Antibody Therapy for Patients with Lymphoid Malignancies: Past and Present
Abstract
1. Introduction
2. Chimeric Monoclonal Therapies—Rituximab
2.1. Introduction
2.2. Clinical Applications
2.2.1. Chronic Lymphocytic Leukemia
2.2.2. Follicular Lymphoma
2.2.3. Diffuse Large B-Cell Lymphoma
2.3. Adverse Effects of Rituximab
2.3.1. Infusion-Related Reactions
2.3.2. B-Cell Depletion and Immunosuppression
2.4. Resistance Mechanisms
3. Glycoengineered Antibody Therapies—Obinutuzumab
3.1. Introduction
3.2. Clinical Applications
3.3. Adverse Effects of Obinutuzumab
4. Antibody–Drug Conjugate (ADC) Therapies
4.1. Introduction
4.2. Clinical Applications
4.3. Adverse Effects of ADCs
5. Bispecific Antibodies—Immunotherapy
5.1. Introduction
5.2. Clinical Applications
5.3. Adverse Effects of Bispecific Antibody Therapies
6. Future Directions
6.1. Combination Regimens
6.2. Role of Machine Learning
Author Contributions
Funding
Conflicts of Interest
References
- Köhler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975, 256, 495–497. [Google Scholar] [CrossRef] [PubMed]
- LoBuglio, A.F.; Wheeler, R.H.; Trang, J.; Haynes, A.; Rogers, K.; Harvey, E.B.; Sun, L.; Ghrayeb, J.; Khazaeli, M.B. Mouse/human chimeric monoclonal antibody in man: Kinetics and immune response. Proc. Natl. Acad. Sci. USA 1989, 86, 4220–4224. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016, 127, 2375–2390. [Google Scholar] [CrossRef] [PubMed]
- Campo, E.; Jaffe, E.S.; Cook, J.R.; Quintanilla-Martinez, L.; Swerdlow, S.H.; Anderson, K.C.; Brousset, P.; Cerroni, L.; de Leval, L.; Dirnhofer, S.; et al. The International Consensus Classification of Mature Lymphoid Neoplasms: A report from the Clinical Advisory Committee. Blood 2022, 140, 1229–1253. [Google Scholar] [CrossRef] [PubMed]
- Hainsworth, J.D.; Litchy, S.; Barton, J.H.; Houston, G.A.; Hermann, R.C.; Bradof, J.E.; Greco, F.A. Single-Agent Rituximab as First-Line and Maintenance Treatment for Patients With Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma: A Phase II Trial of the Minnie Pearl Cancer Research Network. J. Clin. Oncol. 2003, 21, 1746–1751. [Google Scholar] [CrossRef]
- Ferrajoli, A.; Keating, M.J.; O’Brien, S.; Cortes, J.; Thomas, D.A. Experience with rituximab immunotherapy as an early intervention in patients with Rai stage 0 to II chronic lymphocytic leukemia. Cancer 2011, 117, 3182–3186. [Google Scholar] [CrossRef]
- Hallek, M.; Fischer, K.; Fingerle-Rowson, G.; Fink, A.; Busch, R.; Mayer, J.; Hensel, M.; Hopfinger, G.; Hess, G.; von Grünhagen, U.; et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: A randomised, open-label, phase 3 trial. Lancet 2010, 376, 1164–1174. [Google Scholar] [CrossRef]
- Seymour, J.F.; Kipps, T.J.; Eichhorst, B.; Hillmen, P.; D’rozario, J.; Assouline, S.; Owen, C.; Gerecitano, J.; Robak, T.; De la Serna, J.; et al. Venetoclax–Rituximab in Relapsed or Refractory Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2018, 378, 1107–1120. [Google Scholar] [CrossRef]
- Seymour, J.F.; Kipps, T.J.; Eichhorst, B.F.; D’rozario, J.; Owen, C.J.; Assouline, S.; Lamanna, N.; Robak, T.; de la Serna, J.; Jaeger, U.; et al. Enduring undetectable MRD and updated outcomes in relapsed/refractory CLL after fixed-duration venetoclax-rituximab. Blood 2022, 140, 839–850. [Google Scholar] [CrossRef]
- Zelenetz, A.; Chu, G.; Galili, N.; Bangs, C.; Horning, S.; Donlon, T.; Cleary, M.; Levy, R. Enhanced detection of the t(14;18) translocation in malignant lymphoma using pulsed-field gel electrophoresis. Blood 1991, 78, 1552–1560. [Google Scholar] [CrossRef]
- Fisher, R.I.; LeBlanc, M.; Press, O.W.; Maloney, D.G.; Unger, J.M.; Miller, T.P. New Treatment Options Have Changed the Survival of Patients With Follicular Lymphoma. J. Clin. Oncol. 2005, 23, 8447–8452. [Google Scholar] [CrossRef] [PubMed]
- Roulland, S.; Kelly, R.S.; Morgado, E.; Sungalee, S.; Solal-Celigny, P.; Colombat, P.; Jouve, N.; Palli, D.; Pala, V.; Tumino, R.; et al. t(14;18) Translocation: A Predictive Blood Biomarker for Follicular Lymphoma. J. Clin. Oncol. 2014, 32, 1347–1355. [Google Scholar] [CrossRef] [PubMed]
- Colombat, P.; Salles, G.; Brousse, N.; Eftekhari, P.; Soubeyran, P.; Delwail, V.; Deconinck, E.; Haïoun, C.; Foussard, C.; Sebban, C.; et al. Rituximab (anti-CD20 monoclonal antibody) as single first-line therapy for patients with follicular lymphoma with a low tumor burden: Clinical and molecular evaluation. Blood 2001, 97, 101–106. [Google Scholar] [CrossRef]
