; Elgharbawy, A.; Salleh, H.M.; Hayyan, A. Evaluation of the Antimicrobial Performance of Menthol and Menthol-Based Deep Eutectic Solvents as Potential Future Antibiotic. E3S Web Conf. 2021, 287, 02010. [Google Scholar] [CrossRef]
- Pergolizzi, J.V.; Taylor, R.; LeQuang, J.-A.; Raffa, R.B. The Role and Mechanism of Action of Menthol in Topical Analgesic Products. J. Clin. Pharm. Ther. 2018, 43, 313–319. [Google Scholar] [CrossRef]
- Cheng, H.; An, X. Cold Stimuli, Hot Topic: An Updated Review on the Biological Activity of Menthol in Relation to Inflammation. Front. Immunol. 2022, 13, 1023746. [Google Scholar] [CrossRef]
- Rozza, A.L.; Beserra, F.P.; Vieira, A.J.; Oliveira de Souza, E.; Hussni, C.A.; Martinez, E.R.M.; Nóbrega, R.H.; Pellizzon, C.H. The Use of Menthol in Skin Wound Healing—Anti-Inflammatory Potential, Antioxidant Defense System Stimulation and Increased Epithelialization. Pharmaceutics 2021, 13, 1902. [Google Scholar] [CrossRef]
- Rozza, A.L.; Meira de Faria, F.; Souza Brito, A.R.; Pellizzon, C.H. The Gastroprotective Effect of Menthol: Involvement of Anti-Apoptotic, Antioxidant and Anti-Inflammatory Activities. PLoS ONE 2014, 9, e86686. [Google Scholar] [CrossRef]
- Liu, Z.; Shen, C.; Tao, Y.; Wang, S.; Wei, Z.; Cao, Y.; Wu, H.; Fan, F.; Lin, C.; Shan, Y.; et al. Chemopreventive Efficacy of Menthol on Carcinogen-Induced Cutaneous Carcinoma through Inhibition of Inflammation and Oxidative Stress in Mice. Food Chem. Toxicol. 2015, 82, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi-Pirbaluti, M.; Motaghi, E.; Bozorgi, H. The Effect of Menthol on Acute Experimental Colitis in Rats. Eur. J. Pharmacol. 2017, 805, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Willis, D.N.; Liu, B.; Ha, M.A.; Jordt, S.-E.; Morris, J.B. Menthol Attenuates Respiratory Irritation Responses to Multiple Cigarette Smoke Irritants. FASEB J. 2011, 25, 4434–4444. [Google Scholar] [CrossRef]
- Lee, V.; Linden, R. An Olfactory-submandibular Salivary Reflex in Humans. Exp. Physiol. 1992, 77, 221–224. [Google Scholar] [CrossRef]
- Haahr, A.; Bardow, A.; Thomsen, C.; Jensen, S.; Nauntofte, B.; Bakke, M.; Adlernissen, J.; Bredie, W. Release of Peppermint Flavour Compounds from Chewing Gum: Effect of Oral Functions. Physiol. Behav. 2004, 82, 531–540. [Google Scholar] [CrossRef]
- Davies, G.A.; Wantling, E.; Stokes, J.R. The Influence of Beverages on the Stimulation and Viscoelasticity of Saliva: Relationship to Mouthfeel? Food Hydrocoll. 2009, 23, 2261–2269. [Google Scholar] [CrossRef]
- Hutchings, S.C.; Horner, K.M.; Dible, V.A.; Grigor, J.M.V.; O’Riordan, D. Modification of Aftertaste with a Menthol Mouthwash Reduces Food Wanting, Liking, and Ad Libitum Intake of Potato Crisps. Appetite 2017, 108, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Sneeringer, S. Restrictions on Antibiotic Use for Production Purposes in U.S. In Livestock Industries Likely To Have Small Effects on Prices and Quantities; Economic Research Service: Washington, DC, USA, 2016. Available online: https://www.ers.usda.gov/data-products/charts-of-note/chart-detail?chartId=78736#:~:text=Modelling%20the%20effect%20of%20production,of%20less%20than%200.5%20percent (accessed on 5 March 2025).
- He, Y.; Yuan, Q.; Mathieu, J.; Stadler, L.; Senehi, N.; Sun, R.; Alvarez, P.J.J. Antibiotic Resistance Genes from Livestock Waste: Occurrence, Dissemination, and Treatment. NPJ Clean. Water 2020, 3, 4. [Google Scholar] [CrossRef]
- Tseten, T.; Sanjorjo, R.A.; Kwon, M.; Kim, S.-W. Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals. J. Microbiol. Biotechnol. 2022, 32, 269–277. [Google Scholar] [CrossRef]
- Balasubramanian, B.; Liu, W.-C. Editorial: Gut Microbiota: Allied with Livestock Nutrition, Health, and Welfare. Front. Vet. Sci. 2024, 11, 1413671. [Google Scholar] [CrossRef]
- Wasti, S.; Sah, N.; Mishra, B. Impact of Heat Stress on Poultry Health and Performances, and Potential Mitigation Strategies. Animals 2020, 10, 1266. [Google Scholar] [CrossRef] [PubMed]
- Thornton, P.; Nelson, G.; Mayberry, D.; Herrero, M. Impacts of Heat Stress on Global Cattle Production during the 21st Century: A Modelling Study. Lancet Planet. Health 2022, 6, e192–e201. [Google Scholar] [CrossRef]
- Abdelli, N.; Solà-Oriol, D.; Pérez, J.F. Phytogenic Feed Additives in Poultry: Achievements, Prospective and Challenges. Animals 2021, 11, 3471. [Google Scholar] [CrossRef] [PubMed]
- Wells, C.W. Effects of Essential Oils on Economically Important Characteristics of Ruminant Species: A Comprehensive Review. Anim. Nutr. 2024, 16, 1–10. [Google Scholar] [CrossRef]
- Wang, J.; Deng, L.; Chen, M.; Che, Y.; Li, L.; Zhu, L.; Chen, G.; Feng, T. Phytogenic Feed Additives as Natural Antibiotic Alternatives in Animal Health and Production: A Review of the Literature of the Last Decade. Anim. Nutr. 2024, 17, 244–264. [Google Scholar] [CrossRef]
- Tchimene, M.K.; Okunji, C.O.; Iwu, M.M.; Kuete, V. Monoterpenes and Related Compounds from the Medicinal Plants of Africa. In Medicinal Plant Research in Africa; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–32. [Google Scholar]
- FDA. Substances Added to Food (Formerly EAFUS); Food and Drug Administration: Silver Spring, MD, USA, 2018. Available online: https://www.hfpappexternal.fda.gov/scripts/fdcc/index.cfm?set=FoodSubstances&id=MENTHOL&sort=Sortterm_ID&order=ASC&startrow=1&type=basic&search=menthol (accessed on 5 March 2025).
- Silva, H. Current Knowledge on the Vascular Effects of Menthol. Front. Physiol. 2020, 11, 298. [Google Scholar] [CrossRef] [PubMed]
- Limpanuparb, T.; Lorpaiboon, W.; Chinsukserm, K. An in Silico Investigation of Menthol Metabolism. PLoS ONE 2019, 14, e0216577. [Google Scholar] [CrossRef]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of Antibacterial Action of Three Monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Tan, B.; Liu, Y.; Dunn, J.; Martorell Guerola, P.; Tortajada, M.; Cao, Z.; Ji, P. Chemical Composition and Antioxidant Properties of Essential Oils from Peppermint, Native Spearmint and Scotch Spearmint. Molecules 2019, 24, 2825. [Google Scholar] [CrossRef]
- Bautista, D.M.; Siemens, J.; Glazer, J.M.; Tsuruda, P.R.; Basbaum, A.I.; Stucky, C.L.; Jordt, S.-E.; Julius, D. The Menthol Receptor TRPM8 Is the Principal Detector of Environmental Cold. Nature 2007, 448, 204–208. [Google Scholar] [CrossRef]
- Xing, H.; Ling, J.X.; Chen, M.; Johnson, R.D.; Tominaga, M.; Wang, C.-Y.; Gu, J. TRPM8 Mechanism of Autonomic Nerve Response to Cold in Respiratory Airway. Mol. Pain 2008, 4, 22. [Google Scholar] [CrossRef]
- Nealen, M.L.; Gold, M.S.; Thut, P.D.; Caterina, M.J. TRPM8 MRNA Is Expressed in a Subset of Cold-Responsive Trigeminal Neurons From Rat. J. Neurophysiol. 2003, 90, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Abe, J.; Hosokawa, H.; Okazawa, M.; Kandachi, M.; Sawada, Y.; Yamanaka, K.; Matsumura, K.; Kobayashi, S. TRPM8 Protein Localization in Trigeminal Ganglion and Taste Papillae. Mol. Brain Res. 2005, 136, 91–98. [Google Scholar] [CrossRef]
- Liu, B.; Fan, L.; Balakrishna, S.; Sui, A.; Morris, J.B.; Jordt, S.-E. TRPM8 Is the Principal Mediator of Menthol-Induced Analgesia of Acute and Inflammatory Pain. Pain 2013, 154, 2169–2177. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, H.; Wang, Y.; Li, Y.; Li, Q.; Zhang, L. The Distinctive Role of Menthol in Pain and Analgesia: Mechanisms, Practices, and Advances. Front. Mol. Neurosci. 2022, 15, 1006908. [Google Scholar] [CrossRef] [PubMed]
- Behrendt, H.; Germann, T.; Gillen, C.; Hatt, H.; Jostock, R. Characterization of the Mouse Cold—Menthol Receptor TRPM8 and Vanilloid Receptor Type—1 VR1 Using a Fluorometric Imaging Plate Reader (FLIPR) Assay. Br. J. Pharmacol. 2004, 141, 737–745. [Google Scholar] [CrossRef]
- Nazıroğlu, M.; Blum, W.; Jósvay, K.; Çiğ, B.; Henzi, T.; Oláh, Z.; Vizler, C.; Schwaller, B.; Pecze, L. Menthol Evokes Ca2+ Signals and Induces Oxidative Stress Independently of the Presence of TRPM8 (Menthol) Receptor in Cancer Cells. Redox Biol. 2018, 14, 439–449. [Google Scholar] [CrossRef]
- Takaishi, M.; Uchida, K.; Suzuki, Y.; Matsui, H.; Shimada, T.; Fujita, F.; Tominaga, M. Reciprocal Effects of Capsaicin and Menthol on Thermosensation through Regulated Activities of TRPV1 and TRPM8. J. Physiol. Sci. 2016, 66, 143–155. [Google Scholar] [CrossRef]
- Nguyen, T.H.D.; Itoh, S.G.; Okumura, H.; Tominaga, M. Structural Basis for Promiscuous Action of Monoterpenes on TRP Channels. Commun. Biol. 2021, 4, 293. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, X.; Zhang, L.; Mao, A.; Ma, X.; He, D. Menthol Relieves Acid Reflux Inflammation by Regulating TRPV1 in Esophageal Epithelial Cells. Biochem. Biophys. Res. Commun. 2020, 525, 113–120. [Google Scholar] [CrossRef]
