Changes in Concentration of Selected Biomarkers of Exposure in Users of Classic Cigarettes, E-Cigarettes, and Heated Tobacco Products—A Narrative Review
Abstract
1. Introduction
2. Background
The Role of Nicotine in the Addiction Process and Its Effects on Cholinergic Receptors
3. Theoretical Framework of the Most Common Uses of Tobacco Products
3.1. Classic Cigarettes
3.2. E-Cigarettes
3.3. Heated Tobacco Products (HTPs)
4. Changes in Selected Biomarkers of Exposure in Users of Classic Cigarettes, E-Cigarettes, and Heated Tobacco Products—Results
4.1. Changes in the Profile of Selected Pro-Inflammatory Cytokines in Tobacco Users
4.1.1. Tumor Necrosis Factor Alpha (TNF-α)
4.1.2. Interleukin 1β (IL-1β)
4.1.3. Interleukin 6 (IL-6)
4.1.4. Interleukin 8 (IL-8)
4.1.5. Interleukin 17 (IL-17)
4.1.6. Interferon Gamma (IFN-γ)
Pro-Inflammatory Cytokines—Concentrations in Tobacco Users Compared to Non-Smokers | ||
---|---|---|
TNF-α | ||
Classic cigarettes Serum: ↑ or ↔ [53,54,55,58,59] ↑ serum concentrations in heavier smokers [64]. Plasma: ↑ or ↔ [56,57,60] Saliva: ↔ [62,63]. | E-cigarettes ↑ serum concentration up to 60 min after firing [64] Saliva: ↑ [63,65,66] | HTP Serum: ↔ serum concentrations [67]. Saliva: ↑ [63] |
IL-1β | ||
Classic cigarettes Serum: ↓; ↑; ↔ [55,58,59,69,70] Plasma: ↑ [71,72] Saliva: ↑ or ↔ [63,73,74,75,76] Urine: ↔ [77] | E-cigarettes Plasma: ↑ [78] Saliva: ↓; ↑; ↔ [63,73,74,78,79,80]. Urine: ↔ [77] | HTP Serum: ↔ [67] |
IL-6 | ||
Classic cigarettes Serum: ↑ or ↔ [54,81,83] Plasma: ↑ [56,71,72] Saliva: ↑ or ↔ [73,75,78,79,80] Urine: ↑ [77] | E-cigarettes Plasma: ↑ [78] Saliva: ↑ [73] Urine: ↑ [77] | HTP Plasma: ↑ up to 120 min after firing [64] then ↔ [81] |
IL-8 | ||
Classic cigarettes Serum: ↑ or ↔ [54,59,86,87] Plasma: ↔ [72] Saliva: ↓; ↑; ↔ [63,88,89,90,91] Urine: ↔ [77] | E-cigarettes Plasma: ↑ [78] Saliva: ↑ or ↓ [63,91] | HTP Serum: ↑ [67] Saliva: ↓ [63] |
IL-17 | ||
Classic cigarettes Serum: ↑ [93] Saliva: ↑ or ↔ [80,94,95] | E-cigarettes No data available | HTP No data available |
IFN-γ | ||
Classic cigarettes Serum: ↔ [57] Plasma: ↑ [98] Saliva: ↑ or ↔ [62,79,99] Urine: ↑ [76] | E-cigarettes Plasma: ↑ [77] Saliva: ↔ [62] | HTP Saliva: ↔ [62] |
4.2. Changes in the Profile of Selected Anti-Inflammatory Cytokines in Tobacco Users
4.2.1. Interleukin 4 (IL-4)
4.2.2. Interleukin 10 (IL-10)
4.2.3. Interleukin 13 (IL-13)
Anti-Inflammatory Cytokines—Concentrations in Tobacco Users Compared to Non-Smokers | ||
---|---|---|
IL-4 | ||
Classic cigarettes Serum: ↔ [57] Plasma: ↑ or ↔ [71,101,102] Saliva: ↑ [79] | E-cigarettes Plasma: ↔ [64] | HTP No data available |
IL-10 | ||
Classic cigarettes Serum: ↑ or ↓ [54,58,59] Plasma: ↓ [56] Saliva: ↓ [62] Urine: ↑ [77] | E-cigarettes Serum: ↑ [53,54] Plasma: ↑ [56,57] Saliva: ↑ [62,63] Urine: ↓ or ↔ [66,78] | HTP Serum: ↑ or ↔ [67,68] Plasma: ↑ [68] Saliva: ↑ [71] |
IL-13 | ||
Classic cigarettes Serum: ↑ [58,78] Saliva: ↑ or ↔ [63,77,80] Urine: ↑ [57,77] | E-cigarettes Serum: ↑ or ↔ [77,79] Plasma: ↔ [52,59] Saliva: ↑ or ↔ [55,56,63,65] Urine: ↔ [60] | HTP Serum: ↑ or ↔ [67,105]. Plasma: ↔ [52,59]. Saliva: ↑ or ↔ [55,56,63,74,75] Urine: ↔ [60] |
4.3. Changes in Growth Factor Concentrations in Users of Different Forms of Tobacco
4.3.1. Transforming Growth Factor β (TGF-β)
4.3.2. Vascular Endothelial Growth Factor (VEGF)
4.3.3. Epidermal Growth Factor (EGF)
4.3.4. Hepatocyte Growth Factor (HGF)
4.3.5. Brain-Derived Neurotrophic Factor (BDNF)
Growth Factors—Concentrations in Tobacco Users Compared to Non-Smokers | ||
---|---|---|
TGF-β | ||
Classic cigarettes Serum: ↑ [109] Plasma: ↑ [107,108,110] Saliva: ↑ [73] | E-cigarettes Saliva: ↑ [73] | HTP No data available |
VEGF | ||
Classic cigarettes Serum: ↓; ↑; ↔ [57,112,113,114,115] Plasma: ↑ or ↓ [77,116,117] Saliva: ↔ [112,121] | E-cigarettes Serum: ↓ [118] Plasma: ↑ [77] Saliva: ↔ [121] | HTP No data available |
EGF | ||
Classic cigarettes Serum: ↔ [57] Saliva: ↓ or ↑ [120,121] | E-cigarettes Saliva: ↓ [121] | HTP No data available |
HGF | ||
Classic cigarettes Serum: ↑ [123] Saliva: ↔ [62,121] | E-cigarettes Plasma: ↑ [77] Saliva: ↓ or ↔ [62,121] | HTP No data available |
BDNF | ||
Classic cigarettes Serum: ↑ or ↔ [125,126,127,128,129] Plasma: ↑ [130,131] | E-cigarettes Plasma: ↔ [77] | HTP No data available |
4.4. Changes in the Concentrations of Selected Biologically Active Molecules in Users of Different Forms of Tobacco
4.4.1. Monocyte Chemoattractant Protein 1 (MCP-1)
4.4.2. Matrix Metalloproteinase 9 (MMP-9)
4.4.3. C-Reactive Protein
Selected Biologically Active Molecules—Concentrations in Tobacco Users Compared to Non-Smokers | ||
---|---|---|
MCP-1 | ||
Classical cigarettes Serum: ↓; ↑; ↔ [57,133,134] Plasma: ↑ [135] Saliva: ↓ [136] | E-cigarettes Plasma: ↔ [77,137] Saliva: ↓ [62] | HTP Saliva: ↓ [62] |
MMP-9 | ||
Classical cigarettes Serum: ↑ [139,140,141] Plasma: ↑ [142] Saliva: ↑ [143] | E-cigarettes Plasma: ↑ [77] Urine: ↔ [77] | HTP No data available |
CRP | ||
Classical cigarettes Serum: ↑ [145,146,147,148,149,150,151,152] Plasma: ↑ [153,154,155] Saliva: ↑ [78,156] Urine: ↔ [76] | E-cigarettes Serum: ↑ or ↔ [152,157] Saliva: ↑ [78] | HTP Serum: ↔ [66,158] Plasma: ↔ [159] |
4.5. Changes in the Concentrations of Selected Parameters of Oxidative Stress Parameters in Users of Different Forms of Tobacco
4.5.1. Uric Acid
4.5.2. Glutathione
4.5.3. Glutathione Peroxidase (GPx)
4.5.4. Superoxide Dismutase (SOD)
4.5.5. Malondialdehyde
4.5.6. 4-Hydroxynonenal (4-HNE)
Selected Parameters of Oxidative Stress—Concentrations/Activity in Tobacco Users Compared to Non-Smokers | ||
---|---|---|
Uric Acid | ||
Classic cigarettes Serum: ↓; ↑; ↔ [162,163,164,165,166,167] Saliva: ↑ or ↔ [168,169] Urine ↑ [166] | E-cigarettes Serum: ↑ [170,226] Urine: ↑ [227] | HTP No data available |
Glutathione | ||
Classic cigarettes Plasma: ↑ or ↔ [172,173,174,176,177,178] Serum: ↔ [175] | E-cigarettes No data available | HTP No data available |
Glutathione peroxidase | ||
Classic cigarettes Serum: ↓ or ↑ [180,181,182,183,184,185] Saliva: ↓; ↑; ↔ [186,187,188] | E-cigarettes No data available | HTP Saliva: ↓ [185] |
Superoxide dismutase | ||
Classic cigarettes Serum: ↓ [180,181,183,190,191,192,193,194,195] Saliva: ↑ [186,196,197,198] | E-cigarettes No data available | HTP Saliva: ↓ [185] |
Malondialdehyde | ||
Classic cigarettes Serum: ↑ or ↔ [158,181,182,183,191,193,200,201,202,203,204,205,206] Plasma: ↑ or ↔ [172,174,176] Saliva ↑: [63,207,208] | E-cigarettes Saliva: ↑ [63] | HTP Serum: ↑ [209] Saliva: ↑ [63] |
4-Hydroxynonenal | ||
Classic cigarettes Serum: ↑ [211,212,213,214,215] Plasma: ↑ [216,217,218,219,220,221,222,223,224,225] Urine ↑ [211,212,213,214,215] | E-cigarettes Serum: ↑ [211,212,213,214,215] Plasma: ↑ [217,218,219,220,221,222,223,224,225,228] Urine ↑ [211,212,213,214,215] Saliva: ↑ [220] | HTP No data available |
4.6. Microplastic in Users of Different Forms of Tobacco
5. Materials and Methods
5.1. Databases
5.2. Search Strategy
5.3. Inclusion and Exclusion Criteria
5.4. Article Selection Process
5.5. Data Analysis
6. Future Perspectives
7. Limitations
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
4-HNE | 4-Hydroxy-2-Nonenal |
BDNF | Brain-derived neurotrophic factor |
CRP | C-Reactive protein |
COPD | Chronic obstructive pulmonary disease |
E-cigarettes | electronic cigarettes |
EGF | Epidermal Growth Factor |
et al. | et alii, and others |
HGF | Hepatocyte growth factor |
hs-CRP | high-sensitivity C-reactive protein |
HTP | heated tobacco products |
IFN-γ | Inferon gamma |
IL-10 | Interleukin 10 |
Il-13 | Interleukin 13 |
IL-17 | Interleukin 17 |
IL-1β | Interleukin 1β |
IL-2 | Interleukin 2 |
IL-3 | Interleukin 3 |
IL-4 | Interleukin 4 |
IL-6 | Interleukin 6 |
IL-8 | Interleukin 8 |
MCP-1 | Monocyte chemoattractant protein 1 |
MMP-9 | Matrix metalloproteinase 9 |
NK cell | Natural Killer cell |
NRT | Nicotine Replacement Therapy |
TGF-β | Transforming growth factor β |
Th1 lymphocytes t | T helper type 1 lymphocytes |
Th2 lymphocytes t | T helper type 2 lymphocytes |
TNF-α | Tumor necrosis factor alpha |
VEGF | Vascular endothelial growth factor |
References
- Onor, I.O.; Stirling, D.L.; Williams, S.R.; Bediako, D.; Borghol, A.; Harris, M.B.; Darensburg, T.B.; Clay, S.D.; Okpechi, S.C.; Sarpong, D.F. Clinical Effects of Cigarette Smoking: Epidemiologic Impact and Review of Pharmacotherapy Options. Int. J. Environ. Res. Public Health 2017, 14, 1147. [Google Scholar] [CrossRef] [PubMed]
- Janik-Koncewicz, K.; Zatoński, W.; Zatońska, K.; Stępnicka, Z.; Basiak-Rasała, A.; Zatoński, M.; Połtyn-Zaradna, K. Cigarette Smoking in Poland in 2019: The Continuing Decline in Smoking Prevalence. J. Health Inequalities 2020, 6, 87–94. [Google Scholar] [CrossRef]
- Kaufman, A.R.; Twesten, J.E.; Suls, J.; McCaul, K.D.; Ostroff, J.S.; Ferrer, R.A.; Brewer, N.T.; Cameron, L.D.; Halpern-Felsher, B.; Hay, J.L.; et al. Measuring Cigarette Smoking Risk Perceptions. Nicotine Tob. Res. 2020, 22, 1937–1945. [Google Scholar] [CrossRef] [PubMed]
- Rigotti, N.A.; Kruse, G.R.; Livingstone-Banks, J.; Hartmann-Boyce, J. Treatment of Tobacco Smoking: A Review. JAMA 2022, 327, 566. [Google Scholar] [CrossRef]
- Le Houezec, J.; Säwe, U. Smoking reduction and temporary abstinence: New approaches for smoking cessation. J. Mal. Vasc. 2003, 28, 293–300. [Google Scholar] [PubMed]
- Global Burden of Disease. Database; Institute of Health Metrics: Washington, DC, USA, 2019; IHME; Available online: https://www.healthdata.org/research-analysis/health-risks-issues/smoking-and-tobacco (accessed on 24 October 2024).
