Unravelling the Regulatory Roles of lncRNAs in Melanoma: From Mechanistic Insights to Target Selection
Abstract
:1. Introduction
- Radiotherapy with high-energy waves is proposed as adjuvant or palliative therapy for the management of melanoma, albeit it is relatively radioresistant [14].
- Immunotherapy that comprises treatment for the inhibition of Interleukin-2 (IL-2), Programmed cell death protein 1 (PD-1) and Programmed death-ligand 1 (PD-L1), Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and Lymphocyte Activation Gene 3 (LAG-3) [15].
2. Non-Coding RNA
3. Correlation of lncRNA and Cancer
3.1. Biomolecules Involved in Functional Interactions with lncRNAs
3.2. Issues About lncRNA Detection and Functional Validation
4. Validated lncRNA Functional Pathways Relevant in Melanoma
4.1. Chromatin Remodeling
4.2. Post-Transcriptional Regulation
4.3. Translational Regulation
4.4. Post-Translational Regulation
5. Implications of lncRNA Localization on Regulatory Network in Melanoma
5.1. Exosomes
5.2. Nucleus
5.3. Cytoplasm
5.4. Mitochondria
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
lncRNAs | Long non-coding RNAs |
SEER | Surveillance, Epidemiology, and End Results |
HGP | Human Genome Project |
References
- Rabbie, R.; Ferguson, P.; Molina-Aguilar, C.; Adams, D.J.; Robles-Espinoza, C.D. Melanoma Subtypes: Genomic Profiles, Prognostic Molecular Markers and Therapeutic Possibilities. J. Pathol. 2019, 247, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Tas, F.; Keskin, S.; Karadeniz, A.; Dağoğlu, N.; Sen, F.; Kilic, L.; Yildiz, I. Noncutaneous Melanoma Have Distinct Features from Each Other and Cutaneous Melanoma. Oncology 2012, 81, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.E.; Karnell, L.H.; Menck, H.R. The National Cancer Data Base Report on Cutaneous and Noncutaneous Melanoma: A Summary of 84,836 Cases from the Past Decade. Cancer 1998, 83, 1664–1678. [Google Scholar] [CrossRef]
- Arnold, M.; Singh, D.; Laversanne, M.; Vignat, J.; Vaccarella, S.; Meheus, F.; Cust, A.E.; de Vries, E.; Whiteman, D.C.; Bray, F. Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatol. 2022, 158, 495–503. [Google Scholar] [CrossRef] [PubMed]
- The Surveillance, Epidemiology, and End Results (SEER) Program and Pathology: Toward Strengthening the Critical Relationship. Available online: https://pubmed.ncbi.nlm.nih.gov/27740970/ (accessed on 16 September 2024).
- Heistein, J.B.; Acharya, U.; Mukkamalla, S.K.R. Malignant Melanoma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- National Institutes of Health, and US Department of Health and Human Services. SEER (Surveillance, Epidemiology, and End Results Program). In Medical Technology Assessment Directory: A Pilot Reference To Organizations, Assessments, and Information Resources; National Academies Press: Cambridge, MA, USA, 1988. [Google Scholar]
- Pathak, S.; Zito, P.M. Clinical Guidelines for the Staging, Diagnosis, and Management of Cutaneous Malignant Melanoma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Pasquali, S.; Hadjinicolaou, A.V.; Chiarion Sileni, V.; Rossi, C.R.; Mocellin, S. Systemic treatments for metastatic cutaneous melanoma. Cochrane Database Syst. Rev. 2018, 2, CD011123. [Google Scholar] [CrossRef]
- Luke, J.J.; Schwartz, G.K. Chemotherapy in the Management of Advanced Cutaneous Malignant Melanoma. Clin. Dermatol. 2013, 31, 290–297. [Google Scholar] [CrossRef]
- Gupta, P.K.; Orlovskiy, S.; Arias-Mendoza, F.; Nelson, D.S.; Osborne, A.; Pickup, S.; Glickson, J.D.; Nath, K. Metabolic Imaging Biomarkers of Response to Signaling Inhibition Therapy in Melanoma. Cancers 2024, 16, 365. [Google Scholar] [CrossRef] [PubMed]
- Seth, R.; Agarwala, S.S.; Messersmith, H.; Alluri, K.C.; Ascierto, P.A.; Atkins, M.B.; Bollin, K.; Chacon, M.; Davis, N.; Faries, M.B.; et al. Systemic Therapy for Melanoma: ASCO Guideline Update. J. Clin. Oncol. 2023, 41, 4794–4820. [Google Scholar] [CrossRef]
- Shi, W. Radiation Therapy for Melanoma. In Cutaneous Melanoma: Etiology and Therapy; Ward, W.H., Farma, J.M., Eds.; Codon Publications: Brisbane, AU, USA, 2017; ISBN 978-0-9944381-4-0. [Google Scholar]
- Knight, A.; Karapetyan, L.; Kirkwood, J.M. Immunotherapy in Melanoma: Recent Advances and Future Directions. Cancers 2023, 15, 1106. [Google Scholar] [CrossRef]