- Rosenbaum, T.; Morales-Lázaro, S.L.; Islas, L.D. TRP Channels: A Journey towards a Molecular Understanding of Pain. Nat. Rev. Neurosci. 2022, 23, 596–610. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Park, C.-G.; Zhang, F.; Fedor, J.G.; Feng, S.; Suo, Y.; Im, W.; Lee, S.-Y. Mechanisms of Sensory Adaptation and Inhibition of the Cold and Menthol Receptor TRPM8. Sci. Adv. 2024, 10, eadp2211. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Lopez, E.; Rivera-Chacon, R.; Ricci, S.; Petri, R.M.; Reisinger, N.; Zebeli, Q. Short-Term Screening of Multiple Phytogenic Compounds for Their Potential to Modulate Chewing Behavior, Ruminal Fermentation Profile, and PH in Cattle Fed Grain-Rich Diets. J. Dairy Sci. 2021, 104, 4271–4289. [Google Scholar] [CrossRef] [PubMed]
- Ricci, S.; Rivera-Chacon, R.; Petri, R.M.; Sener-Aydemir, A.; Sharma, S.; Reisinger, N.; Zebeli, Q.; Castillo-Lopez, E. Supplementation With Phytogenic Compounds Modulates Salivation and Salivary Physico-Chemical Composition in Cattle Fed a High-Concentrate Diet. Front. Physiol. 2021, 12, 645529. [Google Scholar] [CrossRef]
- Kholif, A.E.; Hassan, A.A.; El Ashry, G.M.; Bakr, M.H.; El-Zaiat, H.M.; Olafadehan, O.A.; Matloup, O.H.; Sallam, S.M.A. Phytogenic Feed Additives Mixture Enhances the Lactational Performance, Feed Utilization and Ruminal Fermentation of Friesian Cows. Anim. Biotechnol. 2021, 32, 708–718. [Google Scholar] [CrossRef]
- Reza-Yazdi, K.; Fallah, M.; Khodaparast, M.; Kateb, F.; Hosseini-Ghaffari, M. Effects of Specific Essential Oil Compounds on, Feed Intake, Milk Production, and Ruminal Environment in Dairy Cows during Heat Exposure. Int. J. Biol. Vet. Agric. Food Eng. 2014, 8, 1242–1245. [Google Scholar]
- Braun, H.-S.; Schrapers, K.T.; Mahlkow-Nerge, K.; Stumpff, F.; Rosendahl, J. Dietary Supplementation of Essential Oils in Dairy Cows: Evidence for Stimulatory Effects on Nutrient Absorption. Animal 2019, 13, 518–523. [Google Scholar] [CrossRef]
- Kholif, A.E.; Hassan, A.A.; Matloup, O.H.; El Ashry, G.M. Top-Dressing of Chelated Phytogenic Feed Additives in the Diet of Lactating Friesian Cows to Enhance Feed Utilization and Lactational Performance. Ann. Anim. Sci. 2021, 21, 657–673. [Google Scholar] [CrossRef]
- Hosoda, K.; Matsuyama, H.; Park, W.; Nishida, T.; Ishida, M. Supplementary Effect of Peppermint (Mentha × Piperita) on Dry Matter Intake, Digestibility, Ruminal Fermentation and Milk Production in Early Lactating Dairy Cows. Anim. Sci. J. 2006, 77, 503–509. [Google Scholar] [CrossRef]
- Hosoda, K.; Nishida, T.; Park, W.-Y.; Eruden, B. Influence of Mentha×piperita L. (Peppermint) Supplementation on Nutrient Digestibility and Energy Metabolism in Lactating Dairy Cows. Asian-Australas. J. Anim. Sci. 2005, 18, 1721–1726. [Google Scholar] [CrossRef]
- Hosoda, K.; Kuramoto, K.; Eruden, B.; Nishida, T.; Shioya, S. The Effects of Three Herbs as Feed Supplements on Blood Metabolites, Hormones, Antioxidant Activity, IgG Concentration, and Ruminal Fermentation in Holstein Steers. Asian-Australas. J. Anim. Sci. 2005, 19, 35–41. [Google Scholar] [CrossRef]
- Patra, A.K.; Geiger, S.; Braun, H.-S.; Aschenbach, J.R. Dietary Supplementation of Menthol-Rich Bioactive Lipid Compounds Alters Circadian Eating Behaviour of Sheep. BMC Vet. Res. 2019, 15, 352. [Google Scholar] [CrossRef]
- Patra, A.K.; Geiger, S.; Schrapers, K.T.; Braun, H.-S.; Gehlen, H.; Starke, A.; Pieper, R.; Cieslak, A.; Szumacher-Strabel, M.; Aschenbach, J.R. Effects of Dietary Menthol-Rich Bioactive Lipid Compounds on Zootechnical Traits, Blood Variables and Gastrointestinal Function in Growing Sheep. J. Anim. Sci. Biotechnol. 2019, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Khamisabadi, H.; Kafilzadeh, F.; Charaien, B. Effect of Thyme (Thymus vulgaris) or Peppermint (Mentha piperita) on Performance, Digestibility and Blood Metabolites of Fattening Sanjabi Lambs. Biharean Biol. 2016, 10, 118–122. [Google Scholar]
- Verma, V.; Chaudhary, L.C.; Agarwal, N.; Bhar, R.; Kamra, D.N. Effect of Feeding Mixture of Garlic Bulb and Peppermint Oil on Methane Emission, Rumen Fermentation and Microbial Profile in Buffaloes. Anim. Nutr. Feed Technol. 2012, 12, 157–164. [Google Scholar]
- Abdel-Wareth, A.A.A.; Kehraus, S.; Südekum, K.-H. Peppermint and Its Respective Active Component in Diets of Broiler Chickens: Growth Performance, Viability, Economics, Meat Physicochemical Properties, and Carcass Characteristics. Poult. Sci. 2019, 98, 3850–3859. [Google Scholar] [CrossRef] [PubMed]
- Bajagai, Y.S.; Petranyi, F.; Yu, S.J.; Lobo, E.; Batacan, R.; Kayal, A.; Horyanto, D.; Ren, X.; Whitton, M.M.; Stanley, D. Phytogenic Supplement Containing Menthol, Carvacrol and Carvone Ameliorates Gut Microbiota and Production Performance of Commercial Layers. Sci. Rep. 2022, 12, 11033. [Google Scholar] [CrossRef]
- Rashid, Z.; Mirani, Z.A.; Zehra, S.; Gilani, S.M.H.; Ashraf, A.; Azhar, A.; Al-Ghanim, K.A.; Al-Misned, F.; Al-Mulahim, N.; Mahboob, S.; et al. Enhanced Modulation of Gut Microbial Dynamics Affecting Body Weight in Birds Triggered by Natural Growth Promoters Administered in Conventional Feed. Saudi J. Biol. Sci. 2020, 27, 2747–2755. [Google Scholar] [CrossRef]
- Hafeez, A.; Männer, K.; Schieder, C.; Zentek, J. Effect of Supplementation of Phytogenic Feed Additives (Powdered vs. Encapsulated) on Performance and Nutrient Digestibility in Broiler Chickens. Poult. Sci. 2016, 95, 622–629. [Google Scholar] [CrossRef]
- Paraskeuas, V.; Fegeros, K.; Palamidi, I.; Hunger, C.; Mountzouris, K.C. Growth Performance, Nutrient Digestibility, Antioxidant Capacity, Blood Biochemical Biomarkers and Cytokines Expression in Broiler Chickens Fed Different Phytogenic Levels. Anim. Nutr. 2017, 3, 114–120. [Google Scholar] [CrossRef]
- Narimani-Rad, M.; Nobakht, A.; Shahryar, H.A.; Kamani, J.; Lotfi, A. Influence of Dietary Supplemented Medicinal Plants Mixture (Ziziphora, Oregano and Peppermint) on Performance and Carcass Characterization of Broiler Chickens. J. Med. Plants Res. 2011, 5, 5626–5629. [Google Scholar]
- Abdel-Wareth, A.A.A.; Lohakare, J.D. Effect of Dietary Supplementation of Peppermint on Performance, Egg Quality, and Serum Metabolic Profile of Hy-Line Brown Hens during the Late Laying Period. Anim. Feed Sci. Technol. 2014, 197, 114–120. [Google Scholar] [CrossRef]
- Al-Kassie, G. The Role of Peppermint (Mentha piperita) on Performance in Broiler Diets. Agric. Biol. J. N. Am. 2010, 1, 1009–1013. [Google Scholar] [CrossRef]
- Ocak, N.; Erener, G.; Ak, F.B.; Sungu, M.; Altop, A.; Ozmen, A. Performance of Broilers Fed Diets Supplemented with Dry Peppermint (Mentha piperita L.) or Thyme (Thymus vulgaris L.) Leaves as Growth Promoter Source. Czech J. Anim. Sci. 2008, 53, 169–175. [Google Scholar] [CrossRef]
- Nanekarani, S.; Goodarzi, M.; Heidari, M.; Landy, N. Efficiency of Ethanolic Extract of Peppermint (Mentha piperita) as an Antibiotic Growth Promoter Substitution on Performance, and Carcass Characteristics in Broiler Chickens. Asian Pac. J. Trop. Biomed. 2012, 2, S1611–S1614. [Google Scholar] [CrossRef]
- Khodambashi Emami, N.; Samie, A.; Rahmani, H.R.; Ruiz-Feria, C.A. The Effect of Peppermint Essential Oil and Fructooligosaccharides, as Alternatives to Virginiamycin, on Growth Performance, Digestibility, Gut Morphology and Immune Response of Male Broilers. Anim. Feed Sci. Technol. 2012, 175, 57–64. [Google Scholar] [CrossRef]
- Khempaka, S.; Pudpila, U.; Molee, W. Effect of Dried Peppermint (Mentha cordifolia) on Growth Performance, Nutrient Digestibility, Carcass Traits, Antioxidant Properties, and Ammonia Production in Broilers. J. Appl. Poult. Res. 2013, 22, 904–912. [Google Scholar] [CrossRef]
- Ameri, S.A.; Samadi, F.; Dastar, B.; Zarehdaran, S. Efficiency of Peppermint (Mentha piperita) Powder on Performance, Body Temperature and Carcass Characteristics of Broiler Chickens in Heat Stress Condition. Iran. J. Appl. Anim. Sci. 2016, 6, 943–950. [Google Scholar]
- Rahman, A.; Bayram, I.; Gultepe, E.E. Effect of Mentha on Performance, Haematological and Biochemical Parameters in Laying Hens. S. Afr. J. Anim. Sci. 2021, 51, 221–230. [Google Scholar] [CrossRef]
- Bai, M.; Liu, H.; Zhang, Y.; Wang, S.; Shao, Y.; Xiong, X.; Hu, X.; Yu, R.; Lan, W.; Cui, Y.; et al. Peppermint Extract Improves Egg Production and Quality, Increases Antioxidant Capacity, and Alters Cecal Microbiota in Late-Phase Laying Hens. Front. Microbiol. 2023, 14, 1252785. [Google Scholar] [CrossRef]
