Negative Hyperselection in Metastatic Colorectal Cancer for First-Line Anti-EGFR Therapy: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. The Role of Negative Hyperselection in Optimizing First-Line Chemotherapy for Metastatic Colorectal Cancer
4. Liquid Biopsies and ctDNA in Negative Hyperselection: Implications for Precision Oncology
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baidoun, F.; Elshiwy, K.; Elkeraie, Y.; Merjaneh, Z.; Khoudari, G.; Sarmini, M.T.; Gad, M.; Al-Husseini, M.; Saad, A. Colorectal Cancer Epidemiology: Recent Trends and Impact on Outcomes. Curr. Drug Targets. 2021, 22, 998–1009. [Google Scholar] [CrossRef]
- Abedizadeh, R.; Majidi, F.; Khorasani, H.R.; Abedi, H.; Sabour, D. Colorectal cancer: A comprehensive review of carcinogenesis, diagnosis, and novel strategies for classified treatments. Cancer Metastasis Rev. 2024, 43, 729–753. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, A.; Adam, R.; Roselló, S.; Arnold, D.; Normanno, N.; Taïeb, J.; Seligmann, J.; De Baere, T.; Osterlund, P.; Yoshino, T.; et al. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 10–32. [Google Scholar] [CrossRef]
- Kasi, P.M.; Afable, M.G.; Herting, C.; Lukanowski, M.; Jin, Z. Anti-EGFR Antibodies in the Management of Advanced Colorectal Cancer. Oncologist 2023, 28, 1034–1048. [Google Scholar] [CrossRef] [PubMed]
- Vaquero, J.; Pavy, A.; Gonzalez-Sanchez, E.; Meredith, M.; Arbelaiz, A.; Fouassier, L. Genetic alterations shaping tumor response to anti-EGFR therapies. Drug Resist. Updat. 2022, 64, 100863. [Google Scholar] [CrossRef]
- Zhou, J.; Ji, Q.; Li, Q. Resistance to anti-EGFR therapies in metastatic colorectal cancer: Underlying mechanisms and reversal strategies. J. Exp. Clin. Cancer Res. 2021, 40, 328. [Google Scholar] [CrossRef] [PubMed]
- Cremolini, C.; Morano, F.; Moretto, R.; Berenato, R.; Tamborini, E.; Perrone, F.; Rossini, D.; Gloghini, A.; Busico, A.; Zucchelli, G.; et al. Negative hyper-selection of metastatic colorectal cancer patients for anti-EGFR monoclonal antibodies: The PRESSING case-control study. Ann. Oncol. 2017, 28, 3009–3014. [Google Scholar] [CrossRef]
- Morano, F.; Corallo, S.; Lonardi, S.; Raimondi, A.; Cremolini, C.; Rimassa, L.; Murialdo, R.; Zaniboni, A.; Sartore-Bianchi, A.; Tomasello, G.; et al. Negative Hyperselection of Patients with RAS and BRAF Wild-Type Metastatic Colorectal Cancer Who Received Panitumumab-Based Maintenance Therapy. J. Clin. Oncol. 2019, 37, 3099–3110. [Google Scholar] [CrossRef]
- Pietrantonio, F.; Bergamo, F.; Rossini, D.; Ghelardi, F.; De Grandis, M.C.; Germani, M.M.; Barsotti, G.; Formica, V.; Frassineti, G.L.; Boscolo, G.; et al. Negative hyperselection of elderly patients with RAS and BRAF wild-type metastatic colorectal cancer receiving initial panitumumab plus FOLFOX or 5-FU/LV. Eur. J. Cancer 2023, 195, 113396. [Google Scholar] [CrossRef]
- Tao, X.Y.; Li, Q.Q.; Zeng, Y. Clinical application of liquid biopsy in colorectal cancer: Detection, prediction, and treatment monitoring. Mol. Cancer. 2024, 23, 145. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Lin, H.; Zhu, Y.; Huang, D.; Lai, M.; Xi, X.; Huang, J.; Zhang, W.; Zhong, T. Research progress of CTC, ctDNA, and EVs in cancer liquid biopsy. Front. Oncol. 2024, 14, 1303335. [Google Scholar] [CrossRef] [PubMed]