- Kahl, B.S.; Hong, F.; Williams, M.E.; Gascoyne, R.D.; Wagner, L.I.; Krauss, J.C.; Habermann, T.M.; Swinnen, L.J.; Schuster, S.J.; Peterson, C.G.; et al. Rituximab Extended Schedule or Re-Treatment Trial for Low–Tumor Burden Follicular Lymphoma: Eastern Cooperative Oncology Group Protocol E4402. J. Clin. Oncol. 2014, 32, 3096–3102. [Google Scholar] [CrossRef]
- Kahl, B.S.; Jegede, O.A.; Peterson, C.; Swinnen, L.J.; Habermann, T.M.; Schuster, S.J.; Weiss, M.; Fishkin, P.A.; Fenske, T.S.; Williams, M.E. Long-Term Follow-Up of the RESORT Study (E4402): A Randomized Phase III Comparison of Two Different Rituximab Dosing Strategies for Low–Tumor Burden Follicular Lymphoma. J. Clin. Oncol. 2024, 42, 774–778. [Google Scholar] [CrossRef]
- McLaughlin, P.; Grillo-López, A.J.; Link, B.K.; Levy, R.; Czuczman, M.S.; Williams, M.E.; Heyman, M.R.; Bence-Bruckler, I.; White, C.A.; Cabanillas, F.; et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: Half of patients respond to a four-dose treatment program. J. Clin. Oncol. 1998, 16, 2825–2833. [Google Scholar] [CrossRef]
- Piro, L.D.; White, C.A.; Grillo-López, A.J.; Janakiraman, N.; Saven, A.; Beck, T.M.; Varns, C.; Shuey, S.; Czuczman, M.; Lynch, J.W.; et al. Extended Rituximab (anti-CD20 monoclonal antibody) therapy for relapsed or refractory low-grade or follicular non-Hodgkin’s lymphoma. Ann. Oncol. 1999, 10, 655–661. [Google Scholar] [CrossRef]
- Salles, G.; Seymour, J.F.; Offner, F.; López-Guillermo, A.; Belada, D.; Xerri, L.; Feugier, P.; Bouabdallah, R.; Catalano, J.V.; Brice, P.; et al. Rituximab maintenance for 2 years in patients with high tumour burden follicular lymphoma responding to rituximab plus chemotherapy (PRIMA): A phase 3, randomised controlled trial. Lancet 2010, 377, 42–51. [Google Scholar] [CrossRef]
- Bachy, E.; Seymour, J.F.; Feugier, P.; Offner, F.; López-Guillermo, A.; Belada, D.; Xerri, L.; Catalano, J.V.; Brice, P.; Lemonnier, F.; et al. Sustained Progression-Free Survival Benefit of Rituximab Maintenance in Patients With Follicular Lymphoma: Long-Term Results of the PRIMA Study. J. Clin. Oncol. 2019, 37, 2815–2824. [Google Scholar] [CrossRef]
- Pfreundschuh, M.; Kuhnt, E.; Trümper, L.; Österborg, A.; Trneny, M.; Shepherd, L.; Gill, D.S.; Walewski, J.; Pettengell, R.; Jaeger, U.; et al. CHOP-like chemotherapy with or without rituximab in young patients with good-prognosis diffuse large-B-cell lymphoma: 6-year results of an open-label randomised study of the MabThera International Trial (MInT) Group. Lancet Oncol. 2011, 12, 1013–1022. [Google Scholar] [CrossRef]
- Coiffier, B.; Lepage, E.; Brière, J.; Herbrecht, R.; Tilly, H.; Bouabdallah, R.; Morel, P.; Van Den Neste, E.; Salles, G.; Gaulard, P.; et al. CHOP Chemotherapy plus Rituximab Compared with CHOP Alone in Elderly Patients with Diffuse Large-B-Cell Lymphoma. N. Engl. J. Med. 2002, 346, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Gagez, A.-L.; Cartron, G. Obinutuzumab. Curr. Opin. Oncol. 2014, 26, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Townsend, W.; Hiddemann, W.; Buske, C.; Cartron, G.; Cunningham, D.; Dyer, M.J.; Gribben, J.G.; Phillips, E.H.; Dreyling, M.; Seymour, J.F.; et al. Obinutuzumab Versus Rituximab Immunochemotherapy in Previously Untreated iNHL: Final Results From the GALLIUM Study. HemaSphere 2023, 7, e919. [Google Scholar] [CrossRef] [PubMed]
- Marcus, R.; Davies, A.; Ando, K.; Klapper, W.; Opat, S.; Owen, C.; Phillips, E.; Sangha, R.; Schlag, R.; Seymour, J.F.; et al. Obinutuzumab for the First-Line Treatment of Follicular Lymphoma. N. Engl. J. Med. 2017, 377, 1331–1344. [Google Scholar] [CrossRef]
- Hiddemann, W.; Barbui, A.M.; Canales, M.A.; Cannell, P.K.; Collins, G.P.; Dürig, J.; Forstpointner, R.; Herold, M.; Hertzberg, M.; Klanova, M.; et al. Immunochemotherapy With Obinutuzumab or Rituximab for Previously Untreated Follicular Lymphoma in the GALLIUM Study: Influence of Chemotherapy on Efficacy and Safety. J. Clin. Oncol. 2018, 36, 2395–2404. [Google Scholar] [CrossRef]
- Caimi, P.F.; Ai, W.Z.; Alderuccio, J.P.; Ardeshna, K.M.; Hamadani, M.; Hess, B.; Kahl, B.S.; Radford, J.; Solh, M.; Stathis, A.; et al. Loncastuximab tesirine in relapsed/refractory diffuse large B-cell lymphoma: Long-term efficacy and safety from the phase 2 LOTIS-2 study. Haematologica 2023, 109, 1184–1193. [Google Scholar] [CrossRef]