- Gurbuz, Y.; Ismael, A. Effect of Peppermint and Basil as Feed Additive on Broiler Performance and Carcass Characteristics. Iran. J. Appl. Anim. Sci. 2016, 6, 123–126. [Google Scholar]
- Toghyani, M.; Toghyani, M.; Gheisari, A.; Ghalamkari, G.; Mohammadrezaei, M. Growth Performance, Serum Biochemistry and Blood Hematology of Broiler Chicks Fed Different Levels of Black Seed (Nigella sativa) and Peppermint (Mentha piperita). Livest. Sci. 2010, 129, 173–178. [Google Scholar] [CrossRef]
- Barbarestani, S.Y.; Samadi, F.; Hassani, S.; Asadi, S. Effects of Encapsulated Nano- and Microparticles of Peppermint (Mentha piperita) Alcoholic Extract on the Growth Performance, Blood Parameters and Immune Function of Broilers under Heat Stress Condition. Iran. J. Appl. Anim. Sci. 2017, 7, 669–677. [Google Scholar]
- Abdel-Wareth, A.A.A.; Lohakare, J.D. Productive Performance, Egg Quality, Nutrients Digestibility, and Physiological Response of Bovans Brown Hens Fed Various Dietary Inclusion Levels of Peppermint Oil. Anim. Feed Sci. Technol. 2020, 267, 114554. [Google Scholar] [CrossRef]
- Akbari, M.; Torki, M.; Kaviani, K. Single and Combined Effects of Peppermint and Thyme Essential Oils on Productive Performance, Egg Quality Traits, and Blood Parameters of Laying Hens Reared under Cold Stress Condition (6.8 ± 3 °C). Int. J. Biometeorol. 2016, 60, 447–454. [Google Scholar] [CrossRef]
- Dilawar, M.A.; Mun, H.S.; Rathnayake, D.; Yang, E.J.; Seo, Y.S.; Park, H.S.; Yang, C.J. Egg Quality Parameters, Production Performance and Immunity of Laying Hens Supplemented with Plant Extracts. Animals 2021, 11, 975. [Google Scholar] [CrossRef] [PubMed]
- Akbari, M.; Torki, M. Effects of Dietary Chromium Picolinate and Peppermint Essential Oil on Growth Performance and Blood Biochemical Parameters of Broiler Chicks Reared under Heat Stress Conditions. Int. J. Biometeorol. 2014, 58, 1383–1391. [Google Scholar] [CrossRef]
- Mehri, M.; Sabaghi, V.; Bagherzadeh-Kasmani, F. Mentha piperita (Peppermint) in Growing Japanese Quails’ Diet: Serum Biochemistry, Meat Quality, Humoral Immunity. Anim. Feed Sci. Technol. 2015, 206, 57–66. [Google Scholar] [CrossRef]
- Lejonklev, J.; Kidmose, U.; Jensen, S.; Petersen, M.A.; Helwing, A.L.F.; Mortensen, G.; Weisbjerg, M.R.; Larsen, M.K. Short Communication: Effect of Oregano and Caraway Essential Oils on the Production and Flavor of Cow Milk. J. Dairy. Sci. 2016, 99, 7898–7903. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef]
- Tellez-Isaias, G.; Eisenreich, W.; Petrone-Garcia, V.M.; Hernandez-Velasco, X.; Castellanos-Huerta, C.-H.; Tellez, G., Jr.; Latorre, J.D.; Bottje, W.G.; Senas-Cuesta, R.; Coles, M.E.; et al. Effects of Chronic Stress and Intestinal Inflammation on Commercial Poultry Health and Performance: A Review. Ger. J. Vet. Res. 2023, 3, 38–57. [Google Scholar] [CrossRef]
- Bradford, B.J.; Yuan, K.; Farney, J.K.; Mamedova, L.K.; Carpenter, A.J. Invited Review: Inflammation during the Transition to Lactation: New Adventures with an Old Flame. J. Dairy. Sci. 2015, 98, 6631–6650. [Google Scholar] [CrossRef]
- Most, M.S.; Yates, D.T. Inflammatory Mediation of Heat Stress-Induced Growth Deficits in Livestock and Its Potential Role as a Target for Nutritional Interventions: A Review. Animals 2021, 11, 3539. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Guo, W.; Jia, Y.; Ye, B.; Liu, S.; Fu, S.; Liu, J.; Hu, G. Menthol Targeting AMPK Alleviates the Inflammatory Response of Bovine Mammary Epithelial Cells and Restores the Synthesis of Milk Fat and Milk Protein. Front. Immunol. 2021, 12, 782989. [Google Scholar] [CrossRef]
- Rivera-Chacon, R.; Castillo-Lopez, E.; Ricci, S.; Petri, R.M.; Reisinger, N.; Zebeli, Q. Supplementing a Phytogenic Feed Additive Modulates the Risk of Subacute Rumen Acidosis, Rumen Fermentation and Systemic Inflammation in Cattle Fed Acidogenic Diets. Animals 2022, 12, 1201. [Google Scholar] [CrossRef] [PubMed]
- Amini Pour, H.; Naserian, A.-A.; Vakili, A.R.; Tahmasbi, A.-M. The Effect of Mentha piperita Essential Oil on Biochemical and Haematological Parameters of Rams. Res. Opin. Anim. Vet. Sci. 2016, 6, 181–184. [Google Scholar] [CrossRef]
- Bach, M.; Moon, J.; Moore, R.; Pan, T.; Nelson, J.L.; Lood, C. A Neutrophil Activation Biomarker Panel in Prognosis and Monitoring of Patients With Rheumatoid Arthritis. Arthritis Rheumatol. 2020, 72, 47–56. [Google Scholar] [CrossRef]
- Bhikram, T.; Sandor, P. Neutrophil-Lymphocyte Ratios as Inflammatory Biomarkers in Psychiatric Patients. Brain Behav. Immun. 2022, 105, 237–246. [Google Scholar] [CrossRef]
- Nambooppha, B.; Photichai, K.; Wongsawan, K.; Chuammitri, P. Quercetin Manipulates the Expression of Genes Involved in the Reactive Oxygen Species (ROS) Process in Chicken Heterophils. J. Vet. Med. Sci. 2018, 80, 1204–1211. [Google Scholar] [CrossRef]
- Ruhs, E.C.; Martin, L.B.; Downs, C.J. The Impacts of Body Mass on Immune Cell Concentrations in Birds. Proc. Biol. Sci. 2020, 287, 20200655. [Google Scholar] [CrossRef]
- Gross, W.B.; Siegel, H.S. Evaluation of the Heterophil/Lymphocyte Ratio as a Measure of Stress in Chickens. Avian Dis. 1983, 27, 972. [Google Scholar] [CrossRef]
- Minias, P.; Włodarczyk, R.; Meissner, W. Leukocyte Profiles Are Associated with Longevity and Survival, but Not Migratory Effort: A Comparative Analysis of Shorebirds. Funct. Ecol. 2018, 32, 369–378. [Google Scholar] [CrossRef]
- Minias, P. Evolution of Heterophil/Lymphocyte Ratios in Response to Ecological and Life—History Traits: A Comparative Analysis across the Avian Tree of Life. J. Anim. Ecol. 2019, 88, 554–565. [Google Scholar] [CrossRef]
- Thiam, M.; Wang, Q.; Barreto Sánchez, A.L.; Zhang, J.; Ding, J.; Wang, H.; Zhang, Q.; Zhang, N.; Wang, J.; Li, Q.; et al. Heterophil/Lymphocyte Ratio Level Modulates Salmonella Resistance, Cecal Microbiota Composition and Functional Capacity in Infected Chicken. Front. Immunol. 2022, 13, 816689. [Google Scholar] [CrossRef]
- Fallah, R.; Kiani, A.; Azarfar, A. Effect of Artichoke Leaves Meal and Mentha Extract (Mentha piperita) on Immune Cells And Blood Biochemical Parameters of Broilers. Glob. Vet. 2013, 10, 99–102. [Google Scholar]
- Winterbourn, C.C.; Kettle, A.J.; Hampton, M.B. Reactive Oxygen Species and Neutrophil Function. Annu. Rev. Biochem. 2016, 85, 765–792. [Google Scholar] [CrossRef] [PubMed]
- Tavassolifar, M.J.; Vodjgani, M.; Salehi, Z.; Izad, M. The Influence of Reactive Oxygen Species in the Immune System and Pathogenesis of Multiple Sclerosis. Autoimmune Dis. 2020, 2020, 5793817. [Google Scholar] [CrossRef]
- Li, H.; Zhou, X.; Huang, Y.; Liao, B.; Cheng, L.; Ren, B. Reactive Oxygen Species in Pathogen Clearance: The Killing Mechanisms, the Adaption Response, and the Side Effects. Front. Microbiol. 2021, 11, 622534. [Google Scholar] [CrossRef]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef]
- Su, L.-J.; Zhang, J.-H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.-Y. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxid. Med. Cell. Longev. 2019, 2019, 5080843. [Google Scholar] [CrossRef]
- Ghimpețeanu, O.M.; Pogurschi, E.N.; Popa, D.C.; Dragomir, N.; Drăgotoiu, T.; Mihai, O.D.; Petcu, C.D. Antibiotic Use in Livestock and Residues in Food-A Public Health Threat: A Review. Foods 2022, 11, 1430. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Li, S.; Li, F. Damage and Elimination of Soil and Water Antibiotic and Heavy Metal Pollution Caused by Livestock Husbandry. Environ. Res. 2022, 215, 114188. [Google Scholar] [CrossRef] [PubMed]
- Allcock, S.; Young, E.H.; Holmes, M.; Gurdasani, D.; Dougan, G.; Sandhu, M.S.; Solomon, L.; Török, M.E. Antimicrobial Resistance in Human Populations: Challenges and Opportunities. Glob. Health Epidemiol. Genom. 2017, 2, e4. [Google Scholar] [CrossRef]
- İşcan, G.; Kirimer, N.; Kürkcüoǧlu, M.; Başer, H.C.; Demirci, F. Antimicrobial Screening of Mentha piperita Essential Oils. J. Agric. Food Chem. 2002, 50, 3943–3946. [Google Scholar] [CrossRef]
- Patel, T.; Ishiuji, Y.; Yosipovitch, G. Menthol: A Refreshing Look at This Ancient Compound. J. Am. Acad. Dermatol. 2007, 57, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Aperce, C.C.; Amachawadi, R.; Van Bibber-Krueger, C.L.; Nagaraja, T.G.; Scott, H.M.; Vinasco-Torre, J.; Drouillard, J.S. Effects of Menthol Supplementation in Feedlot Cattle Diets on the Fecal Prevalence of Antimicrobial-Resistant Escherichia Coli. PLoS ONE 2016, 11, e0168983. [Google Scholar] [CrossRef]
- Murray, S.A.; Amachawadi, R.G.; Norman, K.N.; Lawhon, S.D.; Nagaraja, T.G.; Drouillard, J.S.; Scott, H.M. Effects of Zinc and Menthol-Based Diets on Co-Selection of Antibiotic Resistance among E. Coli and Enterococcus Spp. in Beef Cattle. Animals 2021, 11, 259. [Google Scholar] [CrossRef]