- Olmedillas-López, S.; Olivera-Salazar, R.; García-Arranz, M.; García-Olmo, D. Current and Emerging Applications of Droplet Digital PCR in Oncology: An Updated Review. Mol. Diagn. Ther. 2022, 26, 61–87. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Vila, C.; Teixido, C.; Aya, F.; Martín, R.; González-Navarro, E.A.; Alos, L.; Castrejon, N.; Arance, A. Detection of Circulating Tumor DNA in Liquid Biopsy: Current Techniques and Potential Applications in Melanoma. Int. J. Mol. Sci. 2025, 26, 861. [Google Scholar] [CrossRef] [PubMed]
- Patelli, G.; Vaghi, C.; Tosi, F.; Mauri, G.; Amatu, A.; Massihnia, D.; Ghezzi, S.; Bonazzina, E.; Bencardino, K.; Cerea, G.; et al. Liquid Biopsy for Prognosis and Treatment in Metastatic Colorectal Cancer: Circulating Tumor Cells vs. Circulating Tumor DNA. Target. Oncol. 2021, 16, 309–324. [Google Scholar] [CrossRef]
- Krell, M.; Llera, B.; Brown, Z.J. Circulating Tumor DNA and Management of Colorectal Cancer. Cancers 2023, 16, 21. [Google Scholar] [CrossRef]
- Di Sario, G.; Rossella, V.; Famulari, E.S.; Maurizio, A.; Lazarevic, D.; Giannese, F.; Felici, C. Enhancing clinical potential of liquid biopsy through a multi-omic approach: A systematic review. Front. Genet. 2023, 14, 1152470. [Google Scholar] [CrossRef]
- Seyhan, A.A. Circulating Liquid Biopsy Biomarkers in Glioblastoma: Advances and Challenges. Int. J. Mol. Sci. 2024, 25, 7974. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, J.; Fu, Q.; Taly, V.; Tan, F. Integrative analysis of multi-omics data for liquid biopsy. Br. J. Cancer. 2023, 128, 505–518. [Google Scholar] [CrossRef]
- Ma, L.; Guo, H.; Zhao, Y.; Liu, Z.; Wang, C.; Bu, J.; Sun, T.; Wei, J. Liquid biopsy in cancer current: Status, challenges and future prospects. Signal Transduct. Target. Ther. 2024, 9, 336. [Google Scholar] [CrossRef]
- Shitara, K.; Muro, K.; Watanabe, J.; Yamazaki, K.; Ohori, H.; Shiozawa, M.; Takashima, A.; Yokota, M.; Makiyama, A.; Akazawa, N.; et al. Baseline ctDNA gene alterations as a biomarker of survival after panitumumab and chemotherapy in metastatic colorectal cancer. Nat. Med. 2024, 30, 730–739. [Google Scholar] [CrossRef]
- Uetake, H.; Yamashita, R.; Shitara, K.; Yoshino, T.; Watanabe, J.; Yasui, H.; Ohori, H.; Shiozawa, M.; Muro, K.; Yamazaki, K.; et al. Acquired gene alteration patterns and post-progression survival: PARADIGM study analysis. J. Clin. Oncol. 2024, 42, 3507. [Google Scholar] [CrossRef]
- Manca, P.; Corallo, S.; Busico, A.; Lonardi, S.; Corti, F.; Antoniotti, C.; Procaccio, L.; Clavarezza, M.; Smiroldo, V.; Tomasello, G.; et al. The Added Value of Baseline Circulating Tumor DNA Profiling in Patients with Molecularly Hyperselected, Left-sided Metastatic Colorectal Cancer. Clin. Cancer Res. 2021, 27, 2505–2514. [Google Scholar] [CrossRef] [PubMed]
- Vidal, J.; Fernández-Rodríguez, M.C.; Casadevall, D.; García-Alfonso, P.; Páez, D.; Guix, M.; Alonso, V.; Cano, M.T.; Santos, C.; Durán, G.; et al. Liquid Biopsy Detects Early Molecular Response and Predicts Benefit to First-Line Chemotherapy plus Cetuximab in Metastatic Colorectal Cancer: PLATFORM-B Study. Clin. Cancer Res. 2023, 29, 379–388. [Google Scholar] [CrossRef]