- Sehn, L.H.; Goy, A.; Offner, F.C.; Martinelli, G.; Caballero, M.D.; Gadeberg, O.; Baetz, T.; Zelenetz, A.D.; Gaidano, G.; Fayad, L.E.; et al. Randomized Phase II Trial Comparing Obinutuzumab (GA101) With Rituximab in Patients With Relapsed CD20+ Indolent B-Cell Non-Hodgkin Lymphoma: Final Analysis of the GAUSS Study. J. Clin. Oncol. 2015, 33, 3467–3474. [Google Scholar] [CrossRef]
- Leblond, V.; Aktan, M.; Coll, C.M.F.; Dartigeas, C.; Kisro, J.; Montillo, M.; Raposo, J.; Merot, J.-L.; Robson, S.; Gresko, E.; et al. Safety of obinutuzumab alone or combined with chemotherapy for previously untreated or relapsed/refractory chronic lymphocytic leukemia in the phase IIIb GREEN study. Haematologica 2018, 103, 1889–1898. [Google Scholar] [CrossRef]
- Tolcher, A.W. Antibody drug conjugates: Lessons from 20 years of clinical experience. Ann. Oncol. 2016, 27, 2168–2172. [Google Scholar] [CrossRef]
- Sehn, L.H.; Herrera, A.F.; Flowers, C.R.; Kamdar, M.K.; McMillan, A.; Hertzberg, M.; Assouline, S.; Kim, T.M.; Kim, W.S.; Ozcan, M.; et al. Polatuzumab Vedotin in Relapsed or Refractory Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. 2020, 38, 155–165. [Google Scholar] [CrossRef]
- Tilly, H.; Morschhauser, F.; Sehn, L.H.; Friedberg, J.W.; Trněný, M.; Sharman, J.P.; Herbaux, C.; Burke, J.M.; Matasar, M.; Rai, S.; et al. Polatuzumab Vedotin in Previously Untreated Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Herrera, M.; Pretelli, G.; Desai, J.; Garralda, E.; Siu, L.L.; Steiner, T.M.; Au, L. Bispecific antibodies: Advancing precision oncology. Trends Cancer 2024, 10, 893–919. [Google Scholar] [CrossRef] [PubMed]
- Abelman, R.O.; Wu, B.; Spring, L.M.; Ellisen, L.W.; Bardia, A. Mechanisms of Resistance to Antibody–Drug Conjugates. Cancers 2023, 15, 1278. [Google Scholar] [CrossRef]
- van de Donk, N.W.C.J.; Zweegman, S. T-cell-engaging bispecific antibodies in cancer. Lancet 2023, 402, 142–158. [Google Scholar] [CrossRef]
- Bayly-McCredie, E.; Treisman, M.; Fiorenza, S. Safety and Efficacy of Bispecific Antibodies in Adults with Large B-Cell Lymphomas: A Systematic Review of Clinical Trial Data. Int. J. Mol. Sci. 2024, 25, 9736. [Google Scholar] [CrossRef]
- Frampton, J.E. Epcoritamab: First Approval. Drugs 2023, 83, 1331–1340. [Google Scholar] [CrossRef]
- Linton, K.M.; Vitolo, U.; Jurczak, W.; Lugtenburg, P.J.; Gyan, E.; Sureda, A.; Christensen, J.H.; Hess, B.; Tilly, H.; Cordoba, R.; et al. Epcoritamab monotherapy in patients with relapsed or refractory follicular lymphoma (EPCORE NHL-1): A phase 2 cohort of a single-arm, multicentre study. Lancet Haematol. 2024, 11, e593–e605. [Google Scholar] [CrossRef]
- Thieblemont, C.; Karimi, Y.H.; Ghesquieres, H.; Cheah, C.Y.; Clausen, M.R.; Cunningham, D.; Jurczak, W.; Do, Y.R.; Gasiorowski, R.; Lewis, D.J.; et al. Epcoritamab in relapsed/refractory large B-cell lymphoma: 2-year follow-up from the pivotal EPCORE NHL-1 trial. Leukemia 2024, 38, 2653–2662. [Google Scholar] [CrossRef]
- Dickinson, M.J.; Carlo-Stella, C.; Morschhauser, F.; Bachy, E.; Corradini, P.; Iacoboni, G.; Khan, C.; Wróbel, T.; Offner, F.; Trněný, M.; et al. Glofitamab for Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 387, 2220–2231. [Google Scholar] [CrossRef]
- Jiang, C.; Sun, H.; Jiang, Z.; Tian, W.; Cang, S.; Yu, J. Targeting the CD47/SIRPα pathway in malignancies: Recent progress, difficulties and future perspectives. Front. Oncol. 2024, 14, 1378647. [Google Scholar] [CrossRef]
- Sikic, B.I.; Lakhani, N.; Patnaik, A.; Shah, S.A.; Chandana, S.R.; Rasco, D.; Colevas, A.D.; O’rourke, T.; Narayanan, S.; Papadopoulos, K.; et al. First-in-Human, First-in-Class Phase I Trial of the Anti-CD47 Antibody Hu5F9-G4 in Patients With Advanced Cancers. J. Clin. Oncol. 2019, 37, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Popplewell, L.; Collins, G.P.; Smith, S.M.; Flinn, I.W.; Bartlett, N.L.; Ghosh, N.; Hacohen-Kleiman, G.; Huo, Y.; Su-Feher, L.; et al. Magrolimab plus rituximab in relapsed/refractory indolent non-Hodgkin lymphoma: 3-year follow-up of a phase 1/2 trial. Blood Adv. 2024, 8, 5855–5863. [Google Scholar] [CrossRef] [PubMed]