- Donnik, I.M.; Krivonogova, A.S.; Isaeva, A.G.; Shkuratova, I.A.; Petropavlovsky, M.V.; Bespamyatnykh, Y.N.; Moiseeva, K.V.; Chentsova, A.E. Comparative Analysis of Phytobiotics Effectiveness for the Correction of Mucous Membranes Dysbiosis in Cattle. Int. Trans. J. Eng. Manag. Appl. Sci. Technol. 2021, 12, 1213. [Google Scholar]
- Krivonogova, A.; Isaeva, A.; Chentsova, A.; Musikhina, N.; Petropavlovsky, M. The Influence of Phytobiotic Based on Essential Oils of Salvia Sclarea, Mentha Canadensis, Mentha piperita and Coriandrum Sativum on Pathogenic Microorganisms of Lactating Cow Udder. E3S Web Conf. 2021, 282, 04013. [Google Scholar] [CrossRef]
- Witkowska, D.; Sowińska, J. The Effectiveness of Peppermint and Thyme Essential Oil Mist in Reducing Bacterial Contamination in Broiler Houses. Poult. Sci. 2013, 92, 2834–2843. [Google Scholar] [CrossRef]
- Mehri, M.; Sabaghi, V.; Bagherzadeh-Kasmani, F. Mentha piperita (Peppermint) in Growing Japanese Quails Diet: Performance, Carcass Attributes, Morphology and Microbial Populations of Intestine. Anim. Feed Sci. Technol. 2015, 207, 104–111. [Google Scholar] [CrossRef]
- Motlagh, M.K.; Yahyaei, M.; Rezaei, M.; Ghorbanpour, M. Study on Antibacterial Effect of Thyme and Peppermint Aqueous Extracts on Staphylococcus aureus and Escherichia coli Strains Causing Mastitis in Camels. Int. J. Tradit. Herb. Med. 2013, 1, 112–115. [Google Scholar]
- Shahid, M.; Cobo, E.R.; Chen, L.; Cavalcante, P.A.; Barkema, H.W.; Gao, J.; Xu, S.; Liu, Y.; Knight, C.G.; Kastelic, J.P.; et al. Prototheca Zopfii Genotype II Induces Mitochondrial Apoptosis in Models of Bovine Mastitis. Sci. Rep. 2020, 10, 698. [Google Scholar] [CrossRef] [PubMed]
- Cuc, C.; Catoi, C.; Fiţ, N.; Rapuntean, S.; Nadaş, G.; Bolfa, P.; Taulescu, M.; Gal, A.; Tabaran, F.; Nagy, A.; et al. The Inhibitory Effect of Some Natural Essential Oils upon Prototheca Algae in Vitro Growth. Bull. UASVM Vet. Med. 2010, 67, 34–38. [Google Scholar]
- Grzesiak, B.; Kołodziej, B.; Głowacka, A.; Krukowski, H. The Effect of Some Natural Essential Oils Against Bovine Mastitis Caused by Prototheca Zopfii Isolates In Vitro. Mycopathologia 2018, 183, 541–550. [Google Scholar] [CrossRef]
- Lopes, T.S.; Fussieger, C.; Theodoro, H.; Silveira, S.; Pauletti, G.F.; Ely, M.R.; Lunge, V.R.; Streck, A.F. Antimicrobial Activity of Essential Oils against Staphylococcus Aureus and Staphylococcus Chromogenes Isolated from Bovine Mastitis. Braz. J. Microbiol. 2023, 54, 2427–2435. [Google Scholar] [CrossRef]
- Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Repellent, Larvicidal and Pupicidal Properties of Essential Oils and Their Formulations against the Housefly, Musca Domestica. Med. Vet. Entomol. 2011, 25, 302–310. [Google Scholar] [CrossRef]
- Lachance, S.; Grange, G. Repellent Effectiveness of Seven Plant Essential Oils, Sunflower Oil and Natural Insecticides against Horn Flies on Pastured Dairy Cows and Heifers. Med. Vet. Entomol. 2014, 28, 193–200. [Google Scholar] [CrossRef]
- Khater, H.F.; Ramadan, M.Y.; El-Madawy, R.S. Lousicidal, Ovicidal and Repellent Efficacy of Some Essential Oils against Lice and Flies Infesting Water Buffaloes in Egypt. Vet. Parasitol. 2009, 164, 257–266. [Google Scholar] [CrossRef]
- Abdel-Shafy, S.; Soliman, M.M.M. Toxicity of Some Essential Oils on Eggs, Larvae and Females of Boophilus annulatus (Acari: Ixodida: Amblyommidae) Infesting Cattle in Egypt. Acarologia 2004, 44, 23–30. [Google Scholar]
- Huhtanen, P.; Sveinbjörnsson, J. Evaluation of Methods for Estimating Starch Digestibility and Digestion Kinetics in Ruminants. Anim. Feed Sci. Technol. 2006, 130, 95–113. [Google Scholar] [CrossRef]
- Zhang, F.; Adeola, O. Techniques for Evaluating Digestibility of Energy, Amino Acids, Phosphorus, and Calcium in Feed Ingredients for Pigs. Anim. Nutr. 2017, 3, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Getachew, G.; DePeters, E.J.; Robinson, P.H.; Fadel, J.G. Use of an in Vitro Rumen Gas Production Technique to Evaluate Microbial Fermentation of Ruminant Feeds and Its Impact on Fermentation Products. Anim. Feed Sci. Technol. 2005, 123–124, 547–559. [Google Scholar] [CrossRef]
- Van Bibber-Krueger, C.L.; Miller, K.A.; Aperce, C.C.; Alvarado-Gilis, C.A.; Higgins, J.J.; Drouillard, J.S. Effects of Crystalline Menthol on Blood Metabolites in Holstein Steers and in Vitro Volatile Fatty Acid and Gas Production1. J. Anim. Sci. 2016, 94, 1170–1178. [Google Scholar] [CrossRef]
- Kumar, R.; Kamra, D.N.; Agarwal, N.; Chaudhary, L.C. Effect of Feeding a Mixture of Plants Containing Secondary Metabolites and Peppermint Oil on Rumen Fermentation, Microbial Profile and Nutrient Utilization in Buffaloes. Indian J. Anim. Sci. 2011, 81, 488–492. [Google Scholar]
- Kouazounde, J.B.; Jin, L.; Assogba, F.M.; Ayedoun, M.A.; Wang, Y.; Beauchemin, K.A.; McAllister, T.A.; Gbenou, J.D. Effects of Essential Oils from Medicinal Plants Acclimated to Benin on in Vitro Ruminal Fermentation of Andropogon gayanus Grass. J. Sci. Food Agric. 2015, 95, 1031–1038. [Google Scholar] [CrossRef]
- Ando, S.; Nishida, T.; Ishida, M.; Hosoda, K.; Bayaru, E. Effect of Peppermint Feeding on the Digestibility, Ruminal Fermentation and Protozoa. Livest. Prod. Sci. 2003, 82, 245–248. [Google Scholar] [CrossRef]
- Beyzi, S.B. Effect of Lavender and Peppermint Essential Oil on in Vitro Methanogenesis and Fermentation of Feed with Buffalo Rumen Liquor. Buffalo Bull. 2020, 39, 311–321. [Google Scholar]
- Roy, D.; Tomar, S.K.; Kumar, V. Rumen Modulatory Effect of Thyme, Clove and Peppermint Oils in Vitro Using Buffalo Rumen Liquor. Vet. World 2015, 8, 203–207. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Effects of Essential Oils on Methane Production and Fermentation by, and Abundance and Diversity of, Rumen Microbial Populations. Appl. Environ. Microbiol. 2012, 78, 4271–4280. [Google Scholar] [CrossRef]
- Ozkan, C.O.; Kamalak, A.; Atalay, A.I.; Tatliyer, A.; Kaya, E. Effect of Peppermint (Mentha piperita) Essential Oil on Rumen Microbial Fermentation of Barley Grain. J. Appl. Anim. Res. 2015, 43, 287–290. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. Dietary Phytochemicals as Rumen Modifiers: A Review of the Effects on Microbial Populations. Antonie Leeuwenhoek 2009, 96, 363–375. [Google Scholar] [CrossRef]
- Cobellis, G.; Trabalza-Marinucci, M.; Yu, Z. Critical Evaluation of Essential Oils as Rumen Modifiers in Ruminant Nutrition: A Review. Sci. Total Environ. 2016, 545–546, 556–568. [Google Scholar] [CrossRef]
- Patra, A.K.; Park, T.; Braun, H.-S.; Geiger, S.; Pieper, R.; Yu, Z.; Aschenbach, J.R. Dietary Bioactive Lipid Compounds Rich in Menthol Alter Interactions Among Members of Ruminal Microbiota in Sheep. Front. Microbiol. 2019, 10, 2038. [Google Scholar] [CrossRef]
- Agarwal, N.; Shekhar, C.; Kumar, R.; Chaudhary, L.C.; Kamra, D.N. Effect of Peppermint (Mentha piperita) Oil on In Vitro Methanogenesis and Fermentation of Feed with Buffalo Rumen Liquor. Anim. Feed Sci. Technol. 2009, 148, 321–327. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Effects of Vanillin, Quillaja Saponin, and Essential Oils on In Vitro Fermentation and Protein-Degrading Microorganisms of the Rumen. Appl. Microbiol. Biotechnol. 2014, 98, 897–905. [Google Scholar] [CrossRef]
- Arjun, S.; Neha, P.; Mohith Sai, S.R.; Ravi, L. Microbial Symbionts in Ruminants. In Microbial Symbionts; Elsevier: Amsterdam, The Netherlands, 2023; pp. 493–509. [Google Scholar]
- Wallace, R.J.; McEwan, N.R.; McIntosh, F.M.; Teferedegne, B.; Newbold, C.J. Natural Products as Manipulators of Rumen Fermentation. Asian-Australas. J. Anim. Sci. 2002, 15, 1458–1468. [Google Scholar] [CrossRef]
- Abdela, N. Sub-Acute Ruminal Acidosis (SARA) and Its Consequence in Dairy Cattle: A Review of Past and Recent Research at Global Prospective. Achiev. Life Sci. 2016, 10, 187–196. [Google Scholar] [CrossRef]
- Kleen, J.L.; Hooijer, G.A.; Rehage, J.; Noordhuizen, J.P.T.M. Subacute Ruminal Acidosis (SARA): A Review. J. Vet. Med. Ser. A 2003, 50, 406–414. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Miranda-Romero, L.A.; Mendoza-Martínez, G.D.; Santiago-Figueroa, I. A Meta-Analysis of Essential Oils Use for Beef Cattle Feed: Rumen Fermentation, Blood Metabolites, Meat Quality, Performance and, Environmental and Economic Impact. Fermentation 2022, 8, 254. [Google Scholar] [CrossRef]