- Sundar, R.; Tan, I.B.H.; Chee, C.E. Negative Predictive Biomarkers in Colorectal Cancer: PRESSING Ahead. J. Clin. Oncol. 2019, 37, 3066–3068. [Google Scholar] [CrossRef] [PubMed]
- Koulouris, A.; Tsagkaris, C.; Corriero, A.C.; Metro, G.; Mountzios, G. Resistance to TKIs in EGFR-Mutated Non-Small Cell Lung Cancer: From Mechanisms to New Therapeutic Strategies. Cancers 2022, 14, 3337. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Zhou, Z.; Wang, H.; Wang, R.; Shen, K.; Huang, R.; Wang, Z. The Biological Roles and Clinical Applications of the PI3K/AKT Pathway in Targeted Therapy Resistance in HER2-Positive Breast Cancer: A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 13376. [Google Scholar] [CrossRef]
- Manzano, J.L.; Layos, L.; Bugés, C.; de Los Llanos Gil, M.; Vila, L.; Martínez-Balibrea, E.; Martínez-Cardús, A. Resistant mechanisms to BRAF inhibitors in melanoma. Ann. Transl. Med. 2016, 4, 237. [Google Scholar] [CrossRef]
- Ascierto, P.A.; Atkins, M.; Bifulco, C.; Botti, G.; Cochran, A.; Davies, M.; Demaria, S.; Dummer, R.; Ferrone, S.; Formenti, S.; et al. Future perspectives in melanoma research: Meeting report from the “Melanoma Bridge”: Napoli, December 3rd–6th 2014. J. Transl. Med. 2015, 13, 374. [Google Scholar] [CrossRef]
Study | Population | Methodology | Treatments | Response Rate | Time-to-Outcome |
---|---|---|---|---|---|
Cremolini et al. [7] | 94 RAS/BRAF wt mCRC patients. | PRESSING panel. | FOLFIRI + cetuximab/panitumumab. | Resistance alterations in 42.6% of resistant vs. 2.1% of sensitive patients (p < 0.001). | PFS was longer in hyperselected patients compared to those with any gene alteration (mPFS 6.3 vs. 2.7 months). OS was comparable between the groups (15.2 vs. 17.3 months, p = 0.876). |
Morano F et al. [8] | 199 mCRC patients stratified by PRESSING status and tumor sidedness. | PRESSING panel. | FOLFOXIRI + cetuximab/panitumumab. | PRESSING-positive tumors (24.6%) had lower ORR (59.2% vs. 75.3%, p = 0.030). | PRESSING-positive tumors had shorter PFS (7.7 vs. 12.1 months, p < 0.001) and reduced two-year OS (48.1% vs. 68.1%, p = 0.021). |
Pietrantonio F et al. [9] | 183 elderly mCRC patients (147 biomarker-evaluable). | Modified PRESSING panel (MAP2K1 mutations, broader PTEN alterations). | FOLFOX or 5-FU/LV + panitumumab. | ORR was lower in “gene-altered” patients (51% vs. 71%, p = 0.027). | Hyperselected cases (72.1%) had longer PFS (12.8 vs. 7.6 months, p < 0.001) and OS (29.5 vs. 20 months, p = 0.002). |
Shitara et al. [20] | 733 mCRCpatients with baseline ctDNA. | ctDNA through PlasmaSELECT-R 91. | FOLFOX + panitumumab or bevacizumab. | In the negative hyperselected population, the ORR was higher with panitumumab (81.5%) than with bevacizumab (66.8%, p < 0.001). | “Negative hyperselected” patients had superior OS with panitumumab vs. bevacizumab (40.7 vs. 34.4 months). |
Uetake et al. (ASCO 2024) [21] | 276 mCRC patients with PD post-anti-EGFR therapy. | ctDNA through PlasmaSELECT-R 91. | Rechallenge with anti-EGFR or switch to bevacizumab-based therapy. | Not available. | Acquired RTK/RAS alterations were associated with shorter PPS (13.2 vs. 18.8 months, HR 1.88, 95% CI: 1.28–2.76) and OS. Similar trend in bevacizumab arm with CIMP alterations. |