- Available online: https://www.who.int/news-room/fact-sheets/detail/tobacco (accessed on 24 October 2024).
- Marques, P.; Piqueras, L.; Sanz, M.-J. An Updated Overview of E-Cigarette Impact on Human Health. Respir. Res. 2021, 22, 151. [Google Scholar] [CrossRef]
- Bitzer, Z.T.; Goel, R.; Trushin, N.; Muscat, J.; Richie, J.P. Free Radical Production and Characterization of Heat-Not-Burn Cigarettes in Comparison to Conventional and Electronic Cigarettes. Chem. Res. Toxicol. 2020, 33, 1882–1887. [Google Scholar] [CrossRef] [PubMed]
- Laverty, A.A.; Vardavas, C.I.; Filippidis, F.T. Prevalence and Reasons for Use of Heated Tobacco Products (HTP) in Europe: An Analysis of Eurobarometer Data in 28 Countries. Lancet Reg. Health—Eur. 2021, 8, 100159. [Google Scholar] [CrossRef]
- Münzel, T.; Hahad, O.; Kuntic, M.; Keaney, J.F.; Deanfield, J.E.; Daiber, A. Effects of Tobacco Cigarettes, e-Cigarettes, and Waterpipe Smoking on Endothelial Function and Clinical Outcomes. Eur. Heart J. 2020, 41, 4057–4070. [Google Scholar] [CrossRef] [PubMed]
- Thomson, N.C.; Polosa, R.; Sin, D.D. Cigarette Smoking and Asthma. J. Allergy Clin. Immunol. Pract. 2022, 10, 2783–2797. [Google Scholar] [CrossRef]
- Sasco, A.J.; Secretan, M.B.; Straif, K. Tobacco Smoking and Cancer: A Brief Review of Recent Epidemiological Evidence. Lung Cancer 2004, 45, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; (DSM-5); American Psychiatric Publishing: Arlington, VA, USA, 2013. [Google Scholar]
- Institute of Medicine (US) Committee on Preventing Nicotine Addiction in Children and Youths. Growing up Tobacco Free: Preventing Nicotine Addiction in Children and Youths; National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Lewis, A.; Miller, J.H.; Lea, R.A. Monoamine oxidase and tobacco dependence. NeuroToxicology 2007, 28, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.F.; Freedman, R. Schizophrenia and the α7 nicotinic acetylcholine receptor. Int. Rev. Neurobiol. 2007, 78, 225–246. [Google Scholar] [CrossRef] [PubMed]
- Ziedonis, D.; Hitsman, B.; Beckham, J.C.; Zvolensky, M.; Adler, L.E.; Audrain-McGovern, J.; Breslau, N.; Brown, R.A.; George, T.P.; Williams, J.; et al. Tobacco use and cessation in psychiatric disorders: National Institute of Mental Health report. Nicotine Tob. Res. Off. J. Soc. Res. Nicotine Tob. 2008, 10, 1691–1715. [Google Scholar] [CrossRef] [PubMed]
- Perkins, K.A.; Jacobs, L.; Sanders, M.; Caggiula, A.R. Sex differences in the subjective and reinforcing effects of cigarette nicotine dose. Psychopharmacology 2002, 163, 194–201. [Google Scholar] [CrossRef]
- Perkins, K.A.; Scott, J. Sex differences in long-term smoking cessation rates due to nicotine patch. Nicotine Tob. Res. Off. J. Soc. Res. Nicotine Tob. 2008, 10, 1245–1250. [Google Scholar] [CrossRef] [PubMed]
- Babb, S.; Malarcher, A.; Schauer, G.; Asman, K.; Jamal, A. Quitting Smoking Among Adults—United States, 2000–2015. MMWR Morb. Mortal. Wkly. Rep. 2017, 65, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Signes-Pastor, A.J.; Gutiérrez-González, E.; García-Villarino, M.; Rodríguez-Cabrera, F.D.; López-Moreno, J.J.; Varea-Jiménez, E.; Pastor-Barriuso, R.; Pollán, M.; Navas-Acien, A.; Pérez-Gómez, B.; et al. Toenails as a Biomarker of Exposure to Arsenic: A Review. Environ. Res. 2021, 195, 110286. [Google Scholar] [CrossRef] [PubMed]
- Le Foll, B.; Piper, M.E.; Fowler, C.D.; Tonstad, S.; Bierut, L.; Lu, L.; Jha, P.; Hall, W.D. Tobacco and nicotine use. Nat. Rev. Dis. Primers. 2022, 8, 19. [Google Scholar] [CrossRef]
- Lorkiewicz, P.; Waszkiewicz, N. Biomarkers of Post-COVID Depression. J. Clin. Med. 2021, 10, 4142. [Google Scholar] [CrossRef] [PubMed]
- Hymowitz, N. Smoking and Cancer: A Review of Public Health and Clinical Implications. J. Natl. Med. Assoc. 2011, 103, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Gallucci, G.; Tartarone, A.; Lerose, R.; Lalinga, A.V.; Capobianco, A.M. Cardiovascular Risk of Smoking and Benefits of Smoking Cessation. J. Thorac. Dis. 2020, 12, 3866–3876. [Google Scholar] [CrossRef] [PubMed]
- Leone, F.T.; Evers-Casey, S. Tobacco Use Disorder. Med. Clin. N. Am. 2022, 106, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Chawla, M.; Garrison, K.A. Neurobiological Considerations for Tobacco Use Disorder. Curr. Behav. Neurosci. Rep. 2018, 5, 238–248. [Google Scholar] [CrossRef]
- Hefner, K.R.; Sollazzo, A.; Mullaney, S.; Coker, K.L.; Sofuoglu, M. E-cigarettes, alcohol use, and mental health: Use and perceptions of e-cigarettes among college students, by alcohol use and mental health status. Addict. Behav. 2019, 91, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Rey-Brandariz, J.; Pérez-Ríos, M.; Ahluwalia, J.S.; Beheshtian, K.; Fernández-Villar, A.; Represas-Represas, C.; Piñeiro, M.; Alfageme, I.; Ancochea, J.; Soriano, J.B.; et al. Tobacco Patterns and Risk of Chronic Obstructive Pulmonary Disease: Results From a Cross-Sectional Study. Arch. De Bronconeumol. 2023, 59, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Morata, I.; Sobel, M.; Tellez-Plaza, M.; Navas-Acien, A.; Howe, C.G.; Sanchez, T.R. A State-of-the-Science Review on Metal Biomarkers. Curr. Envir. Health Rpt. 2023, 10, 215–249. [Google Scholar] [CrossRef] [PubMed]
- Perkins, K.A.; Karelitz, J.L.; Kunkle, N. Sex Differences in Subjective Responses to Moderate Versus Very Low Nicotine Content Cigarettes. Nicotine Tob. Res. 2018, 20, 1258–1264. [Google Scholar] [CrossRef]
- Soleimani, F.; Dobaradaran, S.; De-la-Torre, G.E.; Schmidt, T.C.; Saeedi, R. Content of Toxic Components of Cigarette, Cigarette Smoke vs Cigarette Butts: A Comprehensive Systematic Review. Sci. Total Environ. 2022, 813, 152667. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Krishnan, J.; Ruckmani, K. Cigarette Smoke and Related Risk Factors in Neurological Disorders: An Update. Biomed. Pharmacother. 2017, 85, 79–86. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (US); National Center for Chronic Disease Prevention and Health Promotion (US); Office on Smoking and Health (US). Chemistry and Toxicology of Cigarette Smoke and Biomarkers of Exposure and Harm. In How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2010. Available online: https://www.ncbi.nlm.nih.gov/books/NBK53014/ (accessed on 26 October 2024).