- Elmhadi, M.E.; Ali, D.K.; Khogali, M.K.; Wang, H. Subacute Ruminal Acidosis in Dairy Herds: Microbiological and Nutritional Causes, Consequences, and Prevention Strategies. Anim. Nutr. 2022, 10, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Benchaar, C.; Greathead, H. Essential Oils and Opportunities to Mitigate Enteric Methane Emissions from Ruminants. Anim. Feed Sci. Technol. 2011, 166–167, 338–355. [Google Scholar] [CrossRef]
- Russell, J.B. The Importance of PH in the Regulation of Ruminal Acetate to Propionate Ratio and Methane Production In Vitro. J. Dairy Sci. 1998, 81, 3222–3230. [Google Scholar] [CrossRef]
- Wagner, A.O.; Reitschuler, C.; Illmer, P. Effect of Different Acetate:Propionate Ratios on the Methanogenic Community during Thermophilic Anaerobic Digestion in Batch Experiments. Biochem. Eng. J. 2014, 90, 154–161. [Google Scholar] [CrossRef]
- Guliński, P.; Salamończyk, E.; Młynek, K. Improving Nitrogen Use Efficiency of Dairy Cows in Relation to Urea in Milk—A Review. Anim. Sci. Pap. Rep. 2016, 34, 5–24. [Google Scholar]
- Platel, K.; Srinivasan, K. Stimulatory Influence of Select Spices on Bile Secretion in Rats. Nutr. Res. 2000, 20, 1493–1503. [Google Scholar] [CrossRef]
- Goodarzi, M.; Firouzabadi, M.S.S.; Mehrizi, M.M.Z.; Jafarian, M. Evaluation of Effect of Peppermint as a New Preventive Method for Milk Fever and Subclinical Hypocalcaemia in Transition Holstein Cows. Int. J. Anim. Vet. Adv. 2012, 4, 184–186. [Google Scholar]
- Ghaly, M.H.; Elghoneimy, A.A.; Mohamed, H.K.; Ali, M.F. Biochemical and Histopathological Effects of Dietary Supplementation of Nigella sativa and Mentha piperita Oils to Broilers. J. Adv. Vet. Res. 2017, 7, 7–15. [Google Scholar]
- Ghazaghi, M.; Mehri, M.; Bagherzadeh-Kasmani, F. Effects of Dietary Mentha Spicata on Performance, Blood Metabolites, Meat Quality and Microbial Ecosystem of Small Intestine in Growing Japanese Quail. Anim. Feed Sci. Technol. 2014, 194, 89–98. [Google Scholar] [CrossRef]
- Deignan, J.L.; Cederbaum, S.D.; Grody, W.W. Contrasting Features of Urea Cycle Disorders in Human Patients and Knockout Mouse Models. Mol. Genet. Metab. 2008, 93, 7–14. [Google Scholar] [CrossRef]
- Matsumoto, S.; Haberle, J.; Kido, J.; Mitsubuchi, H.; Endo, F.; Nakamura, K. Urea Cycle Disorders—Update. J. Hum. Genet. 2019, 64, 833–847. [Google Scholar] [CrossRef] [PubMed]
- Peier, A.M.; Moqrich, A.; Hergarden, A.C.; Reeve, A.J.; Andersson, D.A.; Story, G.M.; Earley, T.J.; Dragoni, I.; McIntyre, P.; Bevan, S.; et al. A TRP Channel That Senses Cold Stimuli and Menthol. Cell 2002, 108, 705–715. [Google Scholar] [CrossRef]
- Sevinç, M.; Başoğlu, A.; Güzelbektaş, H.; Boydak, M. Lipid and Lipoprotein Levels in Dairy Cows with Fatty Liver. J. Vet. Anim. Sci. 2003, 27, 295–299. [Google Scholar]
- Tohala, S.H. The Relationship between Blood Lipid Profile and Performance of Broilers Fed Two Types of Finisher Diets. Iraqi J. Vet. Sci. 2010, 24, 87–91. [Google Scholar] [CrossRef]
- Islam, M.A.; Haque, A.; Nishibori, M. Growth Performance, Meat Yield and Blood Lipid Profile of Broiler and Sonali Chickens. Vet. Anim. Sci. 2022, 18, 100272. [Google Scholar] [CrossRef] [PubMed]
- Haines, B.E.; Wiest, O.; Stauffacher, C.V. The Increasingly Complex Mechanism of HMG-CoA Reductase. Acc. Chem. Res. 2013, 46, 2416–2426. [Google Scholar] [CrossRef]
- Clegg, R.J.; Middleton, B.; Bell, G.D.; White, D.A. Inhibition of Hepatic Cholesterol Synthesis and S-3-Hydroxy-3-Methylglutaryl-CoA Reductase by Mono and Bicyclic Monoterpenes Administered in Vivo. Biochem. Pharmacol. 1980, 29, 2125–2127. [Google Scholar] [CrossRef] [PubMed]
- Clegg, R.J.; Middleton, B.; Bell, G.D.; White, D.A. The Mechanism of Cyclic Monoterpene Inhibition of Hepatic 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase in Vivo in the Rat. J. Biol. Chem. 1982, 257, 2294–2299. [Google Scholar] [CrossRef]
- Peffley, D.M.; Gayen, A.K. Plant-Derived Monoterpenes Suppress Hamster Kidney Cell 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Synthesis at the Post-Transcriptional Level. J. Nutr. 2003, 133, 38–44. [Google Scholar] [CrossRef]
- Lee, K.W.; Everts, H.; Beynen, A. Essential Oils in Broiler Nutrition. Int. J. Poult. Sci. 2004, 3, 738–752. [Google Scholar] [CrossRef]
- Khare, A.; Gaur, S. Cholesterol-Lowering Effects of Lactobacillus Species. Curr. Microbiol. 2020, 77, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Goff, J.P. The Monitoring, Prevention, and Treatment of Milk Fever and Subclinical Hypocalcemia in Dairy Cows. Vet. J. 2008, 176, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Seifi, H.A.; Kia, S. Subclinical Hypocalcemia in Dairy Cows: Pathophysiology, Consequences and Monitoring. Iran. J. Vet. Sci. Technol. 2017, 9, 1–15. [Google Scholar]
- Hoenderop, J.G.J.; Nilius, B.; Bindels, R.J.M. Calcium Absorption Across Epithelia. Physiol. Rev. 2005, 85, 373–422. [Google Scholar] [CrossRef]
- Vangeel, L.; Voets, T. Transient Receptor Potential Channels and Calcium Signaling. Cold Spring Harb. Perspect. Biol. 2019, 11, a035048. [Google Scholar] [CrossRef]
- Rosendahl, J.; Braun, H.S.; Schrapers, K.T.; Martens, H.; Stumpff, F. Evidence for the Functional Involvement of Members of the TRP Channel Family in the Uptake of Na+ and NH4+ by the Ruminal Epithelium. Pflug. Arch. 2016, 468, 1333–1352. [Google Scholar] [CrossRef]
- Schrapers, K.T.; Sponder, G.; Liebe, F.; Liebe, H.; Stumpff, F. The Bovine TRPV3 as a Pathway for the Uptake of Na+, Ca2+, and NH4+. PLoS ONE 2018, 13, e0193519. [Google Scholar] [CrossRef]
- Geiger, S.; Patra, A.K.; Schrapers, K.T.; Braun, H.S.; Aschenbach, J.R. Menthol Stimulates Calcium Absorption in the Rumen but Not in the Jejunum of Sheep. J. Dairy Sci. 2021, 104, 3067–3081. [Google Scholar] [CrossRef] [PubMed]
- Farco, J.A.; Grundmann, O. Menthol—Pharmacology of an Important Naturally Medicinal “Cool”. Mini Rev. Med. Chem. 2013, 13, 124–131. [Google Scholar] [CrossRef]
- Bagath, M.; Krishnan, G.; Devaraj, C.; Rashamol, V.P.; Pragna, P.; Lees, A.M.; Sejian, V. The Impact of Heat Stress on the Immune System in Dairy Cattle: A Review. Res. Vet. Sci. 2019, 126, 94–102. [Google Scholar] [CrossRef]
- Keringer, P.; Farkas, N.; Gede, N.; Hegyi, P.; Rumbus, Z.; Lohinai, Z.; Solymar, M.; Ruksakiet, K.; Varga, G.; Garami, A. Menthol Can Be Safely Applied to Improve Thermal Perception during Physical Exercise: A Meta-Analysis of Randomized Controlled Trials. Sci. Rep. 2020, 10, 13636. [Google Scholar] [CrossRef] [PubMed]
- Albishi, F.M.; Albeshi, S.M.; Alotaibi, K.; Alhussain, N.; Kamal, A.; Sultan, A.A.; Aljishi, M.J. The Effect of Menthol on Anxiety and Related Behaviors in Mice. Bahrain Med. Bull. 2020, 42, 274–279. [Google Scholar]
- Gavel, E.H.; Logan-Sprenger, H.M.; Good, J.; Jacobs, I.; Thomas, S.G. Menthol Mouth Rinsing and Cycling Performance in Females Under Heat Stress. Int. J. Sports Physiol. Perform. 2021, 16, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wang, H.; Wang, J.; Zhou, L.; Yang, P. Chemical Composition and Anti-Inflammatory, Cytotoxic and Antioxidant Activities of Essential Oil from Leaves of Mentha piperita Grown in China. PLoS ONE 2014, 9, e114767. [Google Scholar] [CrossRef]
- Trevisan, S.C.C.; Menezes, A.P.P.; Barbalho, S.M.; Guiguer, É.L. Properties of Mentha piperita: A Brief Review. World J. Pharm. Med. Res. 2017, 3, 309–313. [Google Scholar]
- Beigi, M.; Torki-Harchegani, M.; Ghasemi Pirbalouti, A. Quantity and Chemical Composition of Essential Oil of Peppermint (Mentha × piperita L.) Leaves under Different Drying Methods. Int. J. Food Prop. 2018, 21, 267–276. [Google Scholar] [CrossRef]
Animal | Growth Stage/Condition 1 | Sample Size 2 | Treatment | Dosage 3 | Experiment Duration | Effects of Treatment 4 | Reference |
---|---|---|---|---|---|---|---|
Holstein Cattle | nonlactating, subacute ruminal acidosis conditions | 4 CON, 4 per TRT (4 × 4 incomplete Latin square) | Mint or Menthol | T1: 15.3 mg Mnt/kg T2: 153 mg Mnt/kg T3: 6.7 mg Mthl/kg T4: 67 mg Mthl/kg | 4 h of supplement | Tendency towards a linear decrease in feed intake from mint, tendency towards a linear increase in feeding time from menthol. | [46] |
Holstein Cattle | nonlactating | 4 CON, 4 per TRT (4 × 4 incomplete Latin square) | Mint or Menthol | T1: 15.3 mg Mnt/kg T2: 153 mg Mnt/kg T3: 6.7 mg Mthl/kg T4: 67 mg Mthl/kg | 4 h of supplement | Increased salivation rate. | [47] |
Friesian Cattle | lactating | 10 CON, 10 per TRT | Aromix® (133 mg menthol/g) | T1: 3 g/day T2: 6 g/day | 3 months | Increased feed intake, milk yield, and milk contents with T1; decrease in same parameters with T2. | [48] |
Holstein Cattle | lactating, heat stress conditions | 16 CON, 16 TRT | BioHerbal® (contains peppermint) | 2 g/day | 28 days | Increased feed intake, increased milk yield. | [49] |