- Morrison, S.L.; Johnson, M.J.; Herzenberg, L.A.; Oi, V.T. Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains. Proc. Natl. Acad. Sci. USA 1984, 81, 6851–6855. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.Y.; Robinson, R.R.; Murray, E.D.; Ledbetter, J.A.; Hellström, I.; Hellström, K.E. Production of a mouse-human chimeric monoclonal antibody to CD20 with potent Fc-dependent biologic activity. J. Immunol. 1987, 139, 3521–3526. [Google Scholar] [CrossRef]
- Nishimura, Y.; Yokoyama, M.; Araki, K.; Ueda, R.; Kudo, A.; Watanabe, T. Recombinant Human-Mouse Chimeric Monoclonal-Antibody Specific for Common Acute Lymphocytic-Leukemia Antigen. Cancer Res. 1987, 47, 999–1005. [Google Scholar]
- Reff, M.E.; Carner, K.; Chambers, K.S.; Chinn, P.C.; Leonard, J.E.; Raab, R.; Newman, R.A.; Hanna, N.; Anderson, D. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 1994, 83, 435–445. [Google Scholar] [CrossRef]
- Weiner, G.J. Rituximab: Mechanism of Action. Semin. Hematol. 2010, 47, 115–123. [Google Scholar] [CrossRef]
- Abulayha, A.; Bredan, A.; El Enshasy, H.; Daniels, I. Rituximab: Modes of Action, Remaining Dispute and Future Perspective. Futur. Oncol. 2014, 10, 2481–2492. [Google Scholar] [CrossRef]
- Cartron, G.; Blasco, H.; Paintaud, G.; Watier, H.; Le Guellec, C. Pharmacokinetics of rituximab and its clinical use: Thought for the best use? Crit. Rev. Oncol. 2007, 62, 43–52. [Google Scholar] [CrossRef]
- Keating, G.M. Spotlight on Rituximab in Chronic Lymphocytic Leukemia, Low-Grade or Follicular Lymphoma, and Diffuse Large B-Cell Lymphoma†. BioDrugs 2011, 25, 55–61. [Google Scholar] [CrossRef]
- ZERO Prostate Cancer. Cancer Facts & Figures 2024; American Cancer Society: Atlanta, GA, USA, 2024. [Google Scholar]
- Shanafelt, T.D.; Wang, X.V.; Kay, N.E.; Hanson, C.A.; O’brien, S.; Barrientos, J.; Jelinek, D.F.; Braggio, E.; Leis, J.F.; Zhang, C.C.; et al. Ibrutinib–Rituximab or Chemoimmunotherapy for Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2019, 381, 432–443. [Google Scholar] [CrossRef] [PubMed]
- Shanafelt, T.D.; Wang, X.V.; Hanson, C.A.; Paietta, E.M.; O’brien, S.; Barrientos, J.; Jelinek, D.F.; Braggio, E.; Leis, J.F.; Zhang, C.C.; et al. Long-term outcomes for ibrutinib–rituximab and chemoimmunotherapy in CLL: Updated results of the E1912 trial. Blood 2022, 140, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Al-Hamadani, M.; Habermann, T.M.; Cerhan, J.R.; Macon, W.R.; Maurer, M.J.; Go, R.S. Non-Hodgkin lymphoma subtype distribution, geodemographic patterns, and survival in the US: A longitudinal analysis of the National Cancer Data Base from 1998 to 2011. Am. J. Hematol. 2015, 90, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Witzig, T.E.; Vukov, A.M.; Habermann, T.M.; Geyer, S.; Kurtin, P.J.; Friedenberg, W.R.; White, W.L.; Chalchal, H.I.; Flynn, P.J.; Fitch, T.R.; et al. Rituximab Therapy for Patients With Newly Diagnosed, Advanced-Stage, Follicular Grade I Non-Hodgkin’s Lymphoma: A Phase II Trial in the North Central Cancer Treatment Group. J. Clin. Oncol. 2005, 23, 1103–1108. [Google Scholar] [CrossRef]
- Flinn, I.W.; van der Jagt, R.; Kahl, B.S.; Wood, P.; Hawkins, T.E.; MacDonald, D.; Hertzberg, M.; Kwan, Y.-L.; Simpson, D.; Craig, M.; et al. Randomized trial of bendamustine-rituximab or R-CHOP/R-CVP in first-line treatment of indolent NHL or MCL: The BRIGHT study. Blood 2014, 123, 2944–2952. [Google Scholar] [CrossRef]
- Flinn, I.W.; van der Jagt, R.; Kahl, B.; Wood, P.; Hawkins, T.; MacDonald, D.; Simpson, D.; Kolibaba, K.; Issa, S.; Chang, J.; et al. First-Line Treatment of Patients with Indolent Non-Hodgkin Lymphoma or Mantle-Cell Lymphoma with Bendamustine Plus Rituximab Versus R-CHOP or R-CVP: Results of the BRIGHT 5-Year Follow-Up Study. J. Clin. Oncol. 2019, 37, 984–991. [Google Scholar] [CrossRef]
- Leonard, J.P.; Trneny, M.; Izutsu, K.; Fowler, N.H.; Hong, X.; Zhu, J.; Zhang, H.; Offner, F.; Scheliga, A.; Nowakowski, G.S.; et al. AUGMENT: A Phase III Study of Lenalidomide Plus Rituximab Versus Placebo Plus Rituximab in Relapsed or Refractory Indolent Lymphoma. J. Clin. Oncol. 2019, 37, 1188–1199. [Google Scholar] [CrossRef]
- Wang, S.S. Epidemiology and etiology of diffuse large B-cell lymphoma. Semin. Hematol. 2023, 60, 255–266. [Google Scholar] [CrossRef]
- Liu, Y.; Barta, S.K. Diffuse large B-cell lymphoma: 2019 update on diagnosis, risk stratification, and treatment. Am. J. Hematol. 2019, 94, 604–616. [Google Scholar] [CrossRef]