- Gotts, J.E.; Jordt, S.-E.; McConnell, R.; Tarran, R. What Are the Respiratory Effects of E-Cigarettes? BMJ 2019, 366, l5275. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, J.M.; Ramphul, M.; Bush, A. An Update on Controversies in E-Cigarettes. Paediatr. Respir. Rev. 2020, 36, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Sleiman, M.; Logue, J.M.; Montesinos, V.N.; Russell, M.L.; Litter, M.I.; Gundel, L.A.; Destaillats, H. Emissions from Electronic Cigarettes: Key Parameters Affecting the Release of Harmful Chemicals. Environ. Sci. Technol. 2016, 50, 9644–9651. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Population Health and Public Health Practice; Committee on the Review of the Health Effects of Electronic Nicotine Delivery Systems. Toxicology of E-Cigarette Constituents. In Public Health Consequences of E-Cigarettes; Eaton, D.L., Kwan, L.Y., Stratton, K., Eds.; National Academies Press: Washington, DC, USA, 2018. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507184/ (accessed on 26 October 2024).
- Ebersole, J.; Samburova, V.; Son, Y.; Cappelli, D.; Demopoulos, C.; Capurro, A.; Pinto, A.; Chrzan, B.; Kingsley, K.; Howard, K.; et al. Harmful Chemicals Emitted from Electronic Cigarettes and Potential Deleterious Effects in the Oral Cavity. Tob. Induc. Dis. 2020, 18, 41. [Google Scholar] [CrossRef]
- Tarran, R.; Barr, R.G.; Benowitz, N.L.; Bhatnagar, A.; Chu, H.W.; Dalton, P.; Doerschuk, C.M.; Drummond, M.B.; Gold, D.R.; Goniewicz, M.L.; et al. E-Cigarettes and Cardiopulmonary Health. Function 2021, 2, zqab004. [Google Scholar] [CrossRef] [PubMed]
- Mravec, B.; Tibensky, M.; Horvathova, L.; Babal, P. E-Cigarettes and Cancer Risk. Cancer Prev. Res. 2020, 13, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Znyk, M.; Jurewicz, J.; Kaleta, D. Exposure to Heated Tobacco Products and Adverse Health Effects, a Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 6651. [Google Scholar] [CrossRef] [PubMed]
- Czoli, C.D.; White, C.M.; Reid, J.L.; OConnor, R.J.; Hammond, D. Awareness and Interest in IQOS Heated Tobacco Products among Youth in Canada, England and the USA. Tob. Control 2020, 29, 89–95. [Google Scholar] [CrossRef]
- Bekki, K.; Inaba, Y.; Uchiyama, S.; Kunugita, N. Comparison of Chemicals in Mainstream Smoke in Heat-Not-Burn Tobacco and Combustion Cigarettes. J. UOEH 2017, 39, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Salman, R.; Talih, S.; El-Hage, R.; Haddad, C.; Karaoghlanian, N.; El-Hellani, A.; Saliba, N.A.; Shihadeh, A. Free-Base and Total Nicotine, Reactive Oxygen Species, and Carbonyl Emissions From IQOS, a Heated Tobacco Product. Nicotine Tob. Res. 2019, 21, 1285–1288. [Google Scholar] [CrossRef]
- Li, X.; Luo, Y.; Jiang, X.; Zhang, H.; Zhu, F.; Hu, S.; Hou, H.; Hu, Q.; Pang, Y. Chemical Analysis and Simulated Pyrolysis of Tobacco Heating System 2.2 Compared to Conventional Cigarettes. Nicotine Tob. Res. 2019, 21, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Auer, R.; Concha-Lozano, N.; Jacot-Sadowski, I.; Cornuz, J.; Berthet, A. Heat-Not-Burn Tobacco Cigarettes: Smoke by Any Other Name. JAMA Intern. Med. 2017, 177, 1050. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.; Williams, M.; Talbot, P. iQOS: Evidence of Pyrolysis and Release of a Toxicant from Plastic. Tob. Control 2019, 28, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.; Rahman, M.; Johanson, G.; Palmberg, L.; Ganguly, K. Heated Tobacco Products: Insights into Composition and Toxicity. Toxics 2023, 11, 667. [Google Scholar] [CrossRef] [PubMed]
- Idriss, H.T.; Naismith, J.H. TNFα and the TNF Receptor Superfamily: Structure-Function Relationship(s). Microsc. Res. Tech. 2000, 50, 184–195. [Google Scholar] [CrossRef]
- Grunwald, C.; Krętowska-Grunwald, A.; Adamska-Patruno, E.; Kochanowicz, J.; Kułakowska, A.; Chorąży, M. The Role of Selected Interleukins in the Development and Progression of Multiple Sclerosis—A Systematic Review. Int. J. Mol. Sci. 2024, 25, 2589. [Google Scholar] [CrossRef] [PubMed]
- Petrescu, F.; Voican, S.C.; Silosi, I. Tumor necrosis factor-alpha serum levels in healthy smokers and nonsmokers. Int. J. Chron. Obstruct. Pulmon. Dis. 2010, 5, 217–222. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Knie, L.V.; Leknes, K.N.; Xue, Y.; Lie, S.A.; Bunæs, D.F. Serum Biomarker Levels in Smokers and Non-Smokers Following Periodontal Therapy. A Prospective Cohort Study. BMC Oral Health 2024, 24, 463. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, S.S.; Zacchi, E.; Amadio, P.; Gianellini, S.; Mussoni, L.; Weksler, B.B.; Tremoli, E. Cytokines Present in Smokers’ Serum Interact with Smoke Components to Enhance Endothelial Dysfunction. Cardiovasc. Res. 2011, 90, 475–483. [Google Scholar] [CrossRef]
- Shireen, A.; Najwa, J.; Hameed, K.B.; Gomes, H.A.A. Cigarette smoking increases plasma levels of IL-6 and TNF-α. Baghdad J. Biochem. Appl. Biol. Sci. 2022, 3, 60–68. [Google Scholar]
- Tanni, S.E.; Pelegrino, N.R.; Angeleli, A.Y.; Correa, C.; Godoy, I. Smoking Status and Tumor Necrosis Factor-Alpha Mediated Systemic Inflammation in COPD Patients. J. Inflamm. 2010, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Daloee, M.H.; Avan, A.; Mirhafez, S.R.; Kavousi, E.; Hasanian-Mehr, M.; Darroudi, S.; Tajfard, M.; Tayefi, M.; Qazizade, H.; Mohammadi, A.; et al. Impact of Cigarette Smoking on Serum Pro- and Anti-Inflammatory Cytokines and Growth Factors. Am. J. Mens. Health 2017, 11, 1169–1173. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, H.; Fu, Y.; Liu, M.; Zhang, J.; Han, S.; Tian, Y.; Hou, H.; Hu, Q. Effects of Smoking on Inflammatory-Related Cytokine Levels in Human Serum. Molecules 2022, 27, 3715. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, N.; Fukushima, M.; Taniguchi, A.; Okumura, T.; Nomura, Y.; Nishimura, F.; Aoyama, S.; Yabe, D.; Izumi, Y.; Ohtsubo, R.; et al. Smoking, White Blood Cell Counts, and TNF System Activity in Japanese Male Subjects with Normal Glucose Tolerance. Tob. Induc. Dis. 2011, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Van Keulen, H.V.; Gomes, A.S.; Toffolo, M.C.F.; Oliveira, E.E.; Silva, L.C.; Alves, C.C.S.; Almeida, C.S.; Dutra, S.C.P.L.; Aguiar, A.S.; Ferreira, A.P. Serum Levels of Nitric Oxide and Cytokines in Smokers at the Beginning and after 4months of Treatment for Smoking Cessation. Int. J. Cardiol. 2017, 230, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Nakanishi, K.; Yoneda, M.; Hirofuji, T.; Hanioka, T. Relationship between Salivary Stress Biomarker Levels and Cigarette Smoking in Healthy Young Adults: An Exploratory Analysis. Tob. Induc. Dis. 2016, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Zięba, S.; Maciejczyk, M.; Antonowicz, B.; Porydzaj, A.; Szuta, M.; Lo Giudice, G.; Lo Giudice, R.; Krokosz, S.; Zalewska, A. Comparison of Smoking Traditional, Heat Not Burn and Electronic Cigarettes on Salivary Cytokine, Chemokine and Growth Factor Profile in Healthy Young Adults–Pilot Study. Front. Physiol. 2024, 15, 1404944. [Google Scholar] [CrossRef] [PubMed]
- Belkin, S.; Benthien, J.; Axt, P.N.; Mohr, T.; Mortensen, K.; Weckmann, M.; Drömann, D.; Franzen, K.F. Impact of Heated Tobacco Products, E-Cigarettes, and Cigarettes on Inflammation and Endothelial Dysfunction. Int. J. Mol. Sci. 2023, 24, 9432. [Google Scholar] [CrossRef]
- Pushalkar, S.; Paul, B.; Li, Q.; Yang, J.; Vasconcelos, R.; Makwana, S.; González, J.M.; Shah, S.; Xie, C.; Janal, M.N.; et al. Electronic Cigarette Aerosol Modulates the Oral Microbiome and Increases Risk of Infection. iScience 2020, 23, 100884. [Google Scholar] [CrossRef] [PubMed]
- Sinha, D.; Vishal; Kumar, A.; Khan, M.; Kumari, R.; Kesari, M. Evaluation of Tumor Necrosis Factor-Alpha (TNF-α) and Interleukin (IL)-1β Levels among Subjects Vaping e-Cigarettes and Nonsmokers. J. Fam. Med. Prim. Care 2020, 9, 1072. [Google Scholar] [CrossRef]
- Świątkowska, B.; Jankowski, M.; Kaleta, D. Comparative Evaluation of Ten Blood Biomarkers of Inflammation in Regular Heated Tobacco Users and Non-Smoking Healthy Males–a Pilot Study. Sci. Rep. 2024, 14, 8779. [Google Scholar] [CrossRef]
- Bent, R.; Moll, L.; Grabbe, S.; Bros, M. Interleukin-1 Beta—A Friend or Foe in Malignancies? Int. J. Mol. Sci. 2018, 19, 2155. [Google Scholar] [CrossRef]
- Han, Z.; Chen, Y.; Ye, X. The causality between smoking and intervertebral disc degeneration mediated by IL-1β secreted by macrophage: A Mendelian randomization study. Heliyon 2024, 10, e37044. [Google Scholar] [CrossRef]