- Pavri, S.N.; Clune, J.; Ariyan, S.; Narayan, D. Malignant Melanoma: Beyond the Basics. Plast. Reconstr. Surg. 2016, 138, 330e. [Google Scholar] [CrossRef] [PubMed]
- Boutros, A.; Croce, E.; Ferrari, M.; Gili, R.; Massaro, G.; Marconcini, R.; Arecco, L.; Tanda, E.T.; Spagnolo, F. The Treatment of Advanced Melanoma: Current Approaches and New Challenges. Crit. Rev. Oncol. Hematol. 2024, 196, 104276. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Previously Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef]
- Delihas, N. Discovery and Characterization of the First Non-Coding RNA That Regulates Gene Expression, micF RNA: A Historical Perspective. World J. Biol. Chem. 2015, 6, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Palazzo, A.F.; Lee, E.S. Non-Coding RNA: What Is Functional and What Is Junk? Front. Genet. 2015, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Jarroux, J.; Morillon, A.; Pinskaya, M. History, Discovery, and Classification of lncRNAs. In Long Non Coding RNA Biology; Rao, M.R.S., Ed.; Advances in Experimental Medicine and Biology; Springer: Singapore, 2017; Volume 1008, pp. 1–46. ISBN 978-981-10-5202-6. [Google Scholar]
- ENCODE Project Consortium. An Integrated Encyclopedia of DNA Elements in the Human Genome. Nature 2012, 489, 57–74. [Google Scholar] [CrossRef]
- Poliseno, L.; Lanza, M.; Pandolfi, P.P. Coding, or Non-Coding, That Is the Question. Cell Res. 2024, 34, 609–629. [Google Scholar] [CrossRef] [PubMed]
- Slack, F.J.; Chinnaiyan, A.M. The Role of Non-Coding RNAs in Oncology. Cell 2019, 179, 1033–1055. [Google Scholar] [CrossRef] [PubMed]
- Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.-L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; et al. Long Non-Coding RNAs: Definitions, Functions, Challenges and Recommendations. Nat. Rev. Mol. Cell Biol. 2023, 24, 430–447. [Google Scholar] [CrossRef]
- Do, H.; Kim, W. Roles of Oncogenic Long Non-Coding RNAs in Cancer Development. Genom. Inform. 2018, 16, e18. [Google Scholar] [CrossRef]
- Li, C.; Ni, Y.-Q.; Xu, H.; Xiang, Q.-Y.; Zhao, Y.; Zhan, J.-K.; He, J.-Y.; Li, S.; Liu, Y.-S. Roles and Mechanisms of Exosomal Non-Coding RNAs in Human Health and Diseases. Signal Transduct. Target. Ther. 2021, 6, 383. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Lu, Y.; Zhang, C.; Cui, Q.; Tang, Y.-D.; Ji, X.; Cui, C. LncRNADisease v3.0: An Updated Database of Long Non-Coding RNA-Associated Diseases. Nucleic Acids Res. 2024, 52, D1365–D1369. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-X.; Wan, C.; Dong, Z.-B.; Wang, B.-H.; Liu, H.-Y.; Li, Y. Integrative Analysis of Long Noncoding RNA (lncRNA), microRNA (miRNA) and mRNA Expression and Construction of a Competing Endogenous RNA (ceRNA) Network in Metastatic Melanoma. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 2896–2907. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, M.; Czyz, M. The Functional Role of Long Non-Coding RNAs in Melanoma. Cancers 2021, 13, 4848. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Wang, J. Non-Coding RNAs in Melanoma: Biological Functions and Potential Clinical Applications. Mol. Ther. Oncolytics 2021, 22, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Melixetian, M.; Pelicci, P.G.; Lanfrancone, L. Regulation of LncRNAs in Melanoma and Their Functional Roles in the Metastatic Process. Cells 2022, 11, 577. [Google Scholar] [CrossRef] [PubMed]
- Montico, B.; Giurato, G.; Pecoraro, G.; Salvati, A.; Covre, A.; Colizzi, F.; Steffan, A.; Weisz, A.; Maio, M.; Sigalotti, L.; et al. The Pleiotropic Roles of Circular and Long Noncoding RNAs in Cutaneous Melanoma. Mol. Oncol. 2022, 16, 565–593. [Google Scholar] [CrossRef] [PubMed]
- Masrour, M.; Khanmohammadi, S.; Fallahtafti, P.; Hashemi, S.M.; Rezaei, N. Long Non-coding RNA as a Potential Diagnostic and Prognostic Biomarker in Melanoma: A Systematic Review and Meta-analysis. J. Cell. Mol. Med. 2024, 28, e18109. [Google Scholar] [CrossRef] [PubMed]
- Bridges, M.C.; Daulagala, A.C.; Kourtidis, A. LNCcation: lncRNA Localization and Function. J. Cell Biol. 2021, 220, e202009045. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, R.; Prabhakar, N.; Kumar, L.; Bhattacharjee, A.; Kar, S.; Malik, S.; Kumar, D.; Ruokolainen, J.; Negi, A.; Jha, N.K.; et al. Crosstalk between Long Noncoding RNA and microRNA in Cancer. Cell. Oncol. 2023, 46, 885–908. [Google Scholar] [CrossRef]