Manca et al. [22] | 120 left-sided, RAS/BRAF wild-type, HER2-negative, and microsatellite-stable mCRC patients. | ctDNA analysis was performed using the OncoBEAM Assay for RAS mutations and the Oncomine Colon panel. The results were compared with tumor tissue sequencing using the PRESSING panel. | FOLFOX + panitumumab. | 44.4% no response in ctDNA RAS-mutated vs. 14.0% no response in ctDNA RAS wild-type, p = 0.039. No significance for PIK3CA. | A high variant allele fraction (VAF ≥ 5%) for RAS/PIK3CA mutations in ctDNA exhibited a median PFS of 7.7 months vs. 13.1 months in wild-type cases (HR: 4.02; 95% CI: 2.03–7.95; p < 0.001) and a median OS of 18.8 months vs. 38.9 months (HR: 4.07; 95% CI: 2.04–8.12; p < 0.001). |
Vidal et al. [23] | 99 RAS wt mCRC patients receiving first-line treatment. | ctDNA analysis was performed using the OncoBEAM Assay for RAS mutations and the Oncomine Colon panelat baseline and prior to the third treatment cycle. RAS tumor tissue was assessed according to local laboratory. | Chemotherapy + cetuximab. | Early molecular responders showed significantly better ORR compared to early molecular progression (ORR: 77.5% vs. 25%, p = 0.008). | Early molecular responders showed significantly longer PFS compared to early molecular progression (median PFS: 18.84 vs. 5.58 months; HR: 0.18, p < 0.001). |
Feature | Tumor Tissue Profiling | Liquid Biopsy (ctDNA) |
---|---|---|
Invasiveness | High (requires biopsy) | Low (blood-based) |
Spatial/temporal heterogeneity | Yes (single site sample) | No (captures systemic mutations) |
Detection sensitivity | High (direct tumor sequencing) | Variable (depends on ctDNA shedding) |
Application in clinical trials | Well-established | Emerging, requires further validation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciappina, G.; Toscano, E.; Ottaiano, A.; Capuozzo, M.; Consolo, P.; Maiorana, E.; Carroccio, P.; Franchina, T.; Ieni, A.; Di Mauro, A.; et al. Negative Hyperselection in Metastatic Colorectal Cancer for First-Line Anti-EGFR Therapy: A Narrative Review. Int. J. Mol. Sci. 2025, 26, 2216. https://doi.org/10.3390/ijms26052216
Ciappina G, Toscano E, Ottaiano A, Capuozzo M, Consolo P, Maiorana E, Carroccio P, Franchina T, Ieni A, Di Mauro A, et al. Negative Hyperselection in Metastatic Colorectal Cancer for First-Line Anti-EGFR Therapy: A Narrative Review. International Journal of Molecular Sciences. 2025; 26(5):2216. https://doi.org/10.3390/ijms26052216
Chicago/Turabian StyleCiappina, Giuliana, Enrica Toscano, Alessandro Ottaiano, Maurizio Capuozzo, Pierluigi Consolo, Enrica Maiorana, Patrizia Carroccio, Tindara Franchina, Antonio Ieni, Annabella Di Mauro, and et al. 2025. "Negative Hyperselection in Metastatic Colorectal Cancer for First-Line Anti-EGFR Therapy: A Narrative Review" International Journal of Molecular Sciences 26, no. 5: 2216. https://doi.org/10.3390/ijms26052216
APA StyleCiappina, G., Toscano, E., Ottaiano, A., Capuozzo, M., Consolo, P., Maiorana, E., Carroccio, P., Franchina, T., Ieni, A., Di Mauro, A., & Berretta, M. (2025). Negative Hyperselection in Metastatic Colorectal Cancer for First-Line Anti-EGFR Therapy: A Narrative Review. International Journal of Molecular Sciences, 26(5), 2216. https://doi.org/10.3390/ijms26052216