- Shiels, M.S.; Katki, H.A.; Freedman, N.D.; Purdue, M.P.; Wentzensen, N.; Trabert, B.; Kitahara, C.M.; Furr, M.; Li, Y.; Kemp, T.J.; et al. Cigarette Smoking and Variations in Systemic Immune and Inflammation Markers. JNCI J. Natl. Cancer Inst. 2014, 106, dju294. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.; Lawyer, G.; McDonough, S.; Wang, Q.; Kassem, N.O.; Kas-Petrus, F.; Ye, D.; Singh, K.P.; Kassem, N.O.; Rahman, I. Systemic biomarkers of inflammation, oxidative stress and tissue injury and repair among waterpipe, cigarette and dual tobacco smokers. Tob. Control 2020, 29, s102–s109. [Google Scholar] [CrossRef] [PubMed]
- Elisia, I.; Lam, V.; Cho, B.; Hay, M.; Li, M.Y.; Yeung, M.; Bu, L.; Jia, W.; Norton, N.; Lam, S.; et al. The Effect of Smoking on Chronic Inflammation, Immune Function and Blood Cell Composition. Sci. Rep. 2020, 10, 19480. [Google Scholar] [CrossRef] [PubMed]
- Mokeem, S.A.; Alasqah, M.N.; Michelogiannakis, D.; Al-Kheraif, A.A.; Romanos, G.E.; Javed, F. Clinical and radiographic periodontal status and whole salivary cotinine, IL-1β and IL-6 levels in cigarette- and waterpipe-smokers and E-cig users. Environ. Toxicol. Pharmacol. 2018, 61, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Kamal, N.M.; Shams, N.S. The Impact of Tobacco Smoking and Electronic Cigarette Vaping on Salivary Biomarkers. A Comparative Study. Saudi Dent. J. 2022, 34, 404–409. [Google Scholar] [CrossRef]
- Tylutka, A.; Walas, Ł.; Zembron-Lacny, A. Level of IL-6, TNF, and IL-1β and Age-Related Diseases: A Systematic Review and Meta-Analysis. Front. Immunol. 2024, 15, 1330386. [Google Scholar] [CrossRef]
- Alhumaidan, A.A.; Al-Aali, K.A.; Vohra, F.; Javed, F.; Abduljabbar, T. Comparison of Whole Salivary Cortisol and Interleukin 1-Beta Levels in Light Cigarette-Smokers and Users of Electronic Nicotine Delivery Systems before and after Non-Surgical Periodontal Therapy. Int. J. Environ. Res. Public Health 2022, 19, 11290. [Google Scholar] [CrossRef] [PubMed]
- Farrell, K.R.; Karey, E.; Ficaro, L.; Jones, D.R.; Weitzman, M.; Gordon, T. Evaluating Inflammatory Risk Among Tobacco Product Users in New York City. Am. J. Respir. Crit. Care Med. 2023, 207, A5402. [Google Scholar]
- Singh, K.P.; Lawyer, G.; Muthumalage, T.; Maremanda, K.P.; Khan, N.A.; McDonough, S.R.; Ye, D.; McIntosh, S.; Rahman, I. Systemic Biomarkers in Electronic Cigarette Users: Implications for Noninvasive Assessment of Vaping-Associated Pulmonary Injuries. ERJ Open Res. 2019, 5, 00182–02019. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Anand, K.; Bhargava, M.; Kolluri, A.; Kumar, M.; Palve, D.H. Comparative Evaluation of Salivary Biomarker Levels in E-Cigarette Smokers and Conventional Smokers. J. Pharm. Bioallied Sci. 2021, 13, S1642–S1645. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rabassa, M.; López, P.; Rodríguez-Santiago, R.E.; Cases, A.; Felici, M.; Sánchez, R.; Yamamura, Y.; Rivera-Amill, V. Cigarette Smoking Modulation of Saliva Microbial Composition and Cytokine Levels. Int. J. Environ. Res. Public Health 2018, 15, 2479. [Google Scholar] [CrossRef]
- Wadai, G.M.A. The impact of active and passive smoking on IL-6 serum levels for Iraqi healthy people. Revis. Bionatura 2023, 8, 24. [Google Scholar]
- Aldaham, S.; Foote, J.A.; Chow, H.-H.S.; Hakim, I.A. Smoking Status Effect on Inflammatory Markers in a Randomized Trial of Current and Former Heavy Smokers. Int. J. Inflamm. 2015, 2015, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Jamil, A.; Rashid, A.; Naveed, A.K.; Asim, M. Effect of smoking on interleukin-6 and correlation between IL-6 and serum amyloid a-low density lipoprotein in smokers. J. Postgrad. Med. Inst. 2017, 31, 336–338. [Google Scholar]
- Cesta, M.C.; Zippoli, M.; Marsiglia, C.; Gavioli, E.M.; Mantelli, F.; Allegretti, M.; Balk, R.A. The Role of Interleukin-8 in Lung Inflammation and Injury: Implications for the Management of COVID-19 and Hyperinflammatory Acute Respiratory Distress Syndrome. Front. Pharmacol. 2022, 12, 808797. [Google Scholar] [CrossRef]
- Matsushima, K.; Yang, D.; Oppenheim, J.J. Interleukin-8: An Evolving Chemokine. Cytokine 2022, 153, 155828. [Google Scholar] [CrossRef] [PubMed]
- Salloom, D.F.; Abbas, A.H. Evaluation of Interleukin—8 by ELISA technique in smoker samples in Baghdad city. In Proceedings of the International Conference on Chemical, Agricultural and Medical Sciences, Kuala Lumpur, Malaysia, 29–30 December 2013. [Google Scholar]
- Hajem, S.H.; Saleh, A.A.D. Evaluation level of interleukin—8 and some haemotological parameters in smoker individuals. AIP Conf. Proc. 2023, 2475, 020001. [Google Scholar]
- Wang, H.-Y.; Ye, Y.-N.; Zhu, M.; Cho, C.-H. Increased Interleukin-8 Expression by Cigarette Smoke Extract in Endothelial Cells. Environ. Toxicol. Pharmacol. 2000, 9, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Sahibzada, H.A.; Sohail, K.; Siddiqi, K.M.; Khurshid, Z.; Mahmood, H.; Riaz, S. Salivary Biomarker IL-8 Levels in Smokers and NonSmokers: A Comparative Study. Eur. J. Gen. Dent. 2023, 12, 109–114. [Google Scholar] [CrossRef]
- Amirthalingam, K.; Thangavelu, R.P.; Fenn, S.M.; Mohan, K.R. Comparative Study of Salivary Interleukin–8 (IL-8) in Patients with Oral Cancer, Potentially Malignant Disorders, and Tobacco Users. J. Indian. Acad. Oral Med. Radiol. 2023, 35, 31–35. [Google Scholar] [CrossRef]
- Frasheri, I.; Heym, R.; Ern, C.; Summer, B.; Hennessen, T.G.; Högg, C.; Reichl, F.; Folwaczny, M. Salivary and Gingival CXCL8 Correlation with Periodontal Status, Periodontal Pathogens, and Smoking. Oral Dis. 2022, 28, 2267–2276. [Google Scholar] [CrossRef] [PubMed]
- Karaaslan, F.; Dikilitaş, A.; Yiğit, U. The Effects of Vaping Electronic Cigarettes on Periodontitis. Aust. Dent. J. 2020, 65, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Huangfu, L.; Li, R.; Huang, Y.; Wang, S. The IL-17 Family in Diseases: From Bench to Bedside. Sig. Transduct. Target. Ther. 2023, 8, 402. [Google Scholar] [CrossRef] [PubMed]
- Ponce-Gallegos, M.A.; Pérez-Rubio, G.; Ambrocio-Ortiz, E.; Partida-Zavala, N.; Hernández-Zenteno, R.; Flores-Trujillo, F.; García-Gómez, L.; Hernández-Pérez, A.; Ramírez-Venegas, A.; Falfán-Valencia, R. Genetic Variants in IL17A and Serum Levels of IL-17A Are Associated with COPD Related to Tobacco Smoking and Biomass Burning. Sci. Rep. 2020, 10, 784. [Google Scholar] [CrossRef]
- Javed, F.; Al-Zawawi, A.S.; Allemailem, K.S.; Almatroudi, A.; Mehmood, A.; Divakar, D.D.; Al-Kheraif, A.A. Periodontal Conditions and Whole Salivary IL-17A and -23 Levels among Young Adult Cannabis Sativa (Marijuana)-Smokers, Heavy Cigarette-Smokers and Non-Smokers. Int. J. Environ. Res. Public Health 2020, 17, 7435. [Google Scholar] [CrossRef] [PubMed]
- Taskaldiran, E.S.; Tuter, G.; Yucel, A.A.; Yaman, M. Effects of Smoking on the Salivary and GCF Levels of IL-17 and IL-35 in Periodontitis. Odontology 2024, 112, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Ivashkiv, L.B. IFNγ: Signalling, Epigenetics and Roles in Immunity, Metabolism, Disease and Cancer Immunotherapy. Nat. Rev. Immunol. 2018, 18, 545–558. [Google Scholar] [CrossRef]
- Casanova, J.-L.; MacMicking, J.D.; Nathan, C.F. Interferon-γ and Infectious Diseases: Lessons and Prospects. Science 2024, 384, eadl2016. [Google Scholar] [CrossRef]
- Farhang, A.; Aula, F.A.; Qadir, F.A. Effects of Cigarette Smoking on Some Immunological and Hematological Parameters in Male Smokers in Erbil City. Jordan J. Biol. Sci. 2013, 6, 159–166. [Google Scholar]
- Rahimi, S.; Khosravi, A.; Aazami, S. Effect of Smoking on Cyanide, IL-2 and IFN-γ Levels in Saliva of Smokers and Nonsmokers. Pol. Ann. Med. 2018, 25, 203–206. [Google Scholar] [CrossRef]
- Gärtner, Y.; Bitar, L.; Zipp, F.; Vogelaar, C.F. Interleukin-4 as a therapeutic target. Pharmacol. Ther. 2023, 242, 108348. [Google Scholar] [CrossRef] [PubMed]
- Byron, K.A.; Varigos, G.A.; Wootton, A.M. IL-4 Production Is Increased in Cigarette Smokers. Clin. Exp. Immunol. 2008, 95, 333–336. [Google Scholar] [CrossRef]
- Abed, A.K.; Hassen, W.A.; Salman, M.A. Evaluation of the effect of cigarette smoking on interleukin-4. Int. J. Psychosoc. Rehabil. 2020, 24, 2386–2392. [Google Scholar]
- Ouyang, W.; O’Garra, A. IL-10 Family Cytokines IL-10 and IL-22: From Basic Science to Clinical Translation. Immunity 2019, 50, 871–891. [Google Scholar] [CrossRef] [PubMed]