- Bhat, S.A.; Ahmad, S.M.; Mumtaz, P.T.; Malik, A.A.; Dar, M.A.; Urwat, U.; Shah, R.A.; Ganai, N.A. Long Non-Coding RNAs: Mechanism of Action and Functional Utility. Non-Coding RNA Res. 2016, 1, 43–50. [Google Scholar] [CrossRef]
- Statello, L.; Guo, C.-J.; Chen, L.-L.; Huarte, M. Gene Regulation by Long Non-Coding RNAs and Its Biological Functions. Nat. Rev. Mol. Cell Biol. 2021, 22, 96–118. [Google Scholar] [CrossRef]
- Huang, H.; Li, L.; Wen, K. Interactions between Long Non-Coding RNAs and RNA-Binding Proteins in Cancer. Oncol. Rep. 2021, 46, 256. [Google Scholar] [CrossRef]
- Ouyang, J.; Zhong, Y.; Zhang, Y.; Yang, L.; Wu, P.; Hou, X.; Xiong, F.; Li, X.; Zhang, S.; Gong, Z.; et al. Long Non-Coding RNAs Are Involved in Alternative Splicing and Promote Cancer Progression. Br. J. Cancer 2022, 126, 1113–1124. [Google Scholar] [CrossRef]
- Ziegler, C.; Kretz, M. The More the Merrier—Complexity in Long Non-Coding RNA Loci. Front. Endocrinol. 2017, 8, 90. [Google Scholar] [CrossRef] [PubMed]
- Frankish, A.; Carbonell-Sala, S.; Diekhans, M.; Jungreis, I.; Loveland, J.E.; Mudge, J.M.; Sisu, C.; Wright, J.C.; Arnan, C.; Barnes, I.; et al. GENCODE: Reference Annotation for the Human and Mouse Genomes in 2023. Nucleic Acids Res. 2023, 51, D942–D949. [Google Scholar] [CrossRef] [PubMed]
- Flynn, R.A.; Chang, H.Y. Long Noncoding RNAs in Cell Fate Programming and Reprogramming. Cell Stem Cell 2014, 14, 752–761. [Google Scholar] [CrossRef]
- Rinn, J.L.; Wang, J.K.; Allen, N.; Brugmann, S.A.; Mikels, A.J.; Liu, H.; Ridky, T.W.; Stadler, H.S.; Nusse, R.; Helms, J.A.; et al. A Dermal HOX Transcriptional Program Regulates Site-Specific Epidermal Fate. Genes Dev. 2008, 22, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Sarropoulos, I.; Marin, R.; Cardoso-Moreira, M.; Kaessmann, H. Developmental Dynamics of lncRNAs across Mammalian Organs and Species. Nature 2019, 571, 510–514. [Google Scholar] [CrossRef]
- Kim, D.H.; Marinov, G.K.; Pepke, S.; Singer, Z.S.; He, P.; Williams, B.; Schroth, G.P.; Elowitz, M.B.; Wold, B.J. Single Cell Transcriptome Analysis Reveals Dynamic Changes in lncRNA Expression during Reprogramming. Cell Stem Cell 2015, 16, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Barth, D.A.; Prinz, F.; Teppan, J.; Jonas, K.; Klec, C.; Pichler, M. Long-Noncoding RNA (lncRNA) in the Regulation of Hypoxia-Inducible Factor (HIF) in Cancer. Non-Coding RNA 2020, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Lakhotia, S.C. Long Non-Coding RNAs Coordinate Cellular Responses to Stress. Wiley Interdiscip. Rev. RNA 2012, 3, 779–796. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Gao, L.; Ma, X.; Huang, J.-J.; Chen, J.; Zeng, L.; Ashby, C.R.; Zou, C.; Chen, Z.-S. Long Non-Coding RNAs Regulate Drug Resistance in Cancer. Mol. Cancer 2020, 19, 54. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Chen, W.; Zhong, Y.; Tuo, Q. The Role of lncRNA-Mediated Pyroptosis in Cardiovascular Diseases. Front. Cardiovasc. Med. 2023, 10, 1217985. [Google Scholar] [CrossRef] [PubMed]
- Dieter, C.; Lemos, N.E.; de Faria Corrêa, N.R.; Assmann, T.S.; Crispim, D. The Impact of lncRNAs in Diabetes Mellitus: A Systematic Review and In Silico Analyses. Front. Endocrinol. 2021, 12, 602597. [Google Scholar] [CrossRef]
- Qian, Y.; Shi, L.; Luo, Z. Long Non-Coding RNAs in Cancer: Implications for Diagnosis, Prognosis, and Therapy. Front. Med. 2020, 7, 612393. [Google Scholar] [CrossRef]
- Sarkar, D.; Oghabian, A.; Bodiyabadu, P.K.; Joseph, W.R.; Leung, E.Y.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Multiple Isoforms of ANRIL in Melanoma Cells: Structural Complexity Suggests Variations in Processing. Int. J. Mol. Sci. 2017, 18, 1378. [Google Scholar] [CrossRef] [PubMed]
- Furney, S.J.; Pedersen, M.; Gentien, D.; Dumont, A.G.; Rapinat, A.; Desjardins, L.; Turajlic, S.; Piperno-Neumann, S.; de la Grange, P.; Roman-Roman, S.; et al. SF3B1 Mutations Are Associated with Alternative Splicing in Uveal Melanoma. Cancer Discov. 2013, 3, 1122–1129. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A Revolutionary Tool for Transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- PacBio Sequencing and Its Applications—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S1672022915001345 (accessed on 14 May 2024).