- Coiffier, B.; Haioun, C.; Ketterer, N.; Engert, A.; Tilly, H.; Ma, D.; Johnson, P.; Lister, A.; Feuring-Buske, M.; A Radford, J.; et al. Rituximab (anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma: A multicenter phase II study. Blood 1998, 92, 1927–1932. [Google Scholar]
- Fenot, M.; Quereux, G.; Brocard, A.; Renaut, J.-J.; Dreno, B. Rituximab for primary cutaneous diffuse large B-cell lymphoma-leg type. Eur. J. Dermatol. 2010, 20, 753–757. [Google Scholar] [PubMed]
- Coiffier, B.; Thieblemont, C.; Van Den Neste, E.; Lepeu, G.; Plantier, I.; Castaigne, S.; Lefort, S.; Marit, G.; Macro, M.; Sebban, C.; et al. Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: A study by the Groupe d’Etudes des Lymphomes de l’Adulte. Blood 2010, 116, 2040–2045. [Google Scholar] [CrossRef]
- Oki, Y.; Noorani, M.; Lin, P.; Davis, R.E.; Neelapu, S.S.; Ma, L.; Ahmed, M.; Rodriguez, M.A.; Hagemeister, F.B.; Fowler, N.; et al. Double hit lymphoma: The MD Anderson Cancer Center clinical experience. Br. J. Haematol. 2014, 166, 891–901. [Google Scholar] [CrossRef] [PubMed]
- Récher, C.; Coiffier, B.; Haioun, C.; Molina, T.J.; Fermé, C.; Casasnovas, O.; Thiéblemont, C.; Bosly, A.; Laurent, G.; Morschhauser, F.; et al. Intensified chemotherapy with ACVBP plus rituximab versus standard CHOP plus rituximab for the treatment of diffuse large B-cell lymphoma (LNH03-2B): An open-label randomised phase 3 trial. Lancet 2011, 378, 1858–1867. [Google Scholar] [CrossRef]
- Song, Y.; Tilly, H.; Rai, S.; Zhang, H.; Jin, J.; Goto, H.; Terui, Y.; Shin, H.-J.; Kim, W.S.S.; Cao, J.; et al. Polatuzumab vedotin in previously untreated DLBCL: An Asia subpopulation analysis from the phase 3 POLARIX trial. Blood 2023, 141, 1971–1981. [Google Scholar] [CrossRef]
- Levin, A.S.; Otani, I.M.; Lax, T.; Hochberg, E.; Banerji, A. Reactions to Rituximab in an Outpatient Infusion Center: A 5-Year Review. J. Allergy Clin. Immunol. Pract. 2017, 5, 107–113.e1. [Google Scholar] [CrossRef]
- Tudesq, J.-J.; Cartron, G.; Rivière, S.; Morquin, D.; Iordache, L.; Mahr, A.; Pourcher, V.; Klouche, K.; Cerutti, D.; Le Quellec, A.; et al. Clinical and microbiological characteristics of the infections in patients treated with rituximab for autoimmune and/or malignant hematological disorders. Autoimmun. Rev. 2018, 17, 115–124. [Google Scholar] [CrossRef]
- Wolach, O.; Bairey, O.; Lahav, M. Late-Onset Neutropenia After Rituximab Treatment. Medicine 2010, 89, 308–318. [Google Scholar] [CrossRef]
- Hou, K.; Su, T.; Kao, C.; Cheng, H.; Tseng, T.; Liu, C.; Hsieh, S.; Kao, J. Rituximab carries high risks of hepatitis B virus reactivation in hematologic and rheumatic patients with chronic or resolved hepatitis B. J. Gastroenterol. Hepatol. 2024, 39, 2447–2455. [Google Scholar] [CrossRef]
- Cho, S.-F.; Wu, W.-H.; Yang, Y.-H.; Liu, Y.-C.; Hsiao, H.-H.; Chang, C.-S. Longitudinal risk of herpes zoster in patients with non-Hodgkin lymphoma receiving chemotherapy: A nationwide population-based study. Sci. Rep. 2015, 5, 14008. [Google Scholar] [CrossRef]
- Kamboj, M.; Bohlke, K.; Baptiste, D.M.; Dunleavy, K.; Fueger, A.; Jones, L.; Kelkar, A.H.; Law, L.Y.; LeFebvre, K.B.; Ljungman, P.; et al. Vaccination of Adults With Cancer: ASCO Guideline. J. Clin. Oncol. 2024, 42, 1699–1721. [Google Scholar] [CrossRef] [PubMed]
- Bordron, A.; Bagacean, C.; Mohr, A.; Tempescul, A.; Bendaoud, B.; Deshayes, S.; Dalbies, F.; Buors, C.; Saad, H.; Berthou, C.; et al. Resistance to complement activation, cell membrane hypersialylation and relapses in chronic lymphocytic leukemia patients treated with rituximab and chemotherapy. Oncotarget 2018, 9, 31590–31605. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Vaughan, A.T.; Ashton-Key, M.; Williams, E.L.; Dixon, S.V.; Chan, H.T.C.; Beers, S.A.; French, R.R.; Cox, K.L.; Davies, A.J.; et al. Fc gamma receptor IIb on target B cells promotes rituximab internalization and reduces clinical efficacy. Blood 2011, 118, 2530–2540. [Google Scholar] [CrossRef] [PubMed]
- Jazirehi, A.R.; Vega, M.I.; Bonavida, B. Development of Rituximab-Resistant Lymphoma Clones with Altered Cell Signaling and Cross-Resistance to Chemotherapy. Cancer Res. 2007, 67, 1270–1281. [Google Scholar] [CrossRef]
- Olejniczak, S.H.; Hernandez-Ilizaliturri, F.J.; Clements, J.L.; Czuczman, M.S. Acquired Resistance to Rituximab Is Associated with Chemotherapy Resistance Resulting from Decreased Bax and Bak Expression. Clin. Cancer Res. 2008, 14, 1550–1560. [Google Scholar] [CrossRef]