- Roeb, E. Interleukin-13 (IL-13)—A Pleiotropic Cytokine Involved in Wound Healing and Fibrosis. Int. J. Mol. Sci. 2023, 24, 12884. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, P.R.; Seminario-Vidal, L.; Abe, B.; Ghobadi, C.; Sims, J.T. Cytokines and Epidermal Lipid Abnormalities in Atopic Dermatitis: A Systematic Review. Cells 2023, 12, 2793. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Fan, T.; Xiao, C.; Tian, H.; Zheng, Y.; Li, C.; He, J. TGF-β Signaling in Health, Disease and Therapeutics. Sig. Transduct. Target. Ther. 2024, 9, 61. [Google Scholar] [CrossRef]
- Nakao, E.; Adachi, H.; Enomoto, M.; Fukami, A.; Kumagai, E.; Nakamura, S.; Nohara, Y.; Kono, S.; Sakaue, A.; Morikawa, N.; et al. Elevated Plasma Transforming Growth Factor Β1 Levels Predict the Development of Hypertension in Normotensives: The 14-Year Follow-Up Study. Am. J. Hypertens. 2017, 30, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Mak, J.C.W.; Chan-Yeung, M.M.W.; Ho, S.P.; Chan, K.S.; Choo, K.; Yee, K.S.; Chau, C.H.; Cheung, A.H.K.; Ip, M.S.M. Elevated Plasma TGF-Β1 Levels in Patients with Chronic Obstructive Pulmonary Disease. Respir. Med. 2009, 103, 1083–1089. [Google Scholar] [CrossRef]
- Lin, Y.; Nakachi, K.; Ito, Y.; Kikuchi, S.; Tamakoshi, A.; Yagyu, K.; Watanabe, Y.; Inaba, Y.; Tajima, K. Jacc Study Group Variations in Serum Transforming Growth Factor-β1 Levels with Gender, Age and Lifestyle Factors of Healthy Japanese Adults. Dis. Markers 2009, 27, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Schubert, C.L.; Yusuf, K. Serum Levels of TGF-Β1, Cytokines, Angiogenic, and Anti-Angiogenic Factors in Pregnant Women Who Smoke. J. Reprod. Immunol. 2021, 147, 103351. [Google Scholar] [CrossRef] [PubMed]
- Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell 2019, 176, 1248–1264. [Google Scholar] [CrossRef]
- Yılmaz Şaştım, Ç.; Gürsoy, M.; Könönen, E.; Kasurinen, A.; Norvio, S.; Gürsoy, U.K.; Doğan, B. Salivary and Serum Markers of Angiogenesis in Periodontitis in Relation to Smoking. Clin. Oral Invest. 2021, 25, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Ugur, M.G.; Kutlu, R.; Kilinc, I. The effects of smoking on vascular endothelial growth factor and inflammation markers: A case-control study. Clin. Respir. J. 2018, 12, 1912–1918. [Google Scholar] [CrossRef] [PubMed]
- Gavana, E.; Sayegh, F.E. Serum Levels of Dkk-1, Sclerostin and VEGF in Patients with Ankylosing Spondylitis and Their Association with Smoking, and Clinical, Inflammatory and Radiographic Parameters. Jt. Bone Spine 2017, 84, 309–315. [Google Scholar] [CrossRef]
- Alomari, M.A.; Al-Sheyab, N.A.; Khabour, O.F.; Alzoubi, K.H. Serum VEGF Level Is Different in Adolescents Smoking Waterpipe versus Cigarettes: The Irbid TRY. Biomolecules 2018, 8, 102. [Google Scholar] [CrossRef]
- Machalińska, A.; Safranow, K.; Mozolewska-Piotrowska, K.; Dziedziejko, V.; Karczewicz, D. PEDF and VEGF plasma level alterations in patients with dry form of age-related degeneration—A possible link to the development of the disease. Klin. Oczna. 2012, 114, 115–120. [Google Scholar] [PubMed]
- Ye, D.; Gajendra, S.; Lawyer, G.; Jadeja, N.; Pishey, D.; Pathagunti, S.; Lyons, J.; Veazie, P.; Watson, G.; McIntosh, S.; et al. Inflammatory Biomarkers and Growth Factors in Saliva and Gingival Crevicular Fluid of E-cigarette Users, Cigarette Smokers, and Dual Smokers: A Pilot Study. J. Periodontol. 2020, 91, 1274–1283. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, L.; Han, D.D.; Xu, F.; Huang, A.; Derakhshandeh, R.; Rao, P.; Whitlatch, A.; Cheng, J.; Keith, R.J.; Hamburg, N.M.; et al. Chronic E-Cigarette Use Impairs Endothelial Function on the Physiological and Cellular Levels. Arterioscler. Thromb. Vasc. Biol. 2022, 42, 1333–1350. [Google Scholar] [CrossRef] [PubMed]
- Sabbah, D.A.; Hajjo, R.; Sweidan, K. Review on Epidermal Growth Factor Receptor (EGFR) Structure, Signaling Pathways, Interactions, and Recent Updates of EGFR Inhibitors. Curr. Top. Med. Chem. 2020, 20, 815–834. [Google Scholar] [CrossRef]
- Wasada, T.; Kawahara, R.; Katsumori, K.; Naruse, M.; Omori, Y. Plasma Concentration of Immunoreactive Vascular Endothelial Growth Factor and Its Relation to Smoking. Metabolism 1998, 47, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-L.; Milles, M.; Wu-Wang, C.-Y.; Mardirossian, G.; Leung, C.; Slomiany, A.; Slomiany, B.L. Effect of Cigarette Smoking on Salivary Epidermal Growth Factor (EGF) and EGF Receptor in Human Buccal Mucosa. Toxicology 1992, 75, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Molnarfi, N.; Benkhoucha, M.; Funakoshi, H.; Nakamura, T.; Lalive, P.H. Hepatocyte Growth Factor: A Regulator of Inflammation and Autoimmunity. Autoimmun. Rev. 2015, 14, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Lieb, W.; Safa, R.; Benjamin, E.J.; Xanthakis, V.; Yin, X.; Sullivan, L.M.; Larson, M.G.; Smith, H.M.; Vita, J.A.; Mitchell, G.F.; et al. Vascular Endothelial Growth Factor, Its Soluble Receptor, and Hepatocyte Growth Factor: Clinical and Genetic Correlates and Association with Vascular Function. Eur. Heart J. 2009, 30, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Azman, K.F.; Zakaria, R. Recent Advances on the Role of Brain-Derived Neurotrophic Factor (BDNF) in Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 6827. [Google Scholar] [CrossRef] [PubMed]
- Jamal, M.; Van Der Does, W.; Elzinga, B.M.; Molendijk, M.L.; Penninx, B.W.J.H. Association Between Smoking, Nicotine Dependence, and BDNF Val66Met Polymorphism with BDNF Concentrations in Serum. Nicotine Tob. Res. 2015, 17, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Furihata, R.; Saitoh, K.; Otsuki, R.; Murata, S.; Suzuki, M.; Jike, M.; Kaneita, Y.; Ohida, T.; Uchiyama, M. Association between Reduced Serum BDNF Levels and Insomnia with Short Sleep Duration among Female Hospital Nurses. Sleep Med. 2020, 68, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Suriyaprom, K.; Tungtrongchitr, R.; Thawnashom, K.; Pimainog, Y. BDNF Val66Met Polymorphism and Serum Concentrations of BDNF with Smoking in Thai Males. Genet. Mol. Res. 2013, 12, 4925–4933. [Google Scholar] [CrossRef] [PubMed]
- El Zalabany, L.M.; El Morsi, D.A.; EL Dakroory, S.A.; El-Hassan, A.A.; Yousef, A.R. smoking and brain derived neurotrophic factor (BDNF) level in serum. Mansoura J. Forensic Med. Clin. Toxicol. 2010, 18, 15–25. [Google Scholar] [CrossRef]
- Chan, G.; Rosic, T.; Pasyk, S.; Dehghan, M.; Samaan, Z. Exploring the Impact of Modifiable Factors on Serum BDNF in Psychiatric Patients and Community Controls. Neuropsychiatr. Dis. Treat. 2021, 17, 545–554. [Google Scholar] [CrossRef]
- Al-Mshari, A.; AlSheikh, M.H.; Latif, R.; Mumtaz, S.; Albaker, W.; Al-Hariri, M. Association of Sleep, Body Weight and Physical Exercise with Plasma BDNF Levels in Healthy Male Saudi Smokers. Int. J. Gen. Med. 2022, 15, 6603–6610. [Google Scholar] [CrossRef]
- Bhang, S.-Y.; Choi, S.-W.; Ahn, J.-H. Changes in Plasma Brain-Derived Neurotrophic Factor Levels in Smokers after Smoking Cessation. Neurosci. Lett. 2010, 468, 7–11. [Google Scholar] [CrossRef]
- Singh, S.; Anshita, D.; Ravichandiran, V. MCP-1: Function, Regulation, and Involvement in Disease. Int. Immunopharmacol. 2021, 101, 107598. [Google Scholar] [CrossRef] [PubMed]
- Ehnert, S.; Aspera-Werz, R.H.; Ihle, C.; Trost, M.; Zirn, B.; Flesch, I.; Schröter, S.; Relja, B.; Nussler, A.K. Smoking Dependent Alterations in Bone Formation and Inflammation Represent Major Risk Factors for Complications Following Total Joint Arthroplasty. J. Clin. Med. 2019, 8, 406. [Google Scholar] [CrossRef]
- Xiromerisiou, G.; Marogianni, C.; Lampropoulos, I.C.; Dardiotis, E.; Speletas, M.; Ntavaroukas, P.; Androutsopoulou, A.; Kalala, F.; Grigoriadis, N.; Papoutsopoulou, S. Peripheral Inflammatory Markers TNF-α and CCL2 Revisited: Association with Parkinson’s Disease Severity. Int. J. Mol. Sci. 2023, 24, 264. [Google Scholar] [CrossRef] [PubMed]
- Deo, R.; Khera, A.; McGuire, D.K.; Murphy, S.A.; De P. Meo Neto, J.; Morrow, D.A.; De Lemos, J.A. Association among Plasma Levels of Monocyte Chemoattractant Protein-1, Traditional Cardiovascular Risk Factors, and Subclinical Atherosclerosis. J. Am. Coll. Cardiol. 2004, 44, 1812–1818. [Google Scholar] [CrossRef]
- Sgambato, J.A.; Jones, B.A.; Caraway, J.W.; Prasad, G.L. Inflammatory Profile Analysis Reveals Differences in Cytokine Expression between Smokers, Moist Snuff Users, and Dual Users Compared to Non-Tobacco Consumers. Cytokine 2018, 107, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Podguski, S.; Kaur, G.; Muthumalage, T.; McGraw, M.D.; Rahman, I. Noninvasive Systemic Biomarkers of E-Cigarette or Vaping Use-Associated Lung Injury: A Pilot Study. ERJ Open Res. 2022, 8, 00639–02021. [Google Scholar] [CrossRef]