- Wang, Y.; Zhao, Y.; Bollas, A.; Wang, Y.; Au, K.F. Nanopore Sequencing Technology, Bioinformatics and Applications. Nat. Biotechnol. 2021, 39, 1348–1365. [Google Scholar] [CrossRef]
- Gao, Y.; Shang, S.; Guo, S.; Li, X.; Zhou, H.; Liu, H.; Sun, Y.; Wang, J.; Wang, P.; Zhi, H.; et al. Lnc2Cancer 3.0: An Updated Resource for Experimentally Supported lncRNA/circRNA Cancer Associations and Web Tools Based on RNA-Seq and scRNA-Seq Data. Nucleic Acids Res. 2021, 49, D1251–D1258. [Google Scholar] [CrossRef]
- Montes, M.; Nielsen, M.M.; Maglieri, G.; Jacobsen, A.; Højfeldt, J.; Agrawal-Singh, S.; Hansen, K.; Helin, K.; van de Werken, H.J.G.; Pedersen, J.S.; et al. The lncRNA MIR31HG Regulates p16INK4A Expression to Modulate Senescence. Nat. Commun. 2015, 6, 6967. [Google Scholar] [CrossRef] [PubMed]
- Ni, N.; Song, H.; Wang, X.; Xu, X.; Jiang, Y.; Sun, J. Up-Regulation of Long Noncoding RNA FALEC Predicts Poor Prognosis and Promotes Melanoma Cell Proliferation through Epigenetically Silencing P21. Biomed. Pharmacother. 2017, 96, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Zhao, B.; Li, D.; Yin, G. Long Non-Coding RNA CASC15 Promotes Melanoma Progression by Epigenetically Regulating PDCD4. Cell Biosci. 2018, 8, 42. [Google Scholar] [CrossRef]
- Gao, G.; Li, W.; Liu, S.; Han, D.; Yao, X.; Jin, J.; Han, D.; Sun, W.; Chen, X. The Positive Feedback Loop between ILF3 and lncRNA ILF3-AS1 Promotes Melanoma Proliferation, Migration, and Invasion. Cancer Manag. Res. 2018, 10, 6791–6802. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K.; Carroll, J.S.; Yee, E.; Thomas, D.D.; Wert-Lamas, L.; Neier, S.C.; Sheynkman, G.; Ritz, J.; Novina, C.D. The lncRNA SLNCR Recruits the Androgen Receptor to EGR1-Bound Genes in Melanoma and Inhibits Expression of Tumor Suppressor P21. Cell Rep. 2019, 27, 2493–2507.e4. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K.; Joyce, C.E.; Buquicchio, F.; Brown, A.; Ritz, J.; Distel, R.J.; Yoon, C.H.; Novina, C.D. The lncRNA SLNCR1 Mediates Melanoma Invasion through a Conserved SRA1-like Region. Cell Rep. 2016, 15, 2025–2037. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Zhao, Q.; Sun, H.; Zhou, Z.; Hu, Y.; Li, C.; Hao, M.; Cong, X. A Novel Long Non-Coding RNA SLNCR1 Promotes Proliferation, Migration, and Invasion of Melanoma via Transcriptionally Regulating SOX5. Cell Death Discov. 2024, 10, 160. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Y.; Niu, X.; Tang, M.; Li, J.; Song, B.; Guan, X. LncRNA BASP1-AS1 Interacts with YBX1 to Regulate Notch Transcription and Drives the Malignancy of Melanoma. Cancer Sci. 2021, 112, 4526–4542. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yang, H.; Yi, Z.; Jiang, L.; Li, Y.; Han, Q.; Yang, Y.; Zhang, Q.; Yang, Z.; Kuang, Y.; et al. LncRNA GAS5 Regulates Redox Balance and Dysregulates the Cell Cycle and Apoptosis in Malignant Melanoma Cells. J. Cancer Res. Clin. Oncol. 2019, 145, 637–652. [Google Scholar] [CrossRef] [PubMed]
- Niu, C.; Tan, S. LncRNA FENDRR Suppresses Melanoma Growth via Influencing C-Myc mRNA Level. Clin. Cosmet. Investig. Dermatol. 2023, 16, 2119–2128. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Cui, Y.; Liu, L.; Ma, X.; Qi, X.; Wang, Y.; Liu, Z.; Ma, S.; Liu, J.; Wu, J. METTL3 Facilitates Oral Squamous Cell Carcinoma Tumorigenesis by Enhancing C-Myc Stability via YTHDF1-Mediated m6A Modification. Mol. Ther. Nucleic Acids 2020, 20, 1–12. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.; Lu, J.; Chen, L.; Zhang, S.; Qi, W.; Li, W.; Xu, H. Long Noncoding RNA TTN-AS1 Facilitates Tumorigenesis and Metastasis by Maintaining TTN Expression in Skin Cutaneous Melanoma. Cell Death Dis. 2020, 11, 664. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Huang, X.; Zeng, S.; Zhou, R.; Wang, D. Identification and Validation of a TTN-Associated Immune Prognostic Model for Skin Cutaneous Melanoma. Front. Genet. 2023, 13, 1084937. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Zheng, Y.; Wen, X.; Zhang, Y.; Zeng, W. Increased Expression of Long Noncoding RNA GAS6-AS2 Promotes Proliferation and Inhibits Apoptosis of Melanoma Cells via Upregulating GAS6 Expression. IUBMB Life 2019, 71, 1503–1514. [Google Scholar] [CrossRef]