Holstein–Friesian Cattle | lactating | 36 CON, 36 TRT | BTX12 (>80% menthol) | 1.2 g/day | Two periods of 20 days | No effect on feed intake, increased milk yield. | [50] |
Friesian Cattle | lactating | 10 CON, 10 per TRT | Aromix® (133 mg menthol/g) | T1: 3 g/day T2: 6 g/day | 3 months | No effect on feed intake, increased milk yield with T1. | [51] |
Holstein Cattle | lactating | 4 CON, 4 TRT | Peppermint | 5% | 22 days | Increased feeding time, no effect on feed intake, no effect on milk yield or quality. | [52,53] |
Holstein Cattle | NA | 4 CON, 4 TRT (4 × 4 Latin square) | Peppermint | 5% | 2 weeks | Increased feed intake. | [54] |
Suffolk Sheep | growing | 8 CON, 8 per TRT | OAX17 (90% menthol) | T1: 80 mg/day T2: 160 mg/day | 28 days | Increased feed intake and feeding time, no effect on body weight. | [55,56] |
Sanjabi Sheep | 90 days old | 6 CON, 6 TRT | Peppermint | 3% | 90 days | Increased feed intake, no effect on FCR. | [57] |
Murrah Buffalo | NA | 2 CON, 2 TRT (2 × 2 switch over) | Garlic Bulb + Peppermint | 2.5% | Two periods of 21 days | No effect on feed intake. | [58] |
Ross 308 Chickens | 1 day old | 96 CON, 48 per TRT | Peppermint or Menthol | T1: 5 g Pep/kg T2: 10 g Pep/kg T3: 15 g Pep/kg T4: 26 mg Mthl/kg T5: 52 mg Mthl/kg T6: 78 mg Mthl/kg | Two periods of 35 days | Increased feed intake and body weight, improved FCR, decreased abdominal fat. | [59] |
Chickens | 18 week old laying hens | 20K CON, 20K TRT | Digestarom® (contains menthol) | 150 g/t | 12 weeks | Decreased mortality and dirty eggs. | [60] |
Hubbard Chickens | 1 day old | 50 CON, 50 per TRT | Phytogenic Blend (garlic, mint, etc.) or Blend + Organic Acids | T1: 3 kg phytogenic blend/ton T2: 3 kg phytogenic blend/ton + organic acids | 42 days | Increased feed intake, increased body weight, improved FCR. | [61] |
Cobb 500 Chickens | 1 day old males | Trial 1: 160 CON, 160 TRT; Trial 2: 40 CON, 40 TRT | Phytogenic Blend (menthol, anethole) | 150 mg/kg | Trial 1: 42 days Trial 2: 21 days | No effect on feed intake, body weight, or FCR. | [62] |
Cobb Chickens | 1 day old | 75 CON, 75 per TRT | Phytogenic Blend (menthol, anethol, and eugenol) | T1: 100 mg/kg T2: 150 mg/kg | 42 days | No effect on feed intake, improved FCR. | [63] |
Ross 308 Chickens | 1 day old | 60 CON, 60 per TRT | Phytogenic Blend (ziziphora, oregano, peppermint) | T1: 1% ziziphora, 0.5% others T2: 1% oregano, 0.5% others T3: 1% Pep, 0.5% others | 42 days | Decreased feed intake, no change in body weight, improved FCR, and no change to carcass traits with T3. Other groups saw improvements in parameters. | [64] |
Hy-Line Brown Chickens | 64 week old laying hens | 50 CON, 50 per TRT | Peppermint | T1: 5 mg/kg T2: 10 mg/kg T3: 15 mg/kg T4: 20 mg/kg | 12 weeks | Increased feed intake, improved FCR, increased egg rate, weight, and Haugh score. | [65] |
Hubbard Chickens | 1 day old | 40 CON, 40 per TRT | Peppermint | T1: 0.25% T2: 0.5% T3: 1% T4: 1.5% | 6 weeks | Increased feed intake, increased body weight, improved FCR. | [66] |
Chickens | 1 week old | 104 CON, 104 TRT | Peppermint | 0.2% (~70 mg/kg Mthl) | 42 days | No effect on feed intake, increased abdominal fat. | [67] |
Ross 308 Chickens | 240 days old | 48 CON, 48 per TRT | Peppermint | T1: 0.1% T2: 0.2% T3: 0.3% (in water) | 42 days | No effect on feed intake, improved FCR, increased carcass yield, decreased abdominal fat. | [68] |
Ross 308 Chickens | 1 day old | 48 CON, 48 per TRT | Peppermint | T1: 200 mg/kg T2: 400 mg/kg | 6 weeks | No effect on feed intake, improved FCR with T1. | [69] |
Chickens | 1 day old | 9 CON, 9 per TRT | Spearmint | T1: 0.5% T2: 1% T3: 1.5% T4: 2% | 42 days | No change in final feed intake, body weight, or FCR, increased production index, decreased abdominal fat. | [70] |
Chickens | 1 day old, heat stress conditions | 48 CON, 48 per TRT | Peppermint | T1: 1% T2: 2% | 42 days | No effect on feed intake, no effect on FCR, reduced heat stress. | [71] |
Habcock Chickens | 21 week old laying hens | 36 CON, 36 per TRT | Peppermint | T1: 50 mg/kg T2: 100 mg/kg T3: 200 mg/kg T4: 50 mg/L T5: 100 mg/L T6: 200 mg/L | 56 days | No effect on feed intake, improved FCR, no effect on egg quantity/quality, affected yolk color at 28 days. | [72] |
Chickens | 60 week old laying hens | 54 CON, 54 per TRT | Peppermint | T1: 0.1% T2: 0.2% T3: 0.3% T4: 0.4% | 28 days | No effect on feed intake, increased eggshell thickness and egg saturated fatty acids. | [73] |
Ross 308 Chickens | 1 day old | 30 CON, 30 per TRT | Peppermint | T1: 5 g/kg T2: 10 g/kg T3: 15 g/kg | 35 days | Decreased feed intake and body weight with T3. No effect on FCR or carcass characteristics. | [74] |
Ross 308 Chickens | 1 day old | 48 CON, 48 per TRT | Peppermint | T1: 4 g/kg T2: 8 g/kg | 42 days | Increased body weight and improved FCR with T1, no effect on carcass. | [75] |
Ross 308 Chickens | 1 day old, heat stress conditions | 80 CON, 80 per TRT | Peppermint | T1: 200 ppm ethanolic/kg body weight T2: 200 ppm nano-/kg body weight T3: 200 ppm micro-/kg body weight | 42 days | Improved FCR, no effect on feed intake or body weight. | [76] |
Bovans Brown Chickens | 32 week old laying hens | 40 CON, 40 per TRT | Peppermint | T1: 74 mg/kg T2: 148 mg/kg T3: 222 mg/kg T4: 296 mg/kg | 12 weeks | Improved FCR, increased egg production, weight, shell thickness, and Haugh score. | [77] |
Lohmann LSL-Lite Chickens | 40 week old laying hens, cold stress conditions | 30 CON, 30 per TRT | Peppermint or Peppermint + Thyme | T1: 100 mg/kg diet Pep T2: 100 mg/kg diet Pep + thyme | 8 weeks | Increased feed intake, improved FCR from combined, increased shell thickness from combined. | [78] |
ISA Brown Chickens | 28 week old laying hens | 24 CON, 24 per TRT | Wild Mint + Geranium | T1: 0.01% T2: 0.05% T3: 0.1% | 16 weeks | Increased feed intake, increased egg production, weight, and Haugh score. | [79] |
Cobb 500 Chickens | 1 day old, heat stress conditions | 60 CON, 60 per TRT | Peppermint or Peppermint + Chromium Picolinate | T1: 250 mg Pep/kg T2: 250 mg Pep/kg + chromium picolinate | 42 days | No effect on feed intake or body weight, improved FCR with T2. | [80] |
Japanese Quail | 8 days old | 120 CON, 60 per TRT | Peppermint | T1: 10 g/kg T2: 20 g/kg T3: 30 g/kg T4: 40 g/kg | 5 weeks | Decreased MDA, cooking loss, and drip loss. | [81] |
Animal | Growth Stage/Condition 1 | Sample Size 2 | Treatment | Dosage 3 | Experiment Duration 4 | Effects of Treatment 5 | Reference |
---|---|---|---|---|---|---|---|
Friesian Cattle | lactating | 10 CON, 10 per TRT | Aromix® (133 mg menthol/g) | T1: 3 g/day T2: 6 g/day | 3 months | Increased total antioxidant capacity, catalase, superoxide dismutase, and glutathione peroxidase, decreased MDA. | [48] |
Friesian Cattle | lactating | 10 CON, 10 per TRT | Aromix® (133 mg menthol/g) | T1: 3 g/day T2: 6 g/day | 3 months | Increased total antioxidant capacity, no effect on catalase, superoxide dismutase, glutathione peroxidase, or MDA. | [51] |
Holstein Cattle | nonlactating | 4–5 CON, 4–5 TRT | Digestarom® (contains menthol) | 0.04% | Two periods of 6 weeks | Reduced serum amyloid A in week 3. | [88] |
Holstein Cattle | NA | 4 CON, 4 TRT (4 × 4 Latin square) | Peppermint | 5% | 2 weeks | Decreased IgG. No significant effect on total antioxidant capacity. | [54] |
Suffolk Sheep | growing | 8 CON, 8 per TRT | OAX17 (90% menthol) | T1: 80 mg/day T2: 160 mg/day | 28 days | Decreased neutrophils. No effect on leukocytes, lymphocytes, monocytes, erythrocytes, or platelets. | [56] |
Sheep | 3 to 4 years-old | 4 CON, 4 per TRT | Peppermint | T1: 10 mL/kg T2: 20 mL/kg T3: 30 mL/kg | NA | Increased white blood cells at higher doses. | [89] |
Cobb Chickens | 1 day old | 75 CON, 75 per TRT | Phytogenic Blend (menthol, anethol, and eugenol) | T1: 100 mg/kg T2: 150 mg/kg | 42 days | Decreased IL-18 in the spleen. No effect on spleen TGF-β4, IFN-γ, IL-10, IL-2, or iNOS. No effect on tonsil cytokines. Tendency to increase total antioxidant capacity. | [63] |
Hubbard Chickens | 1 day old | 40 CON, 40 per TRT | Peppermint | T1: 0.25% T2: 0.5% T3: 1% T4: 1.5% | 6 weeks | Decreased H/L ratio. No effect on total white blood cells. | [66] |
Ross 308 Chickens | 1 day old | 48 CON, 48 per TRT | Peppermint | T1: 200 mg/kg T2: 400 mg/kg | 6 weeks | Decreased secondary antibody response with T2. | [69] |
Chickens | 1 day old | 9 CON, 9 per TRT | Spearmint | T1: 0.5% T2: 1% T3: 1.5% T4: 2% | 42 days | Decreased 2,2-diphenyl-1-picrylhydrazyl and thiobarbituric acid at 42 days. | [70] |
Habcock Chickens | 21 week old laying hens | 36 CON, 36 per TRT | Peppermint | T1: 50 mg/kg T2: 100 mg/kg T3: 200 mg/kg T4: 50 mg/L T5: 100 mg/L T6: 200 mg/L | 56 days | Decreased IgG with T6. No effect on lymphocytes, neutrophils, monocytes, or platelets. | [72] |