- Kicman, A.; Niczyporuk, M.; Kulesza, M.; Motyka, J.; Ławicki, S. Utility of Matrix Metalloproteinases in the Diagnosis, Monitoring and Prognosis of Ovarian Cancer Patients. Cancer Manag. Res. 2022, 14, 3359–3382. [Google Scholar] [CrossRef] [PubMed]
- Bchir, S.; Nasr, H.B.; Bouchet, S.; Benzarti, M.; Garrouch, A.; Tabka, Z.; Susin, S.; Chahed, K.; Bauvois, B. Concomitant Elevations of MMP-9, NGAL, proMMP-9/NGAL and Neutrophil Elastase in Serum of Smokers with Chronic Obstructive Pulmonary Disease. J. Cell. Mol. Med. 2017, 21, 1280–1291. [Google Scholar] [CrossRef]
- Snitker, S.; Xie, K.; Ryan, K.A.; Yu, D.; Shuldiner, A.R.; Mitchell, B.D.; Gong, D.-W. Correlation of Circulating MMP-9 with White Blood Cell Count in Humans: Effect of Smoking. PLoS ONE 2013, 8, e66277. [Google Scholar] [CrossRef]
- Nath, D.; Shivasekar, M.; Vinodhini, V.M. Smoking Induces the Circulating Levels of Matrix Metalloproteinase-9 and Its Association with Cardiovascular Risk in Young Smokers. Medeni. Med. J. 2022, 37, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Ebihara, I.; Shimada, N.; Koide, H. Effect of Cigarette Smoking on Plasma Metalloproteinase-9 Concentration. Clin. Chim. Acta 1998, 276, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Smriti, K.; Ray, M.; Chatterjee, T.; Shenoy, R.-P.; Gadicherla, S.; Pentapati, K.-C.; Rustaqi, N. Salivary MMP-9 as a Biomarker for the Diagnosis of Oral Potentially Malignant Disorders and Oral Squamous Cell Carcinoma. Asian Pac. J. Cancer Prev. 2020, 21, 233–238. [Google Scholar] [CrossRef]
- Olson, M.E.; Hornick, M.G.; Stefanski, A.; Albanna, H.R.; Gjoni, A.; Hall, G.D.; Hart, P.C.; Rajab, I.M.; Potempa, L.A. A Biofunctional Review of C-Reactive Protein (CRP) as a Mediator of Inflammatory and Immune Responses: Differentiating Pentameric and Modified CRP Isoform Effects. Front. Immunol. 2023, 14, 1264383. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, T.; Garcia, R.I.; Pablo, P.D.; Schulze, P.C.; Hoffmann, K. The Effects of Cigarette Smoking on C-Reactive Protein Concentrations in Men and Women and Its Modification by Exogenous Oral Hormones in Women. Eur. J. Cardiovasc. Prev. Rehabil. 2007, 14, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Das, I. Raised C-Reactive Protein Levels in Serum from Smokers. Clin. Chim. Acta 1985, 153, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Raymond, E.; Nsonwu-Anyanwu, A.; Ikoidem, U.; Zibril, O.; Edet, I.; Eworo, E. Assessment of Serum Cotinine, C-Reactive Protein Levels and Body Mass Index in Smokers in Calabar, Nigeria. Ann. Clin. Case Stud. 2019, 1, 1014. [Google Scholar]
- Ohsawa, M.; Okayama, A.; Nakamura, M.; Onoda, T.; Kato, K.; Itai, K.; Yoshida, Y.; Ogawa, A.; Kawamura, K.; Hiramori, K. CRP Levels Are Elevated in Smokers but Unrelated to the Number of Cigarettes and Are Decreased by Long-Term Smoking Cessation in Male Smokers. Prev. Med. 2005, 41, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Sanai, M.; Hussain, N. Levels of inflammatory markers (complement C3, Complement C4 and C-reactive protein) in smokers. Afr. J. Biotechnol. 2021, 10, 19211–19217. [Google Scholar]
- Kryfti, M.; Dimakou, K.; Toumbis, M.; Daniil, Z.; Hatzoglou, C.; Gourgoulianis, K.I. Effects of Smoking Cessation on Serum Leptin and Adiponectin Levels. Tob. Induc. Dis. 2015, 13, 30. [Google Scholar] [CrossRef] [PubMed]
- Ata, M.; Shaikh, S.; Iqbal, T.; Hina; Jamil, D.; Khan, R.; Qazi, M.; Riwan, T. Inverse Correlation between Serum C-Reactive Protein and Magnesium Levels in Smokers and Nonsmokers. N. Am. J. Med. Sci. 2015, 7, 271. [Google Scholar] [CrossRef] [PubMed]
- Mainous, A.G.; Yadav, S.; Hong, Y.-R.; Huo, J. E-Cigarette and Conventional Tobacco Cigarette Use, Dual Use, and C-Reactive Protein. J. Am. Coll. Cardiol. 2020, 75, 2271–2273. [Google Scholar] [CrossRef]
- Gallus, S.; Lugo, A.; Suatoni, P.; Taverna, F.; Bertocchi, E.; Boffi, R.; Marchiano, A.; Morelli, D.; Pastorino, U. Effect of Tobacco Smoking Cessation on C-Reactive Protein Levels in A Cohort of Low-Dose Computed Tomography Screening Participants. Sci. Rep. 2018, 8, 12908. [Google Scholar] [CrossRef] [PubMed]
- Christofaro, D.G.D.; Ritti-Dias, R.M.; Tebar, W.R.; Werneck, A.O.; Bittencourt, M.S.; Cucato, G.G.; Santos, R.D. Are C-Reactive Protein Concentrations Affected by Smoking Status and Physical Activity Levels? A Longitudinal Study. PLoS ONE 2023, 18, e0293453. [Google Scholar] [CrossRef] [PubMed]
- O’Loughlin, J.; Lambert, M.; Karp, I.; McGrath, J.; Gray-Donald, K.; Barnett, T.; Delvin, E.; Levy, E.; Paradis, G. Association between Cigarette Smoking and C-Reactive Protein in a Representative, Population-Based Sample of Adolescents. Nicotine Tob. Res. 2008, 10, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Azar, R.; Richard, A. Elevated Salivary C-Reactive Protein Levels Are Associated with Active and Passive Smoking in Healthy Youth: A Pilot Study. J. Inflamm. 2011, 8, 37. [Google Scholar] [CrossRef] [PubMed]
- Stokes, A.C.; Xie, W.; Wilson, A.E.; Yang, H.; Orimoloye, O.A.; Harlow, A.F.; Fetterman, J.L.; DeFilippis, A.P.; Benjamin, E.J.; Robertson, R.M.; et al. Association of Cigarette and Electronic Cigarette Use Patterns With Levels of Inflammatory and Oxidative Stress Biomarkers Among US Adults: Population Assessment of Tobacco and Health Study. Circulation 2021, 143, 869–871. [Google Scholar] [CrossRef] [PubMed]
- Haziza, C.; De La Bourdonnaye, G.; Donelli, A.; Skiada, D.; Poux, V.; Weitkunat, R.; Baker, G.; Picavet, P.; Lüdicke, F. Favorable Changes in Biomarkers of Potential Harm to Reduce the Adverse Health Effects of Smoking in Smokers Switching to the Menthol Tobacco Heating System 2.2 for 3 Months (Part 2). Nicotine Tob. Res. 2020, 22, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Lüdicke, F.; Picavet, P.; Baker, G.; Haziza, C.; Poux, V.; Lama, N.; Weitkunat, R. Effects of Switching to the Menthol Tobacco Heating System 2.2, Smoking Abstinence, or Continued Cigarette Smoking on Clinically Relevant Risk Markers: A Randomized, Controlled, Open-Label, Multicenter Study in Sequential Confinement and Ambulatory Settings (Part 2). Nicotine Tob. Res. 2018, 20, 173–182. [Google Scholar] [CrossRef]
- Wen, S.; Arakawa, H.; Tamai, I. Uric Acid in Health and Disease: From Physiological Functions to Pathogenic Mechanisms. Pharmacol. Ther. 2024, 256, 108615. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-K.; Choe, J.-Y. Association between Smoking and Serum Uric Acid in Korean Population: Data from the Seventh Korea National Health and Nutrition Examination Survey 2016. Medicine 2019, 98, e14507. [Google Scholar] [CrossRef]
- Jang, Y.S.; Nerobkova, N.; Yun, I.; Kim, H.; Park, E.-C. Association between Smoking Behavior and Serum Uric Acid among the Adults: Findings from a National Cross-Sectional Study. PLoS ONE 2023, 18, e0285080. [Google Scholar] [CrossRef] [PubMed]
- Murtadha, J.M. Effect of tobacco smoking on serum lipid profile and renal function levels in Iraqi subjects. Res. J. Pharm. Biol. Chem. Sci. 2017, 8, 146–151. [Google Scholar]
- Hanna, B.E.; Hamed, J.M.; Touhala, L.M. Serum uric Acid in smokers. Oman Med. J. 2008, 23, 269–274. [Google Scholar] [PubMed]
- Rzoqy, H.A.; Esmaeel, N.A.; Hassan, S.H. Correlation Between Vitamin D, Hba1c and Serum Uric Acid in Smoking Persons. Afr. J. Biomed. Res. 2024, 27, 2550–2554. [Google Scholar]
- Miguel, L.M.; Tsieta, A.; Dobhat-Doukakini, C.R. Effects of Smoking on Hepatic and Renal Biomarkers among Smokers in Brazzaville. Int. J. Health Sci. Res. 2022, 12, 12–17. [Google Scholar] [CrossRef]
- Pokhrel, B.R.; Kc, S.; Jayan, A.; Shrestha, J.; Tamang, B.; Gautam, N.; Jha, A.C.; Dubey, R.K. Serum Bilirubin and Uric Acid Levels in Pan Masala Tobacco Users as Compared to Non-Users. MedS J. Med. Sci. 2022, 2, 21–25. [Google Scholar] [CrossRef]
- Zarabadipour, M.; Hosseini, S.A.H.; Haghdoost-Yazdi, H.; Aali, E.; Yusefi, P.; Mirzadeh, M.; Piri, H. A Study on the Correlation between Smoking and Non-Enzymatic Antioxidant Factors of the Saliva of Healthy Smokers and Non-Smokers. Braz. Dent. Sci. 2022, 25, 2867. [Google Scholar] [CrossRef]
- Lesan, S.; Khatibi, M.; Firoozan, S. Salivary levels of uric acid, lactate dehydrogenase, and amylase in smokers versus non-smokers. J. Res. Dent. Maxillofac. Sci. 2021, 6, 19–24. [Google Scholar] [CrossRef]
- Cichońska, D.; Król, O.; Słomińska, E.M.; Kochańska, B.; Świetlik, D.; Ochocińska, J.; Kusiak, A. Influence of Electronic Cigarettes on Antioxidant Capacity and Nucleotide Metabolites in Saliva. Toxics 2021, 9, 263. [Google Scholar] [CrossRef]