- Yang, Y.; Jin, L.; He, J.; Wang, R.; Wang, Y.; Bai, J.; Chen, Y.; Luo, Z. Upregulation LncRNA MEG3 Expression Suppresses Proliferation and Metastasis in Melanoma via miR-208/SOX4. Mol. Cell. Biochem. 2023, 478, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zeng, K.; Liu, Y.; Gao, L.; Liu, L. LncRNA SNHG5 Promotes Growth and Invasion in Melanoma by Regulating the miR-26a-5p/TRPC3 Pathway. OncoTargets Ther. 2019, 12, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Luo, B.; Shen, G.; Ji, G. LncRNA MSC-AS1, as an Oncogene in Melanoma, Promotes the Proliferation and Glutaminolysis by Regulating the miR-330-3p/ YAP1 Axis. Anticancer Drugs 2022, 33, 1012–1023. [Google Scholar] [CrossRef]
- Melixetian, M.; Bossi, D.; Mihailovich, M.; Punzi, S.; Barozzi, I.; Marocchi, F.; Cuomo, A.; Bonaldi, T.; Testa, G.; Marine, J.; et al. Long Non-coding RNA TINCR Suppresses Metastatic Melanoma Dissemination by Preventing ATF4 Translation. EMBO Rep. 2021, 22, e50852. [Google Scholar] [CrossRef]
- Luo, D.; Tang, H.; Tan, L.; Zhang, L.; Wang, L.; Cheng, Q.; Lei, X.; Wu, J. LncRNA JPX Promotes Tumor Progression by Interacting with and Destabilizing YTHDF2 in Cutaneous Melanoma. Mol. Cancer Res. MCR 2024, 22, 524–537. [Google Scholar] [CrossRef]
- Yu, L.; Li, J.; Xiao, M. LncRNA SLC7A11-AS1 Stabilizes CTCF by Inhibiting Its UBE3A-Mediated Ubiquitination to Promote Melanoma Metastasis. Am. J. Cancer Res. 2023, 13, 6256–6269. [Google Scholar] [PubMed]
- Feichtenschlager, V.; Chen, L.; Zheng, Y.J.; Ho, W.; Sanlorenzo, M.; Vujic, I.; Fewings, E.; Lee, A.; Chen, C.; Callanan, C.; et al. The Therapeutically Actionable Long Non-Coding RNA ‘T-RECS’ Is Essential to Cancer Cells’ Survival in NRAS/MAPK-Driven Melanoma. Mol. Cancer 2024, 23, 40. [Google Scholar] [CrossRef] [PubMed]
- The Biology, Function, and Biomedical Applications of Exosomes. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7717626/ (accessed on 1 July 2024).
- Takahashi, A.; Okada, R.; Nagao, K.; Kawamata, Y.; Hanyu, A.; Yoshimoto, S.; Takasugi, M.; Watanabe, S.; Kanemaki, M.T.; Obuse, C.; et al. Exosomes Maintain Cellular Homeostasis by Excreting Harmful DNA from Cells. Nat. Commun. 2017, 8, 15287. [Google Scholar] [CrossRef]
- Khan, A.Q.; Akhtar, S.; Prabhu, K.S.; Zarif, L.; Khan, R.; Alam, M.; Buddenkotte, J.; Ahmad, A.; Steinhoff, M.; Uddin, S. Exosomes: Emerging Diagnostic and Therapeutic Targets in Cutaneous Diseases. Int. J. Mol. Sci. 2020, 21, 9264. [Google Scholar] [CrossRef] [PubMed]
- Gowda, R.; Robertson, B.M.; Iyer, S.; Barry, J.; Dinavahi, S.S.; Robertson, G.P. The Role of Exosomes in Metastasis and Progression of Melanoma. Cancer Treat. Rev. 2020, 85, 101975. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, S.; Ye, Z.; Zheng, Y.; Zheng, Z.; Liu, X.; Zhou, X. NEAT1 in Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicles Promotes Melanoma by Inducing M2 Macrophage Polarization. Cancer Gene Ther. 2022, 29, 1228–1239. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Hu, J. Melanoma-Derived Exosomes Induce Reprogramming Fibroblasts into Cancer-Associated Fibroblasts via Gm26809 Delivery. Cell Cycle Georget. Tex. 2019, 18, 3085–3094. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.-H.; Li, J.; Shi, L.; Xie, J.-C.; Han, X.; Chen, Y.-T.; Xiang, M.; Li, B.-W.; Xing, H.R.; et al. Novel lncRNA Gm33149 Modulates Metastatic Heterogeneity in Melanoma by Regulating the miR-5623-3p/Wnt Axis via Exosomal Transfer. Cancer Gene Ther. 2024, 31, 364–375. [Google Scholar] [CrossRef]
- Fox, A.H.; Lamond, A.I. Paraspeckles. Cold Spring Harb. Perspect. Biol. 2010, 2, a000687. [Google Scholar] [CrossRef]
- Adriaens, C.; Standaert, L.; Barra, J.; Latil, M.; Verfaillie, A.; Kalev, P.; Boeckx, B.; Wijnhoven, P.W.G.; Radaelli, E.; Vermi, W.; et al. P53 Induces Formation of NEAT1 lncRNA-Containing Paraspeckles That Modulate Replication Stress Response and Chemosensitivity. Nat. Med. 2016, 22, 861–868. [Google Scholar] [CrossRef]
- Natarelli, N.; Boby, A.; Aflatooni, S.; Tran, J.T.; Diaz, M.J.; Taneja, K.; Forouzandeh, M. Regulatory miRNAs and lncRNAs in Skin Cancer: A Narrative Review. Life 2023, 13, 1696. [Google Scholar] [CrossRef]
- Lee, S.; Kopp, F.; Chang, T.-C.; Sataluri, A.; Chen, B.; Sivakumar, S.; Yu, H.; Xie, Y.; Mendell, J.T. Noncoding RNA NORAD Regulates Genomic Stability by Sequestering PUMILIO Proteins. Cell 2016, 164, 69–80. [Google Scholar] [CrossRef]