- Rushton, C.K.; Arthur, S.E.; Alcaide, M.; Cheung, M.; Jiang, A.; Coyle, K.M.; Cleary, K.L.S.; Thomas, N.; Hilton, L.K.; Michaud, N.; et al. Genetic and evolutionary patterns of treatment resistance in relapsed B-cell lymphoma. Blood Adv. 2020, 4, 2886–2898. [Google Scholar] [CrossRef]
- Al-Sawaf, O.; Fischer, K.; Engelke, A.; Pflug, N.; Hallek, M.; Goede, V. Obinutuzumab in chronic lymphocytic leukemia: Design, development and place in therapy. Drug Des. Dev. Ther. 2017, 11, 295–304. [Google Scholar] [CrossRef]
- Golay, J.; Da Roit, F.; Bologna, L.; Ferrara, C.; Leusen, J.H.; Rambaldi, A.; Klein, C.; Introna, M. Glycoengineered CD20 antibody obinutuzumab activates neutrophils and mediates phagocytosis through CD16B more efficiently than rituximab. Blood 2013, 122, 3482–3491. [Google Scholar] [CrossRef]
- Goede, V.; Fischer, K.; Busch, R.; Engelke, A.; Eichhorst, B.; Wendtner, C.M.; Chagorova, T.; de la Serna, J.; Dilhuydy, M.-S.; Illmer, T.; et al. Obinutuzumab plus Chlorambucil in Patients with CLL and Coexisting Conditions. N. Engl. J. Med. 2014, 370, 1101–1110. [Google Scholar] [CrossRef]
- Al-Sawaf, O.; Robrecht, S.; Zhang, C.; Olivieri, S.; Chang, Y.M.; Fink, A.M.; Tausch, E.; Schneider, C.; Ritgen, M.; Kreuzer, K.-A.; et al. Venetoclax-obinutuzumab for previously untreated chronic lymphocytic leukemia: 6-year results of the randomized phase 3 CLL14 study. Blood 2024, 144, 1924–1935. [Google Scholar] [CrossRef]
- Gibiansky, E.; Gibiansky, L.; Buchheit, V.; Frey, N.; Brewster, M.; Fingerle-Rowson, G.; Jamois, C. Pharmacokinetics, exposure, efficacy and safety of obinutuzumab in rituximab-refractory follicular lymphoma patients in the GADOLIN phase III study. Br. J. Clin. Pharmacol. 2019, 85, 1935–1945. [Google Scholar] [CrossRef] [PubMed]
- Vitolo, U.; Trněný, M.; Belada, D.; Burke, J.M.; Carella, A.M.; Chua, N.; Abrisqueta, P.; Demeter, J.; Flinn, I.; Hong, X.; et al. Obinutuzumab or Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone in Previously Untreated Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. 2017, 35, 3529–3537. [Google Scholar] [CrossRef] [PubMed]
- Sehn, L.H.; Martelli, M.; Trněný, M.; Liu, W.; Bolen, C.R.; Knapp, A.; Sahin, D.; Sellam, G.; Vitolo, U. A randomized, open-label, Phase III study of obinutuzumab or rituximab plus CHOP in patients with previously untreated diffuse large B-Cell lymphoma: Final analysis of GOYA. J. Hematol. Oncol. 2020, 13, 71. [Google Scholar] [CrossRef]
- Chu, Y.; Zhou, X.; Wang, X. Antibody-drug conjugates for the treatment of lymphoma: Clinical advances and latest progress. J. Hematol. Oncol. 2021, 14, 88. [Google Scholar] [CrossRef]
- Fu, Y.; Ho, M. DNA damaging agent-based antibody-drug conjugates for cancer therapy. Antib. Ther. 2018, 1, 43–53. [Google Scholar] [CrossRef]
- Caimi, P.F.; Ai, W.; Alderuccio, J.P.; Ardeshna, K.M.; Hamadani, M.; Hess, B.; Kahl, B.S.; Radford, J.; Solh, M.; Stathis, A.; et al. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): A multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2021, 22, 790–800. [Google Scholar] [CrossRef]
- Kwiatek, M.; Grosicki, S.; Jiménez, J.L.; Mariño, S.F.P.; Snauwaert, S.; Kingsley, E.; Zacchetti, G.; Wang, Y.; Wang, L.; Depaus, J. ABCL-515 Updated Results of the Safety Run-In of the Phase 3 LOTIS-5 Trial: Novel Combination of Loncastuximab Tesirine With Rituximab (Lonca-R) Versus Immunochemotherapy in Patients With R/R DLBCL. Clin. Lymphoma Myeloma Leuk. 2023, 23, S439–S440. [Google Scholar] [CrossRef]
- Deutsch, Y.E.; Tadmor, T.; Podack, E.R.; Rosenblatt, J.D. CD30: An important new target in hematologic malignancies. Leuk. Lymphoma 2011, 52, 1641–1654. [Google Scholar] [CrossRef]
- Connors, J.M.; Jurczak, W.; Straus, D.J.; Ansell, S.M.; Kim, W.S.; Gallamini, A.; Younes, A.; Alekseev, S.; Illés, Á.; Picardi, M.; et al. Brentuximab Vedotin with Chemotherapy for Stage III or IV Hodgkin’s Lymphoma. N. Engl. J. Med. 2018, 378, 331–344. [Google Scholar] [CrossRef]
- Straus, D.J.; Długosz-Danecka, M.; Alekseev, S.; Illés, Á.; Picardi, M.; Lech-Maranda, E.; Feldman, T.; Smolewski, P.; Savage, K.J.; Bartlett, N.L.; et al. Brentuximab vedotin with chemotherapy for stage III/IV classical Hodgkin lymphoma: 3-year update of the ECHELON-1 study. Blood 2020, 135, 735–742. [Google Scholar] [CrossRef]