- Bains, V.; Bains, R. The Antioxidant Master Glutathione and Periodontal Health. Dent. Res. J. 2015, 12, 389. [Google Scholar] [CrossRef] [PubMed]
- Bizoń, A.; Milnerowicz, H. Effect of tobacco smoking on glutathione concentration in the blood. Prz. Lek. 2012, 69, 809–811. [Google Scholar]
- Marszałł, M.; Makarowski, R.; Czarnowski, W. The influence of tobacco smoking on homocysteine and glutathione levels in biological samples. Prz. Lek. 2006, 63, 948–950. [Google Scholar]
- Safyudin, S.; Subandrate, S. Smoking Tends to Decrease Glutathione and Increase Malondialdehyde Levels in Medical Students. Universa Med. 2016, 35, 89. [Google Scholar] [CrossRef]
- Vlasceanu, A.-M.; Gradinaru, D.; Stan, M.; Nitescu, V.G.; Baconi, D.L. Relationships between Serum Biomarkers of Oxidative Stress and Tobacco Smoke Exposure in Patients with Mental Disorders. Antioxidants 2023, 12, 1299. [Google Scholar] [CrossRef]
- Nsonwu-Anyanwu, A.; Offor, S.; John, I. Cigarette Smoke and Oxidative Stress Indices in Male Active Smokers. React. Oxyg. Species 2018, 5, 199–208. [Google Scholar] [CrossRef]
- Mons, U.; Muscat, J.E.; Modesto, J.; Richie, J.P.; Brenner, H. Effect of Smoking Reduction and Cessation on the Plasma Levels of the Oxidative Stress Biomarker Glutathione—Post-Hoc Analysis of Data from a Smoking Cessation Trial. Free Radic. Biol. Med. 2016, 91, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Alomari, M.A.; Alzoubi, K.H.; Khabour, O.F. Differences in Oxidative Stress Profile in Adolescents Smoking Waterpipe versus Cigarettes: The Irbid TRY Project. Physiol. Rep. 2020, 8, e14512. [Google Scholar] [CrossRef]
- Flohé, L.; Toppo, S.; Orian, L. The glutathione peroxidase family: Discoveries and mechanism. Free Radic. Biol. Med. 2022, 187, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.; Pandeshwar, P.; Padmashree, S. Estimation of Serum Superoxide Dismutase and Glutathione Peroxidase Levels in Tobacco Chewers and Smokers: A Comparative Study. J. Oral Med. Oral Surg. Oral Pathol. Oral Radiol. 2020, 4, 147–154. [Google Scholar] [CrossRef]
- Ahmed, A.; M Ibrahim, A. Effect of Heavy Cigarette and Water Pipe Smoking on Antioxidants and Lipids in Sudanese Male Smokers: A Case-Control Study. Afr. Health Sci. 2022, 22, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Oladunjoye, Z.M.; Adejumo, E.N.; Ganiyu, A.O.; Quadri, J.A. Serum Glutathione Peroxidase and Superoxide Dismutase Levels in Young Adult Active Smokers and Non-Smokers in a Southwest Based Tertiary Institution. Sokoto J. Med. Lab. Sci. 2022, 7, 4. [Google Scholar] [CrossRef]
- Joshi, B.; Singh, S.; Sharma, P.; Mohapatra, T.; Kumar, P. Effect of Cigarette Smoking on Selected Antioxidant Enzymes and Oxidative Stress Biomarkers. J. Clin. Diagn. Res. 2020, 14, 1–4. [Google Scholar] [CrossRef]
- Ermis, B.; Yildirim, A.; Örs, R.; Tastekin, A.; Ozkan, B.; Akcay, F. Influence of Smoking on Serum and Milk Malondialdehyde, Superoxide Dismutase, Glutathione Peroxidase, and Antioxidant Potential Levels in Mothers at the Postpartum Seventh Day. Biol. Trace Elem. Res. 2005, 105, 027–036. [Google Scholar] [CrossRef]
- Chauhan, P.; Reddy, S.S.; Chokkanna, V.K.; Singh, P.; Majumdar, K. Oxidant and Antioxidant Status among Tobacco Users: A Cross-Sectional Study. Natl. J. Maxillofac. Surg. 2023, 14, 444–449. [Google Scholar] [CrossRef]
- Syed, A.; Godavarthy, D.; Kumar, K.; Poosarla, C.; Reddy, G.; Reddy, B.R. Estimation of Salivary Superoxide Dismutase, Glutathione Peroxidase, Catalase Individuals with and without Tobacco Habits. J. NTR Univ. Health Sci. 2021, 10, 27. [Google Scholar] [CrossRef]
- Arbabi-Kalati, F.; Salimi, S.; Nabavi, S.; Rigi, S.; Miri-Moghaddam, M. Effects of Tobacco on Salivary Antioxidative and Immunologic Systems. APJCP 2017, 18, 1215–1218. [Google Scholar] [CrossRef] [PubMed]
- Zappacosta, B.; Persichilli, S.; De Sole, P.; Mordente, A.; Giardina, B. Effect of Smoking One Cigarette on Antioxidant Metabolites in the Saliva of Healthy Smokers. Arch. Oral Biol. 1999, 44, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.N.; Rauf, A.; Fahad, F.I.; Emran, T.B.; Mitra, S.; Olatunde, A.; Shariati, M.A.; Rebezov, M.; Rengasamy, K.R.R.; Mubarak, M.S. Superoxide Dismutase: An Updated Review on Its Health Benefits and Industrial Applications. Crit. Rev. Food Sci. Nutr. 2022, 62, 7282–7300. [Google Scholar] [CrossRef] [PubMed]
- Gavali, Y.B.; Jibhkate, A.N.; Lath, R.K.; Mahajan, S. Study of oxidative stress in smokers by estimating serum superoxide dismutase. Natl. J. Physiol. Pharm. Pharmacol. 2019, 9, 1060–1062. [Google Scholar] [CrossRef]
- Po, M.; Cc, O.; Co, O.; Go, C.; Nc, I.; Si, O.; Ek, N.; Jc, A. Assessment of Superoxide Dismutase Activity and Total Antioxidant Capacity in Adult Male Cigarette Smokers in Nnewi Metropolis, Nigeria. J. Med. Res. 2017, 3, 23–26. [Google Scholar] [CrossRef]
- Pandi, A.; Lal, V.; Chakraborty, B.; Kalappan, V.M. Evaluation of Oxidative Stress and Antioxidant Biomarkers in Chronic Cigarette Smokers: A Pilot Study. Cureus 2024, 16, e60629. [Google Scholar] [CrossRef]
- Nojima, M.; Sakauchi, F.; Mori, M.; Tamakoshi, A.; Ito, Y.; Watanabe, Y.; Inaba, Y.; Tajima, K.; Nakachi, K.; JACC Study Group. Relationship of serum superoxide dismutase activity and lifestyle in healthy Japanese adults. Asian Pac. J. Cancer Prev. APJCP 2009, 10, 37–40. [Google Scholar] [PubMed]
- Iqubal, M.F.; Khan, S.; Ahmad, M.; Alam, R.; Khan, M.M.; Srivastava, V.K.; Hussain, G. Correlation of malondialdehyde and superoxide dismutase in smokers of north indian population. Biochem. Cell. Arch. 2020, 20, 47–54. [Google Scholar] [CrossRef]
- Kumboyono, K.; Chomsy, I.N.; Hakim, A.K.; Sujuti, H.; Hariyanti, T.; Srihardyastutie, A.; Wihastuti, T.A. Detection of Vascular Inflammation and Oxidative Stress by Cotinine in Smokers: Measured Through Interleukin-6 and Superoxide Dismutase. Int. J. Gen. Med. 2022, 15, 7319–7328. [Google Scholar] [CrossRef] [PubMed]
- Baharvand, M.; Maghami, A.G.; Azimi, S.; Bastani, H.; Ahmadieh, A.; Taghibakhsh, M. Comparison of Superoxide Dismutase Activity in Saliva of Smokers and Nonsmokers. South. Med. J. 2010, 103, 425–427. [Google Scholar] [CrossRef]
- Saggu, T.K.; Masthan, K.M.K.; Dudanakar, M.P.; Nisa, S.U.; Patil, S. Evaluation of Salivary Antioxidant Enzymes among Smokers and Nonsmokers. World J. Dent. 2012, 3, 18–21. [Google Scholar] [CrossRef]
- Yadav, U.; Ahmed, J.; Shenoy, N.; Sujir, N.; Denny, C. Effect of Smoking and Tobacco Chewing on Superoxide Dismutase Activity. Indian J. Public Health Res. Dev. 2020, 11, 57–62. [Google Scholar]
- Cordiano, R.; Di Gioacchino, M.; Mangifesta, R.; Panzera, C.; Gangemi, S.; Minciullo, P.L. Malondialdehyde as a Potential Oxidative Stress Marker for Allergy-Oriented Diseases: An Update. Molecules 2023, 28, 5979. [Google Scholar] [CrossRef] [PubMed]
- Nagaraj, S.K.D.; Paunipagar, P.V. Study of Serum Malondialdehyde and Vitamin c in Smokers. J. Sci. Innov. Res. 2014, 3, 569–571. [Google Scholar] [CrossRef]
- Khand, F. Effect of smoking on serum xanthine oxidase, malondialdehyde, ascorbic acid and α-tocopherol levels in healthy male subjects. Pak. J. Med. Sci. 2014, 31, 146. [Google Scholar] [CrossRef] [PubMed]
- Jaggi, S.; Yadav, A.S. Increased serum malondialdehyde levels among cigarette smokers. Pharma Innov. 2015, 4, 94–96. [Google Scholar]
- Bamonti, F.; Novembrino, C.; Ippolito, S.; Soresi, E.; Ciani, A.; Lonati, S.; Scurati-Manzoni, E.; Cighetti, G. Increased Free Malondialdehyde Concentrations in Smokers Normalise with a Mixed Fruit and Vegetable Juice Concentrate: A Pilot Study. Clin. Chem. Lab. Med. 2006, 44, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Isik, B.; Ceylan, A.; Isik, R. Oxidative Stress in Smokers and Non-Smokers. Inhal. Toxicol. 2007, 19, 767–769. [Google Scholar] [CrossRef] [PubMed]
- Lykkesfeldt, J.; Viscovich, M.; Poulsen, H.E. Plasma Malondialdehyde Is Induced by Smoking: A Study with Balanced Antioxidant Profiles. Br. J. Nutr. 2004, 92, 203–206. [Google Scholar] [CrossRef]
- Bello, H.A.; Dandare, A.; Danmaliki, G.I. Effects of Cigarette Smoking On Lipid Peroxidation and Serum Antioxidant Vitamins. IOSR J. Pharm. Biol. Sci. 2017, 12, 40–44. [Google Scholar] [CrossRef]
- Demirtaş, M.; Şenel, Ü.; Yuksel, S.; Yuksel, M. A comparison of the generation of free radicals in saliva of active and passive smokers. Turk. J. Med. Sci. 2014, 44, 208–211. [Google Scholar]
- Mohammed, S.; Ahmed, S.; Mahmoud, T. Estimation of Serum Malondialdehyde and Uric acid levels in Smokers and non-Smokers. Ibn AL-Haitham J. Pure Appl. Sci. 2014, 27, 260–266. [Google Scholar]