- Chen, L.-L. Linking Long Noncoding RNA Localization and Function. Trends Biochem. Sci. 2016, 41, 761–772. [Google Scholar] [CrossRef] [PubMed]
- Gambi, G.; Mengus, G.; Davidson, G.; Demesmaeker, E.; Cuomo, A.; Bonaldi, T.; Katopodi, V.; Malouf, G.G.; Leucci, E.; Davidson, I. The LncRNA LENOX Interacts with RAP2C to Regulate Metabolism and Promote Resistance to MAPK Inhibition in Melanoma. Cancer Res. 2022, 82, 4555–4570. [Google Scholar] [CrossRef]
- Hosono, Y.; Niknafs, Y.S.; Prensner, J.R.; Iyer, M.K.; Dhanasekaran, S.M.; Mehra, R.; Pitchiaya, S.; Tien, J.; Escara-Wilke, J.; Poliakov, A.; et al. Oncogenic Role of THOR, a Conserved Cancer/Testis Long Noncoding RNA. Cell 2017, 171, 1559–1572.e20. [Google Scholar] [CrossRef] [PubMed]
- Fogal, V.; Richardson, A.D.; Karmali, P.P.; Scheffler, I.E.; Smith, J.W.; Ruoslahti, E. Mitochondrial P32 Protein Is a Critical Regulator of Tumor Metabolism via Maintenance of Oxidative Phosphorylation. Mol. Cell. Biol. 2010, 30, 1303–1318. [Google Scholar] [CrossRef] [PubMed]
- Leucci, E.; Vendramin, R.; Spinazzi, M.; Laurette, P.; Fiers, M.; Wouters, J.; Radaelli, E.; Eyckerman, S.; Leonelli, C.; Vanderheyden, K.; et al. Melanoma Addiction to the Long Non-Coding RNA SAMMSON. Nature 2016, 531, 518–522. [Google Scholar] [CrossRef]
- Androsavich, J.R. Frameworks for Transformational Breakthroughs in RNA-Based Medicines. Nat. Rev. Drug Discov. 2024, 23, 421–444. [Google Scholar] [CrossRef]
- Crooke, S.T.; Baker, B.F.; Crooke, R.M.; Liang, X. Antisense Technology: An Overview and Prospectus. Nat. Rev. Drug Discov. 2021, 20, 427–453. [Google Scholar] [CrossRef] [PubMed]
Name | n° of Transcripts | Regulation | Main Mechanism of Action | Reported Localization | Primary Citation (PMID Code) |
---|---|---|---|---|---|
ANRIL | Not found in .gff3 | Differential expression | - | - | 28653984 |
Llme23 | Not found in .gff3 | Differential expression | Binds recombinant and native PSF protein | Nucleus | 23618401 |
CASC2 | 27 | Downregulated | Sponges miR-181a promoting the expression of PLXNC1 | - | 29514220 |
DIRC3 | 31 | Downregulated | Modulates chromatin structure and inhibits the binding of SOX10 at DIRC3 locus, thus enhancing the expression of IGFBP5 | Nucleus | 31881017 |
FUT8-AS1 | 1 | Downregulated | Silences p15 | - | 34094894 |
GAS5 | Not found in .gff3 | Downregulated | Inhibits EZH2 expression by recruiting E2F4 to its promoter | Nucleus | 32308561 |
HAND2-AS1 | 65 | Downregulated | Downregulates ROCK1 | - | 31423160 |
HCP5 | 9 | Downregulated | Sponges miR-1286 upregulating RARRES3 | - | 31496735 |
HOTAIR | 13 | Downregulated | Sponges miR-152-3p to release-MET mRNA resulting in the activation of PI3k/Akt/mTOR signaling pathway | Nucleus and cytoplasm | 29156728 |
ITCH | 3 | Downregulated | Downregulates GLUT1 and suppresses glucose uptake | - | 31403357 |
LINC00459 | 1 | Downregulated | - | Cytoplasm | 31844121 |
LINC01550 | 8 | Downregulated | - | - | 33609219 |
LINC-PINT | 69 | Downregulated | Recruits EZH2 to the promoter of CDK1, CCNA2, AURKA, and PCNA, leading to H3K27 trimethylation and epigenetic silencing of target genes | Nucleus | 31921860 |
LINC-ROR | 8 | Downregulated | - | - | 26314857 |
MEG3 | 50 | Downregulated | Inhibits Wnt signaling pathway by reducing β-catenin and CyclinD1 and rising GSK-3β levels | - | 29781534 |
MIR155HG | 2 | Downregulated | Sponges miR-485-3p upregulating PSIP1 expression | Nucleus | 34225636 |
MIR31HG | 27 | Downregulated | Interacts with SUZ12 causing repression of p16 transcription | Cytoplasm | 25908244 |
NKILA | 2 | Downregulated | Inhibits NF-kB | - | 28123845 |
PAUPAR | 18 | Downregulated | Modulates HES1 expression by inhibiting H3K27 trimethylation | Nucleus | 27214741 |
SSATX | Not found in .gff3 | Downregulated | - | - | 31352009 |
TINCR | Not found in .gff3 | Downregulated | Sponges miR-424-5p upregulating LATS1 expression. This activates Hippo signaling, represses the activity of YAP, and the expression of AXL, CTGF and CCN1 | Cytoplasm | 34542165 |
AFAP1-AS1 | 2 | Upregulated | Interacts with BRD7 reducing c-Myc expression | - | 36777828 |
ATB | 87 | Upregulated | Recruits YBX1 to the promoter of NOTCH3 thus activating the transcription of c-MYC, PCNA, and CDK4 | - | 29956757 |
BANCR | 5 | Upregulated | Regulates activation of MAPK pathway | - | 24967732 |
BASP1-AS1 | 8 | Upregulated | Interacts with YBX1 regulating NOTCH transcription | Nucleus | 34533860 |