Chickens | 60 week old laying hens | 54 CON, 54 per TRT | Peppermint | T1: 0.1% T2: 0.2% T3: 0.3% T4: 0.4% | 28 days | Increased total antioxidant capacity, IgG, and superoxide dismutase. No effect on MDA or IgM. | [73] |
Ross 308 Chickens | 1 day old | 48 CON, 48 per TRT | Peppermint | T1: 4 g/kg T2: 8 g/kg | 42 days | No effect on white blood cells, heterophils, lymphocytes, or antibodies. | [75] |
Ross 308 Chickens | 1 day old, heat stress conditions | 80 CON, 80 per TRT | Peppermint | T1: 200 ppm ethanolic/kg body weight T2: 200 ppm nano-/kg body weight T3: 200 ppm micro-/kg body weight | 42 days | Decreased H/L ratio. | [76] |
ISA Brown Chickens | 28 week old laying hens | 24 CON, 24 per TRT | Wild Mint + Geranium | T1: 0.01% T2: 0.05% T3: 0.1% | 16 weeks | Increased serum IgA, IgG, IL-6, and TNF-α. | [79] |
Ross 308 Chickens | chicks | 75 CON, 75 per TRT | Peppermint or Peppermint + Artichoke | T1: 200 mg Pep/kg water T2: 200 mg Pep/kg water + 1.5% artichoke | 42 days | Increased heterophils and lymphocytes. No change to H/L ratio or antibodies. | [98] |
Japanese Quail | 8 days old | 120 CON, 60 per TRT | Peppermint | T1: 10 g/kg T2: 20 g/kg T3: 30 g/kg T4: 40 g/kg | 5 weeks | Linear increase in humoral immune response, decreased MDA. | [81] |
Animal | Growth Stage/Condition 1 | Sample Size 2 | Treatment | Dosage 3 | Experiment Duration | Effects of Treatment 4 | Reference |
---|---|---|---|---|---|---|---|
Holstein Cattle | NA | 13 CON, 13 TRT | Menthol | 0.3% | 4 weeks | Increased tetracycline-resistant E. coli. No effect on total coliform counts or other antimicrobial resistances. | [109] |
Cattle | NA | 20 CON, 20 per TRT | Menthol or Menthol + Supra-Nutritional Zinc | T1: 0.3% Mthl T2: 0.3% Mthl + 300 ppm zinc | 3 weeks | Tendency for increased tetracycline-resistant E. coli and MDR with T2, increased macrolide-resistant Enterococci in first 21 days from menthol. | [110] |
Cattle | lactating | 20 per TRT | Phytogenic Blends (menthol, chavicol, cineol, etc.) | T1: 10 mL/d nasal T2: 20 mL/d vaginal | 7 days | Decreased nasal P. aeruginosa and C. albicans. Reduced vaginal E. coli, P. aeruginosa, C. albicans, and S. aureus. | [111] |
Cattle | cattle with signs of udder lesions | 14 TRT | Phytogenic Blend (S. sclarea, M. canadensis, M. piperita and C. sativum) | 5–6 mL/nipple/day | 7 days | Decreased nipple Str. uberis, P. aeruginosa, S. aureus, E. coli, H. somni, and C. albicans. | [112] |
Chickens | 18 week old laying hens | 50 CON 50 TRT | Digestarom® (contains menthol) | 150 g/t | 12 weeks | Decreased gut Campylobacter, Staphylococcus, Fusobacterium, Desulfovibrio, Slackia, Saccaropolyspora, etc. Increased P. gingivalis and Gallibacterium. No effect on antimicrobial resistance. | [60] |
Hubbard Chickens | 1 day old | 50 CON 50 per TRT | Phytogenic Blend (garlic, mint, etc.) or Blend + Organic Acids | T1: 3 kg phytogenic blend/ton T2: 3 kg phytogenic blend/ton + organic acids | 42 days | Decreased gut E. coli and Camoylobacter. | [61] |
Ross 308 Chickens | 1 day old | 120 CON 120 TRT | Peppermint | Room fogged with 1 L of 1:250 or 1:500 oil aerosol | 42 days | Decreased environmental mesophiles, and Staphylococci. | [113] |
Japanese Quail | 8 days old | 72 CON 72 per TRT | Peppermint | T1: 10 g/kg T2: 20 g/kg T3: 30 g/kg T4: 40 g/kg | 35 days | Reduced ileal coliform counts. | [114] |
Animal | Growth Stage/Condition 1 | Sample Size 2 | Treatment | Dosage 3 | Experiment Duration | Effects of Treatment 4 | Reference |
---|---|---|---|---|---|---|---|
Holstein Cattle | nonlactating, subacute ruminal acidosis conditions | 4 CON, 4 per TRT (4 × 4 incomplete Latin square) | Mint or Menthol | T1: 15.3 mg Mnt/kg T2: 153 mg Mnt/kg T3: 6.7 mg Mthl/kg T4: 67 mg Mthl/kg | 4 h of supplement | Increased mean rumen pH from menthol treatment with high-concentrate SARA diet. | [46] |
Holstein Cattle | rumen fluid from 17 month olds tested in vitro | 5 CON, 5 per TRT | Menthol | T1: 0.003% T2: 0.03% T3: 0.3% | 24 h | No effect on gas production, rumen pH, or VFAs. | [127] |
Friesian Cattle | lactating | 10 CON, 10 per TRT | Aromix® (133 mg menthol/g) | T1: 3 g/day T2: 6 g/day | 3 months | Increased nutrient digestibility and VFAs with T1, decreased nutrient digestibility and increased propionate with T2, decreased ammonia production and increased pH at both doses. | [48] |
Holstein Cattle | lactating, heat stress conditions | 16 CON, 16 TRT | BioHerbal® (contains peppermint) | 2 g/day | 28 days | Decreased propionate, increased a/p ratio and rumen pH, no effect on total VFAs. | [49] |
Friesian Cattle | lactating | 10 CON, 10 per TRT | Aromix® (133 mg menthol/g) | T1: 3 g/day T2: 6 g/day | 3 months | Increased nutrient digestibility and decreased a/p ratio with T1, decreased nutrient digestibility and increased a/p ratio with T2, decreased ammonia production at both doses. | [51] |
Holstein Cattle | nonlactating | 4–5 CON, 4–5 TRT | Digestarom® (contains menthol) | 0.04% | Two periods of 6 weeks | Increased rumen pH, decreased propionate and increased a/p ratio and other VFAs at 2 weeks, increased ammonia production at 2 weeks, decreased ammonia production at 3 weeks. | [88] |
Holstein Cattle | lactating | 4 CON, 4 TRT | Peppermint | 5% | 22 days | No effect on nutrient digestibility, VFAs, or gas production, immediate decrease in ammonia production but not after 3 h, minor decrease in rumen pH. | [52] |
Holstein Cattle | NA | 4 CON, 4 TRT (4 × 4 Latin square) | Peppermint | 5% | 2 weeks | Increased ammonia production, no effect on rumen pH or VFAs. | [54] |
Holstein Cattle | lactating | 4 CON, 4 TRT | Peppermint | 5% | 22 days | Decreased nutrient digestibility and methane production per dry/digestible matter intake, no effect on VFAs or pH. | [53] |
Cattle | nonlactating cow rumen fluid tested in vitro | 3 CON, 3 per TRT | Peppermint | T1: 100 mg/L T2: 200 mg/L T3: 300 mg/L T4: 400 mg/L | 48 h | Tendency for decreased digestibility, increased a/p ratio, no effect on methane production or ammonia production. | [129] |
Holstein Cattle | NA | 4 CON, 4 TRT | Peppermint | 200 g/day | 14 days | Tendency for increased nutrient digestibility, decreased ammonia production, VFAs, rumen protozoa, and rumen pH. | [130] |
Jersey Cattle | rumen fluid tested in vitro from fistulated lactating cattle | 3 CON, 3 per TRT | Peppermint | T1: 0.1 g/L T2: 0.25 g/L T3: 1 g/L | 24 h | Decreased archaea, protozoa, methanogens, cellulolytic bacteria, gas production, methane production, and propionate, increased a/p ratio and rumen pH, no change to ammonia production. | [133] |
Jersey Cattle | rumen fluid tested in vitro from fistulated lactating cattle | 3 CON, 3 TRT | Peppermint | 1 g/L | 24 h | Decrease in most bacteria and archaea, increase in S. bovis, no effect on ammonia production. | [139] |
Suffolk Sheep | growing | 8 CON, 8 per TRT | OAX17 (90% menthol) | T1:80 mg/day T2: 160 mg/day | 4 weeks | Alterations in ruminal abundance of most bacterial taxa, no effect on rumen fermentation, pH, VFAs, ammonia, or methane. | [137] |
Sanjabi Sheep | 90 days old | 6 CON, 6 TRT | Peppermint | 3% | 90 days | No effect on nutrient digestibility or pH, decreased ammonia production. | [57] |
Buffalo | NA | 3 CON, 3 TRT (3 × 3 Latin square) | Peppermint | 2 mL/100 kg body weight | 24 days | No effect on nutrient digestibility, pH, VFAs, ammonia production, or rumen microbes. | [128] |
Buffalo | rumen fluid tested in vitro | 5 CON, 5 per TRT | Peppermint | T1: 1.5 µL/mL T2: 3 µL/mL | 24 h | Increased gas production with T1, decreased gas production, methane production, dry matter digestibility, and increased a/p ratio with T2, no effect on pH. | [131] |
Buffalo | rumen fluid tested in vitro | NA | Peppermint | T1: 30 ppm T2: 300 ppm T3: 600 ppm | 24 h | Increased propionate with T3, decreased digestibility and VFAs with T3, decreased methane production with T2 and T3, no effect on ammonia production. | [132] |
Sheep | rumen fluid tested in vitro | 3 CON, 3 per TRT | Peppermint | T1: 100 mg/L T2: 200 mg/L T3: 400 mg/L T4: 800 mg/L T5: 1200 mg/L | 96 h | Decreased organic matter digestibility, methane production, ammonia production, and propionate, increased a/p ratio and pH. | [134] |
Buffalo | rumen fluid tested in vitro | 6 CON, 6 per TRT | Peppermint | T1: 0.33 µL/mL T2: 1 µL/mL T3: 2 µL/mL | 24 h | Decreased bacteria, fungi, and methanogen populations with T2 and T3, increased with T1, increased a/p ratio, decreased feed digestibility and methane production. | [138] |