- Ansell, S.M.; Radford, J.; Connors, J.M.; Długosz-Danecka, M.; Kim, W.-S.; Gallamini, A.; Ramchandren, R.; Friedberg, J.W.; Advani, R.; Hutchings, M.; et al. Overall Survival with Brentuximab Vedotin in Stage III or IV Hodgkin’s Lymphoma. N. Engl. J. Med. 2022, 387, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Younes, A.; Gopal, A.K.; Smith, S.E.; Ansell, S.M.; Rosenblatt, J.D.; Savage, K.J.; Ramchandren, R.; Bartlett, N.L.; Cheson, B.D.; De Vos, S.; et al. Results of a Pivotal Phase II Study of Brentuximab Vedotin for Patients With Relapsed or Refractory Hodgkin’s Lymphoma. J. Clin. Oncol. Off. 2012, 30, 2183–2189. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.; Li, D.; Chen, B.; Zhao, C.; Zhang, W.; Ding, B.; Wang, L. Superiority of polatuzumab vedotin over other novel agents in previously untreated ABC-type diffuse large B-cell lymphoma: A network meta-analysis of 20 RCTs. Ann. Hematol. 2023, 102, 1011–1017. [Google Scholar] [CrossRef] [PubMed]
- Loganzo, F.; Sung, M.; Gerber, H.-P. Mechanisms of Resistance to Antibody–Drug Conjugates. Mol. Cancer Ther. 2016, 15, 2825–2834. [Google Scholar] [CrossRef]
- Goekbuget, N.; Dombret, H.; Bonifacio, M.; Reichle, A.; Graux, C.; Havelange, V.; Buss, E.C.; Faul, C.; Bruggemann, M.; Ganser, A.; et al. BLAST: A Confirmatory, Single-Arm, Phase 2 Study of Blinatumomab, a Bispecific T-Cell Engager (BiTE®) Antibody Construct, in Patients with Minimal Residual Disease B-Precursor Acute Lymphoblastic Leukemia (ALL). Blood 2014, 124, 379. [Google Scholar] [CrossRef]
- Budde, L.E.; Assouline, S.; Sehn, L.H.; Schuster, S.J.; Yoon, S.-S.; Yoon, D.H.; Matasar, M.J.; Bosch, F.; Kim, W.S.; Nastoupil, L.J.; et al. Single-Agent Mosunetuzumab Shows Durable Complete Responses in Patients With Relapsed or Refractory B-Cell Lymphomas: Phase I Dose-Escalation Study. J. Clin. Oncol. 2022, 40, 481–491. [Google Scholar] [CrossRef]
- E Budde, L.; Sehn, L.H.; Matasar, M.; Schuster, S.J.; Assouline, S.; Giri, P.; Kuruvilla, J.; Canales, M.; Dietrich, S.; Fay, K.; et al. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: A single-arm, multicentre, phase 2 study. Lancet Oncol. 2022, 23, 1055–1065. [Google Scholar] [CrossRef]
- Clausen, M.R.; Belada, D.; Offner, F.; de Vos, S.; Brody, J.; Linton, K.; Snauwaert, S.; Cordoba, R.; Wu, J.; Bykhovski, I.; et al. P1116: HIGH COMPLETE METABOLIC RESPONSE RATES WITH EPCORITAMAB + R-CHOP IN PREVIOUSLY UNTREATED (1L) PATIENTS WITH HIGH-RISK DIFFUSE LARGE B-CELL LYMPHOMA, INCLUDING DOUBLE/TRIPLE-HIT: EPCORE NHL-2 UPDATE. HemaSphere 2023, 7, e55140cd. [Google Scholar] [CrossRef]
- Lori, L.A.; Falchi, L.; Vermaat, J.S.; Musuraca, G.; Belada, D.; Nijland, M.; Christensen, J.H.; Offner, F.; Hoehn, D.; Marek, J.; et al. Epcoritamab with rituximab + lenalidomide (R2) in previously untreated (1L) follicular lymphoma (FL) and epcoritamab maintenance in FL: EPCORE NHL-2 arms 6 and 7. J. Clin. Oncol. 2024, 42, 7014. [Google Scholar] [CrossRef]
- Budde, L.E.; Olszewski, A.J.; Assouline, S.; Lossos, I.S.; Diefenbach, C.; Kamdar, M.; Ghosh, N.; Modi, D.; Sabry, W.; Naik, S.; et al. Mosunetuzumab with polatuzumab vedotin in relapsed or refractory aggressive large B cell lymphoma: A phase 1b/2 trial. Nat. Med. 2023, 30, 229–239. [Google Scholar] [CrossRef]
- Assouline, S.; Budde, L.E.; Chavez, J.C.; Diefenbach, C.S.; Dorritie, K.A.; Ghosh, N.; Olszewski, A.J.; Lossos, I.S.; Mehta, A.; Modi, D.; et al. Mosunetuzumab With Polatuzumab Vedotin: Subgroup Analyses in Patients (pts) With Primary Refractory or Early Relapsed Large B-Cell Lymphoma (LBCL). Clin. Lymphoma Myeloma Leuk. 2024, 24, S212. [Google Scholar] [CrossRef]
- Hutchings, M.; Avigdor, A.; Balari, A.M.; Terol, M.J.; Bosch, F.; Corradini, P.; Larsen, T.S.; Dominguez, A.R.; Skarbnik, A.; Joergensen, J.M.; et al. Glofitamab Plus Polatuzumab Vedotin Continues to Demonstrate Frequent and Durable Responses and Has a Manageable Safety Profile in Patients with ≥2L Relapsed/Refractory DLBCL, Including HGBCL, and in Patients with Prior CAR T-Cell Therapy: Updated Results from a Phase Ib/II Study. Blood 2023, 142, 4460. [Google Scholar]
- Kerr, D.A.; Lavie, D.; Avigdor, A.; Avivi, I.; Belada, D.; Patel, K.; Thieblemont, C.; Abrisqueta, P.; Izutsu, K.; Seliem, M.; et al. First Data From Subcutaneous Epcoritamab + Polatuzumab Vedotin, Rituximab, Cyclophosphamide, Doxorubicin, and Prednisone (Pola-R-CHP) for First-Line Diffuse Large B-Cell Lymphoma (DLBCL): EPCORE NHL-5. Clin. Lymphoma Myeloma Leuk. 2024, 24, S217. [Google Scholar] [CrossRef]