BLACAT1 | Not found in .gff3 | Upregulated | Sponges miR-374-5b releasing UHMK1 | Nucleus | 34708547 |
CAR10 | Not found in .gff3 | Upregulated | Sponges miR-125b-5p to inducing RAB3D expression | - | 32636644 |
CASC15 | Not found in .gff3 | Upregulated | Downregulates PDCD4 expression through EZH2 recruitment to increase H3K27me3 level | Nucleus | 30013768 |
CCAT1 | Not found in .gff3 | Upregulated | Sponges miR-33a | - | 28409554 |
CD27-AS1-208 | 1 | Upregulated | Interacts with STAT3 | Nucleus | 35096622 |
CRNDE | 30 | Upregulated | Sponges miR-205 | - | 30257602 |
DBH-AS1 | 1 | Upregulated | Sponges miR-223-3p increasing EGFR expression activating Akt/GLUT1 pathway | Cytoplasm | 32744696 |
DSCAM-AS1 | 4 | Upregulated | Sponges miR-136 | Cytoplasm | 31002140 |
DUXAP8 | 9 | Upregulated | Sponges miR-3182 releasing NUPR1 | - | 33981357 |
FAL1 | Not found in .gff3 | Upregulated | Binds BMI1 to modulate CDKN1A and repressing p21 | Nucleus | 25203321 |
FALEC | 1 | Upregulated | Represses p21 through recruiting EZH2 to its promoter 1 | Nucleus | 29196104 |
FGD5-AS1 | 10 | Upregulated | - | - | 32997827 |
FOXC2-AS1 | 1 | Upregulated | Silences p15 by recruiting EZH2 | Cytoplasm | 32964984 |
FOXD2-AS1 | 1 | Upregulated | - | Cytoplasm | 30426532 |
FOXD3-AS1 | 20 | Upregulated | Sponges miR-127-3p | Cytoplasm | 32354225 |
GAS6-AS2 | Not found in .gff3 | Upregulated | Upregulates GAS6 expression and secretion and activates AXL/AKT/ERK signals | - | 31162889 |
GAS6-DT | 3 | Upregulated | Activates GAS6/AXL/AKT/ERK signals | - | 31162889 |
Gm26809 | Not found in .gff3 | Upregulated | Enhances CAF markers (α-SMA and FAP) | Cytoplasm | 31544590 |
Gm33149 | Not found in .gff3 | Upregulated | Sponges with miR-5623-3p activated the Wnt signaling pathway | Cytoplasm | 38072970 |
H19 | 15 | Upregulated | Regulates the EMT-related gene expressions | - | 29950863 |
HCG18 | 42 | Upregulated | Sponges miR-324-5p upregulating CDK16 expression | Nucleus and cytoplasm | 35273726 |
HOXD-AS1 | 10 | Upregulated | Suppresses the expression of RUNX3 via binding to EZH2 | Nucleus | 29312805 |
ILF3-AS1 | Not found in .gff3 | Upregulated | Inhibits the binding of EZH2 to ILF3 promoter and activates ILF3 transcription by inducing euchromatin formation | Nucleus | 30588088 |
JPX | 85 | Upregulated | Interacts with YTHDF2 and inhibits its deubiquitination leading to BMP2 mRNA stabilization and activation of AKT phosphorylation | - | 38441563 |
KCNQ1OT1 | 85 | Upregulated | Sponges miR-153 | - | 29667930 |
LENOX | Not found in .gff3 | Upregulated | Promotes association of the RAP2C GTPase with mitochondrial fission regulator DRP1, increasing DRP1 S637 phosphorylation, mitochondrial fusion, and oxidative phosphorylation | Cytoplasm | 36214632 |
LHFPL3-AS1 | 7 | Upregulated | Sponges miR-580-3p to rise STAT3 expression, resulting in the activation of the JAK2/STAT3 signaling pathway | Cytoplasm | 32753471 |
LICN00518 | Not found in .gff3 | Upregulated | Sponges miR-204-5p upregulating AP1S2 expression | Cytoplasm | 31712557 |
LICN00520 | Not found in .gff3 | Upregulated | Sponges miR-125b-5p releasing EIF5A2 | Nucleus and cytoplasm | 32466797 |
LINC00173 | 5 | Upregulated | - | - | 35239877 |
LINC00511 | 107 | Upregulated | Sponges miR-625-5p upregulating PKM2 expression | Nucleus and cytoplasm | 34218270 |
LINC00665 | 35 | Upregulated | Sponges miR-224-5p to upregulate VMA21 | - | 33247967 |
LINC00673 | Not found in .gff3 | Upregulated | - | Nucleus | 27210747 |
LINC00963 | 65 | Upregulated | Sponges miR-608 promoting the expression of NACC1 | - | 30180950 |
LINC01234 | 17 | Upregulated | - | Nucleus and cytoplasm | 34218270 |
LNCOC1 | 9 | Upregulated | Sponges miR-124 | - | 35502349 |
lncRNA-ATB | Not found in .gff3 | Upregulated | Sponges miR-590-5p to release YAP1 mRNA | - | 29956757 |
LNMAT1 | Not found in .gff3 | Upregulated | Inhibits CADM1 expression by recruiting EZH2 at its promoter r | - | 31334110 |
LUADT1 | 1 | Upregulated | Sponges miR-28-5p to upregulate RAP1B | - | 32191497 |
MALAT1 | 17 | Upregulated | Sponges miR-34a | - | 31101802 |
MHENCR | 4 | Upregulated | By sponging miR-425 and miR-489, increases IGF1 and SPIN1 expression and activates PI3K-Akt pathway | Cytoplasm | 28123636 |
MIR205HG | 17 | Upregulated | Sponges miR-299-3p and upregulates VEGFA expression | - | 33535182 |