- Bozkuş, F.; Atilla, N.; Şimşek, S.; Kurutaş, E.; Samur, A.; Arpağ, H.; Kahraman, H. Serum Telomerase Levels in Smokers and Smokeless Tobacco Users as Maras Powder. Tuberk. Toraks 2017, 65, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Shoeb, M.; Ansari, N.H.; Srivastava, S.K.; Ramana, K.V. 4-Hydroxynonenal in the pathogenesis and progression of human diseases. Curr. Med. Chem. 2014, 21, 230–237. [Google Scholar]
- Li, Y.; Zhao, T.; Li, J.; Xia, M.; Li, Y.; Wang, X.; Liu, C.; Zheng, T.; Chen, R.; Kan, D.; et al. Oxidative Stress and 4-hydroxy-2-nonenal (4-HNE): Implications in the Pathogenesis and Treatment of Aging-related Diseases. J. Immunol. Res. 2022, 2022, 2233906. [Google Scholar] [CrossRef] [PubMed]
- Eskelinen, M.; Saimanen, I.; Koskela, R.; Holopainen, A.; Selander, T. Plasma Concentration of the Lipid Peroxidation (LP) Biomarker 4-Hydroxynonenal (4-HNE) in Benign and Cancer Patients. Vivo 2022, 36, 773–779. [Google Scholar] [CrossRef]
- Zięba, S.; Błachnio-Zabielska, A.; Maciejczyk, M.; Pogodzińska, K.; Szuta, M.; Giudice, G.L.; Giudice, R.L.; Zalewska, A. Impact of Smoking on Salivary Lipid Profile and Oxidative Stress in Young Adults: A Comparative Analysis between Traditional Cigarettes, E-Cigarettes, and Heat-Not-Burn Products. Med. Sci. Monit. 2024, 30, e942507-1–e942507-12. [Google Scholar] [CrossRef]
- Žarković, N.; Gęgotek, A.; Łuczaj, W.; Jaganjac, M.; Šunjić, S.B.; Žarković, K.; Skrzydlewska, E. Overview of the Lipid Peroxidation Measurements in Patients by the Enzyme-Linked Immunosorbent Assay Specific for the 4-Hydroxynonenal-Protein Adducts (4-HNE-ELISA). Front. Biosci. 2024, 29, 153. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-H.; Niki, E. 4-hydroxynonenal (4-HNE) has been widely accepted as an inducer of oxidative stress. Is this the whole truth about it or can 4-HNE also exert protective effects? IUBMB Life 2006, 58, 372–373. [Google Scholar] [CrossRef] [PubMed]
- Zarkovic, N. 4-hydroxynonenal as a bioactive marker of pathophysiological processes. Free Radic. Biol. Med. 2003, 34, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Paul, T.; Salazar-Degracia, A.; Peinado, V.I.; Tura-Ceide, O.; Blanco, I.; Barreiro, E.; Barberà, J.A. Soluble guanylate cyclase stimulation reduces oxidative stress in experimental Chronic Obstructive Pulmonary Disease. PLoS ONE 2018, 13, e0190628. [Google Scholar] [CrossRef] [PubMed]
- Trifunovic, S.; Smiljanić, K.; Sickmann, A.; Solari, F.A.; Kolarevic, S.; Divac Rankov, A.; Ljujic, M. Electronic cigarette liquids impair metabolic cooperation and alter proteomic profiles in V79 cells. Respir. Res. 2022, 23, 1–16. [Google Scholar] [CrossRef]
- Majid, O.W. Salivary lipid changes in young adult tobacco smokers and e-cigarette users: A hidden risk to oral health? Nature 2024, 25, 67–68. [Google Scholar] [CrossRef]
- Volpi, G.; Facchinetti, F.; Moretto, N.; Civelli, M.; Patacchini, R. Cigarette smoke and α,β-unsaturated aldehydes elicit VEGF release through the p38 MAPK pathway in human airway smooth muscle cells and lung fibroblasts. Br. J. Pharmacol. 2011, 163, 1747–1760. [Google Scholar] [CrossRef] [PubMed]
- Caito, S.; Rajendrasozhan, S.; Cook, S.; Chung, S.; Yao, H.; Friedman, A.E.; Brookes, P.S.; Rahman, I. SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress. FASEB J. 2010, 24, 2718–2728. [Google Scholar] [CrossRef] [PubMed]
- Goven, D.; Boutten, A.; Leçon-Malas, V.; Marchal-Sommé, J.; Soler, P.; Boczkowski, J.; Bonay, M. Induction of Heme Oxygenase-1, Biliverdin Reductase and H-Ferritin in Lung Macrophage in Smokers with Primary Spontaneous Pneumothorax: Role of HIF-1α. PLoS ONE 2010, 5, e10886. [Google Scholar] [CrossRef] [PubMed]
- Camacho, O.M.; Hedge, A.; Lowe, F.; Newland, N.; Gale, N.; McEwan, M.; Proctor, C. Statistical analysis plan for “A randomised, controlled study to evaluate the effects of switching from cigarette smoking to using a tobacco heating product on health effect indicators in healthy subjects”. Contemp. Clin. Trials Commun. 2020, 17, 100535. [Google Scholar] [CrossRef] [PubMed]
- Lapenna, D.; Ciofani, G.; Ucchino, S.; Giamberardino, M.A.; Di Ilio, C.; Cuccurullo, F. Reactive aldehyde-scavenging enzyme activities in atherosclerotic plaques of cigarette smokers and nonsmokers. Atherosclerosis 2015, 238, 190–194. [Google Scholar] [CrossRef]
- Moon, J.; Lee, H.; Kong, M.; Kim, H.; Oh, Y. Association Between Electronic Cigarette Use and Levels of High-Sensitivity C-Reactive Protein and Uric Acid. Asia Pac. J. Public Health 2020, 32, 35–41. [Google Scholar] [CrossRef]
- Kim, T.; Kim, Y.; Kang, J. Association of Electronic Cigarette Exposure with Serum Uric Acid Level and Hyperuricemia: 2016-2017 Korea National Health and Nutritional Examination Survey. PLoS ONE 2021, 16, e0247868. [Google Scholar] [CrossRef] [PubMed]
- Newland, N.; Lowe, F.J.; Camacho, O.M.; McEwan, M.; Gale, N.; Ebajemito, J.; Hardie, G.; Murphy, J.; Proctor, C. Evaluating the effects of switching from cigarette smoking to using a heated tobacco product on health effect indicators in healthy subjects: Study protocol for a randomized controlled trial. Intern. Emerg. Med. 2019, 14, 885–898. [Google Scholar] [CrossRef]
- Woodruff, T.J.; Chartres, N. UCSF Program on Reproductive Health and the Environment Microplastics Linked to Lung and Colon Cancer. Environ. Sci. Technol. 2024, 2024, 39692326. [Google Scholar]
- Gaspar, L.; Bartman, S.; Coppotelli, G.; Ross, J.M. Acute exposure to microplastics induces behavioral changes and inflammation in young and old mice. Int. J. Mol. Sci. 2023, 24, 12308. [Google Scholar] [CrossRef] [PubMed]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First Evidence of Microplastics in Human Placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.C.; Da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental Exposure to Microplastics: An Overview on Possible Human Health Effects. Sci. Total Environ. 2020, 702, 134455. [Google Scholar] [CrossRef]
- Heatherton, T.F.; Kozlowski, L.T.; Frecker, R.C.; Fagerstrom, K.O. The Fagerstrom Test for Nicotine Dependence: A Revision of the Fagerstrom Tolerance Questionnaire. Br. J. Addict. 1991, 86, 1119–1127. [Google Scholar] [CrossRef]
- Piotrkowska, R.; Mędrzycka-Dąbrowska, W.; Jarzynkowski, P.; Ślusarz, R. Nicotine Dependence and the Level of Motivation for Ceasing Smoking in the Case of Patients Undergoing Vascular Surgeries Versus the Optimization of Perioperative Care—Pilot Survey. J. Environ. Res. Public Health 2022, 19, 10393. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W.; Löwe, B. The PHQ-9: Validity of a Brief Depression Severity Measure. J. Gen. Intern. Med. 2010, 16, 606–613. [Google Scholar] [CrossRef]
- Morcuende, A.; Navarrete, F.; Nieto, E.; Manzanares, J.; Femenía, T. Inflammatory Biomarkers in Addictive Disorders. Biomolecules 2021, 11, 1824. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, Y.; Li, W.; Wang, J.; Liu, H. “Inflamed” Depression: A Review of the Interactions Between Depression and Inflammation and Current Anti-Inflammatory Strategies for Depression. Pharmacol. Res. 2024, 207, 107322. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Śniadach, J.; Kicman, A.; Michalska-Falkowska, A.; Jończyk, K.; Waszkiewicz, N. Changes in Concentration of Selected Biomarkers of Exposure in Users of Classic Cigarettes, E-Cigarettes, and Heated Tobacco Products—A Narrative Review. Int. J. Mol. Sci. 2025, 26, 1796. https://doi.org/10.3390/ijms26051796
Śniadach J, Kicman A, Michalska-Falkowska A, Jończyk K, Waszkiewicz N. Changes in Concentration of Selected Biomarkers of Exposure in Users of Classic Cigarettes, E-Cigarettes, and Heated Tobacco Products—A Narrative Review. International Journal of Molecular Sciences. 2025; 26(5):1796. https://doi.org/10.3390/ijms26051796
Chicago/Turabian StyleŚniadach, Justyna, Aleksandra Kicman, Anna Michalska-Falkowska, Kamila Jończyk, and Napoleon Waszkiewicz. 2025. "Changes in Concentration of Selected Biomarkers of Exposure in Users of Classic Cigarettes, E-Cigarettes, and Heated Tobacco Products—A Narrative Review" International Journal of Molecular Sciences 26, no. 5: 1796. https://doi.org/10.3390/ijms26051796
APA StyleŚniadach, J., Kicman, A., Michalska-Falkowska, A., Jończyk, K., & Waszkiewicz, N. (2025). Changes in Concentration of Selected Biomarkers of Exposure in Users of Classic Cigarettes, E-Cigarettes, and Heated Tobacco Products—A Narrative Review. International Journal of Molecular Sciences, 26(5), 1796. https://doi.org/10.3390/ijms26051796