Murrah Buffalo | NA | 2 CON, 2 TRT (2 × 2 switch over) | Garlic Bulb + Peppermint | 2.5% of dry weight | Two periods of 21 days | Decreased methane production, no effect on dry matter digestibility, rumen pH, or rumen microbes. | [58] |
Chickens | 18 week old laying hens | 50 CON, 50 TRT | Digestarom® (contains menthol) | 150 g/t | 12 weeks | Decreased Lactobacillus and Ruminococcus. | [60] |
Hubbard Chickens | 1 day old | 50 CON, 50 per TRT | Phytogenic Blend (garlic, mint, etc.) or Blend + Organic Acids | T1: 3 kg phytogenic blend/ton T2: 3 kg phytogenic blend/ton + organic acids | 42 days | Increased gut Lactobacillus in ileum and Enterococcus in cecum and ileum. | [61] |
Cobb 500 Chickens | 1 day old | Trial 1: 160 CON, 160 TRT; Trial 2: 40 CON, 40 TRT | Phytogenic Blend (menthol, anethole) | 150 mg/kg diet | Trial 1: 42 days Trial 2: 21 days | Increased cysteine digestibility, no effect on other nutrient digestibility. | [62] |
Cobb Chickens | 1 day old | 75 CON, 75 per TRT | Phytogenic Blend (menthol, anethol, and eugenol) | T1: 100 mg/kg T2: 150 mg/kg | 42 days | Linear increase in dry matter digestibility and apparent metabolizable energy corrected for nitrogen, no effect on crude protein or ether extract digestibility. | [63] |
Ross 308 Chickens | 1 day old | 48 CON, 48 per TRT | Peppermint | T1: 200 mg/kg T2: 400 mg/kg | 6 weeks | Increased crude protein digestibility with T1, no effect on dry matter or ether extract digestibility. | [69] |
Chickens | 1 day old | 9 CON, 9 per TRT | Peppermint | T1: 0.5% T2: 1% T3: 1.5% T4: 2% | 42 days | Decreased ammonia excretion, no effect on nutrient digestibility. | [70] |
Bovans Brown Chickens | 32 week old laying hens | 40 CON, 40 per TRT | Peppermint | T1: 74 mg/kg T2: 148 mg/kg T3: 222 mg/kg T4: 296 mg/kg | 12 weeks | Linear increase in crude protein and ether extract digestibility, no effect on other nutrient digestibility. | [77] |
Animal | Growth Stage/Conditions 1 | Sample Size 2 | Treatment | Dosage 3 | Experiment Duration 4 | Effects of Treatment 5 | Reference |
---|---|---|---|---|---|---|---|
Friesian Cattle | lactating | 10 CON, 10 per TRT | Aromix® (133 mg menthol/g) | T1: 3 g/day T2: 6 g/day | 3 months | Decreased serum urea, triglycerides, cholesterol, and total lipids, increased serum protein, increased serum glucose with T1, decreased glucose with T2, no effect on serum calcium. | [48] |
Holstein–Friesian Cattle | lactating | 36 CON, 36 TRT | BTX12 (>80% menthol) | 1.2 g/day | Two periods of 20 days | Decreased serum and urine urea, increased serum calcium, no effect on serum protein or urine calcium. | [50] |
Friesian Cattle | lactating | 10 CON, 10 per TRT | Aromix® (133 mg menthol/g) | T1: 3 g/day T2: 6 g/day | 3 months | Increased serum protein and glucose with T1, decreased serum glucose with T2, decreased serum cholesterol and triglycerides, increased serum calcium, no effect on serum urea. | [51] |
Holstein Cattle | NA | 4 CON, 4 TRT (4 × 4 Latin square) | Peppermint | 5% | 2 weeks | Increased serum urea, no effect on serum protein or glucose, cholesterol, triglycerides, or lipoproteins. | [54] |
Holstein Cattle | 4 year olds, transition state pregnancy | 10 CON, 10 TRT | Peppermint | 400 g/day | 15 days + 12 h after calving | Increased serum calcium and decreased urine pH at end of 15 days and 12 h after calving. | [151] |
Suffolk Sheep | growing | 8 CON, 8 per TRT | OAX17 GmbH (90% menthol) | T1: 80 mg/day T2: 160 mg/day | 28 days | Tendency for increased serum calcium with T2, increased serum glutamine, glutamate, asparagine, and aspartate, no effect on serum urea, glucose, cholesterol, or triglycerides, tendency for improved Na+ independent glucose uptake. | [56] |
Sanjabi Sheep | 90 days old | 6 CON, 6 TRT | Peppermint | 3% | 90 days | Decreased serum urea and increased serum glucose and triglycerides during middle period, no effect on serum protein or cholesterol, increased calcium digestibility. | [57] |
Sheep | 3 to 4 years-old | 4 CON 4 per TRT | Peppermint | T1: 10 mL/kg T2: 20 mL/kg T3: 30 mL/kg | NA | Increased serum glucose with T3, no effect on serum protein, cholesterol, or triglycerides. | [89] |
Hubbard Chickens | 1 day old | 50 CON, 50 per TRT | Phytogenic Blend (garlic, mint, etc.) or Blend + Organic Acids | T1: 3 kg phytogenic blend/ton T2: 3 kg phytogenic blend/ton + organic acids | 42 days | Decreased serum cholesterol, no effect on serum protein. | [61] |
Cobb Chickens | 1 day old | 75 CON, 75 per TRT | Phytogenic Blend (menthol, anethol, and eugenol) | T1: 100 mg/kg T2: 150 mg/kg | 42 days | No effect on serum protein, glucose, or cholesterol. | [63] |
Hy-Line Brown Chickens | 64 week old laying hens | 50 CON, 50 per TRT | Peppermint | T1: 5 mg/kg T2: 10 mg/kg T3: 15 mg/kg T4: 20 mg/kg | 12 weeks | Increased serum protein, decreased serum cholesterol, no effect on serum glucose. | [65] |
Habcock Chickens | 21 week old laying hens | 36 CON, 36 per TRT | Peppermint | T1: 50 mg/kg T2: 100 mg/kg T3: 200 mg/kg T4: 50 mg/L T5: 100 mg/L T6: 200 mg/L | 56 days | No effect on serum protein, glucose, cholesterol, lipoproteins, or calcium. | [72] |
Chickens | 60 week old laying hens | 54 CON, 54 per TRT | Peppermint | T1: 0.1% T2: 0.2% T3: 0.3% T4: 0.4% | 28 days | Increased serum protein, uric acid, and triglycerides, trend towards increased serum cholesterol, no effect on serum lipoproteins or urea. | [73] |
Ross 308 Chickens | 1 day old | 48 CON, 48 per TRT | Peppermint | T1: 4 g/kg T2: 8 g/kg | 42 days | No effect on serum protein, cholesterol, or lipoproteins. | [75] |
Ross 308 Chickens | 1 day old, heat stress conditions | 80 CON, 80 per TRT | Peppermint | T1: 200 ppm ethanolic/kg body weight T2: 200 ppm nano-/kg body weight T3: 200 ppm micro-/kg body weight | 42 days | Increased serum protein and HDL, decreased serum cholesterol, triglycerides, LDL, and VLDL. | [76] |
Bovans Brown Chickens | 32 week old laying hens | 40 CON, 40 per TRT | Peppermint | T1: 74 mg/kg T2: 148 mg/kg T3: 222 mg/kg T4: 296 mg/kg | 12 weeks | Increased serum protein, decreased serum cholesterol, no effect on serum glucose or calcium. | [77] |
Lohmann LSL-Lite Chickens | 40 week old laying hens, cold stress conditions | 30 CON, 30 per TRT | Peppermint or Peppermint + Thyme | T1: 100 mg Pep/kg diet T2: 100 mg Pep/kg + thyme | 8 weeks | No effect on serum glucose or uric acid decreased serum triglycerides with T2. | [78] |
Cobb 500 Chickens | 1 day old females, heat stress conditions | 60 CON, 60 per TRT | Peppermint or Peppermint + Chromium Picolinate | T1: 250 mg Pep/kg T2: 250 mg Pep/kg + chromium picolinate | 42 days | Decreased serum glucose and triglycerides with T2, no effect on serum cholesterol or lipoproteins. | [80] |
Ross 308 Chickens | chicks | 75 CON, 75 per TRT | Peppermint or Peppermint + Artichoke | T1: 200 mg Mnt/kg water T2: 200 mg Mnt/kg water + 1.5% artichoke | 42 days | Decreased serum cholesterol and triglycerides, no effect on serum urea, protein, glucose, or lipoproteins. | [98] |
Cobb Chickens | 1 day old | 20 CON, 20 per TRT | Peppermint or Peppermint + Black Seed | T1: 300 mg/kg Pep T2: 300 mg/kg Pep + 1 mL/kg black seed | 42 days | No effect on serum urea or protein. | [152] |
Japanese Quail | 8 days old | 120 CON, 60 per TRT | Peppermint | T1: 10 g/kg T2: 20 g/kg T3: 30 g/kg T4: 40 g/kg | 5 weeks | Decreased serum cholesterol, triglycerides, and LDL, increased serum HDL. | [81] |
Japanese Quail | 7 days old | 60 CON, 60 per TRT | Spearmint | T1: 1% T2: 2% T3: 3% T4: 4% | 28 days | Decreased serum cholesterol, triglycerides, and LDL. | [153] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernard, B.; Joshi, H.; Fan, P. Menthol in Livestock: Unveiling Its Multifaceted Properties and Future Potential for Sustainable Agriculture. Int. J. Mol. Sci. 2025, 26, 2679. https://doi.org/10.3390/ijms26062679
Bernard B, Joshi H, Fan P. Menthol in Livestock: Unveiling Its Multifaceted Properties and Future Potential for Sustainable Agriculture. International Journal of Molecular Sciences. 2025; 26(6):2679. https://doi.org/10.3390/ijms26062679
Chicago/Turabian StyleBernard, Brandon, Himani Joshi, and Peixin Fan. 2025. "Menthol in Livestock: Unveiling Its Multifaceted Properties and Future Potential for Sustainable Agriculture" International Journal of Molecular Sciences 26, no. 6: 2679. https://doi.org/10.3390/ijms26062679
APA StyleBernard, B., Joshi, H., & Fan, P. (2025). Menthol in Livestock: Unveiling Its Multifaceted Properties and Future Potential for Sustainable Agriculture. International Journal of Molecular Sciences, 26(6), 2679. https://doi.org/10.3390/ijms26062679