MIR4435-2HG | 108 | Upregulated | Sponges miR-802 that directly targets FLOT2 | - | 32196611 |
MIRAT | Not found in .gff3 | Upregulated | Binds to the MEK scaffold protein IQGAP1 modulating MAPK pathway | Cytoplasm | 30026510 |
MSC-AS1 | 14 | Upregulated | Sponges miR-302a-3p, recruits IGF2BP2 and increases LEF1 expression | Cytoplasm | 34218464 |
NCK1-DT | 9 | Upregulated | Sponges miR-526b-5p upregulating ADAM1 expression | Cytoplasm | 34247598 |
NEAT1 | 9 | Upregulated | Interacts with miR-374a-5p/LGR4/IQGAP1 axis | Exosomes | 32096166 |
NORAD | 1 | Upregulated | Sponges miR-205 upregulating EGLN2 expression | - | 30843652 |
NR2F1-AS1 | 75 | Upregulated | Sponges miR-493-5p and upregulates GOLM1 expression | Cytoplasm | 33822440 |
PANDAR | Not found in .gff3 | Upregulated | Regulates EMT | - | 31938355 |
PEG10 | Not found in .gff3 | Upregulated | Enhances cyclinD1 and CDK4 expression and sponges miR-33a | - | 31318088 |
POU3F3 | Not found in .gff3 | Upregulated | Downregulates MEG3 | - | 35201451 |
PVT1 | 190 | Upregulated | Binds to EZH2 and regulates the expression of miR-200c | - | 29286144 |
RMEL3 | 1 | Upregulated | - | - | 30457212 |
RP11-705C15.3 | Not found in .gff3 | Upregulated | Sponges miR-145-5p activating NRAS/MAPK signaling axis | Cytoplasm | 33311650 |
SAMMSON | 28 | Upregulated | Disrupts vital mitochondrial functions | Mitochondria | 27008969 |
SLC7A11-AS1 | 5 | Upregulated | Reduces CTCF degradation by inhibiting its ubiquitination by UBE3A | Cytoplasm | 38187043 |
SLCO4A1-AS1 | 3 | Upregulated | Sponges miR-1306-5p upregulating PCGF2 expression | 35427425 | |
SLNCR | Not found in .gff3 | Upregulated | Recruits AR to EGR1 bound genomic loci to inhibit p21 transcriptional activation | Nucleus | 31116991 |
SLNCR1 | Not found in .gff3 | Upregulated | Binds AR, and Brn3a for transcriptional activation of MMP9 | Nucleus | 27210747 |
SNHG12 | 19 | Upregulated | Sponges miR-199b upregulating ETS1, PXN, JAG1, and DDR1 expression | - | 35280401 |
SNHG16 | 18 | Upregulated | Sponges miR-205-5p upregulating PAK2 expression | Nucleus and cytoplasm | 35983126 |
SNHG17 | 118 | Upregulated | Enhances the PI3K/AKT signaling pathway | 31599425 | |
SNHG5 | 89 | Upregulated | Binds miR-26a-5p thus promoting TRPC3 expression | - | 30636880 |
SNHG8 | 15 | Upregulated | Sponges miR-656-3p upregulating SERPINE1 expression | Cytoplasm | 35156513 |
SPRY4-IT1 | 10 | Upregulated | Sponges miR-22-3p thus enhancing MAPK pathway | - | 31933852 |
SRA | 1 | Upregulated | Mediates p38 activation | - | 31945347 |
THOR | 10 | Upregulated | Enhances IGF2BP1 mRNA stabilization activity | Nucleus and cytoplasm | 29245011 |
T-RECS | Not found in .gff3 | Upregulated | Enhances pro-survival kinases activity and increases hnRNPA2/B1 stability | Nucleus | 38077055 |
TTN-AS1 | 81 | Upregulated | Increases the activity of TTN promoter and increases the stability of TTN mRNA | Nucleus | 32820147 |
TUG1 | Not found in .gff3 | Upregulated | Sponges miR-129-5p liberating AEG1 thus enhancing the expression of Bcl-2, MMP-9, and cyclin D1 | - | 29543785 |
UCA1 | 45 | Upregulated | Sponges with miR-28-5p liberating HOXB3 | - | 30988802 |
ZEB1-AS1 | 12 | Upregulated | Sponges miR-1224-5p | - | 30651872 |
ZFAS1 | 14 | Upregulated | Sponges miR-150-5p liberating RAB9A | - | 30889053 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moras, B.; Sissi, C. Unravelling the Regulatory Roles of lncRNAs in Melanoma: From Mechanistic Insights to Target Selection. Int. J. Mol. Sci. 2025, 26, 2126. https://doi.org/10.3390/ijms26052126
Moras B, Sissi C. Unravelling the Regulatory Roles of lncRNAs in Melanoma: From Mechanistic Insights to Target Selection. International Journal of Molecular Sciences. 2025; 26(5):2126. https://doi.org/10.3390/ijms26052126
Chicago/Turabian StyleMoras, Beatrice, and Claudia Sissi. 2025. "Unravelling the Regulatory Roles of lncRNAs in Melanoma: From Mechanistic Insights to Target Selection" International Journal of Molecular Sciences 26, no. 5: 2126. https://doi.org/10.3390/ijms26052126
APA StyleMoras, B., & Sissi, C. (2025). Unravelling the Regulatory Roles of lncRNAs in Melanoma: From Mechanistic Insights to Target Selection. International Journal of Molecular Sciences, 26(5), 2126. https://doi.org/10.3390/ijms26052126