- Morschhauser, F.; Patel, K.; Bobillo, S.; Cordoba, R.; Eyre, T.A.; Bishton, M.; Houot, R.; Zhang, H.-L.; Zou, L.; Osborne, W.; et al. Preliminary Findings of a Phase Ib/II Trial Indicate Manageable Safety and Promising Efficacy for Mosunetuzumab in Combination with Lenalidomide (M+Len) in Previously Untreated (1L) Follicular Lymphoma (FL). Blood 2023, 142, 605. [Google Scholar] [CrossRef]
- Maakaron, J.E.; Asch, A.; Popplewell, L.; Collins, G.P.; Flinn, I.W.; Ghosh, N.; Keane, C.; Ku, M.; Mehta, A.; Roschewski, M.; et al. Magrolimab plus rituximab with or without chemotherapy in patients with relapsed/refractory diffuse large B-cell lymphoma. Blood Adv. 2024, 8, 5864–5874. [Google Scholar] [CrossRef]
- Qu, T.; Zhong, T.; Pang, X.; Huang, Z.; Jin, C.; Wang, Z.M.; Li, B.; Xia, Y. Ligufalimab, a novel anti-CD47 antibody with no hemagglutination demonstrates both monotherapy and combo antitumor activity. J. Immunother. Cancer 2022, 10, e005517. [Google Scholar] [CrossRef]
- Piccione, E.C.; Juarez, S.; Liu, J.; Tseng, S.; Ryan, C.E.; Narayanan, C.; Wang, L.; Weiskopf, K.; Majeti, R. A bispecific antibody targeting CD47 and CD20 selectively binds and eliminates dual antigen expressing lymphoma cells. mAbs 2015, 7, 946–956. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, R.; Gao, S.; Li, W.; Liu, Y.; Su, G.; Song, M.; Jiang, M.; Jiang, C.; Zhang, X. Artificial intelligence applied in neoantigen identification facilitates personalized cancer immunotherapy. Front. Oncol. 2023, 12, 1054231. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, C. Prediction of immunogenicity for humanized and full human therapeutic antibodies. PLoS ONE 2020, 15, e0238150. [Google Scholar] [CrossRef]
Citations | Study Population | Studied Therapy | Therapy Target | Primary Outcomes |
---|---|---|---|---|
ChimericTherapies—Rituximab | ||||
Hainsworth et al., 2003 [3] | Untreated Rai stage II–IV or Rai stage I symptomatic CLL | Rituximab induction monotherapy vs. standard-of-care induction chemotherapy | CD20 | ORR 51%; average PFS 18.6 months |
Ferrajoli et al., 2011 [4] | Untreated Rai stage 0–2 CLL | Rituximab induction monotherapy vs. induction cyclophosphamide, vincristine, and prednisone (CVP) | CD20 | ORR 81%; TTP 23 months; TTR 43 months |
Hallek et al., 2010 [5] | Untreated CLL | Fludarabine + cyclophosphamide + rituximab (FCR) vs. bendamustine + rituximab (BR) | CD20 | 3-year PFS rate 65% vs. 45% in control group (p < 0.0001) |
MURANO trial with 5-year follow-up (Seymour et al., 2018, 2022) [6,7] | Relapsed/refractory CLL | Venetoclax + rituximab (venR) vs. bendamustine + rituximab (BR) | CD20 | uMRD rate 62%; 5-year median PFS 53.5 months (p < 0.001); 5-year OS rate 82.1% (p < 0.001) |
ECOG 1912 trial with 3-year follow-up (Shanafelt, 2019, 2022) [8,9] | Previously untreated CLL | Ibrutinib + rituximab (IR) vs. fludarabine, cyclophosphamide, and rituximab (FCR) | CD20 | 5.8-year PFS rate 89.4% (p < 0.001); 3-year OS rate 98.8% (p < 0.001) |
Colombat et al., 2001 [10] | Untreated grade I–III FL | Rituximab induction monotherapy | CD20 | 1-year ORR 80%, 1-year CRR 41% |
Witzig et al., 2005 [11] | Untreated stage III/IV FL | Rituximab induction monotherapy | CD20 | ORR 72% (p = 0.02); 2.6-year PFS 46% |
RESORT trial with 10-year follow-up (Kahl et al., 2014, 2024) [12,13] | Untreated low-burden FL | Maintenance (MR) vs. retreatment (RR) rituximab | CD20 | No statistical difference in 10-year TTF, OS |
Piro et al., 1999 [14] | Relapsed/refractory NHL | Rituximab monotherapy vs. historical group that did not receive rituximab | CD20 | ORR 57%; CRR 14% |
PRIMA trial with 9-year follow-up (Salles et al., 2011, Bachy et al., 2019) [15,16] | Untreated FL | Maintenance rituximab after immunochemotherapy | CD20 | 9-year PFS rate 51.1% vs. 35.0% in control group (p = < 0.001); no statistical difference in OS |
BRIGHT study with 5-year follow-up (Flinn et al., 2014, 2019) [17,18] | Untreated, indolent NHL or MCL | Bendamustine + rituximab (BR) vs. R-CHOP or R-CVP | CD20 | 5-year PFS 65.5% in BR group vs. 55.8% in R-CHOP/R-CVP (p = 0.0025) |
AUGMENT trial (Leonard et al., 2019) [19] | Relapsed/refractory FL or marginal zone lymphoma | Lenalidomide + rituximab vs. placebo + rituximab | CD20 | PFS 39.4 months for lenalidomide + rituximab vs. PFS 14.1 months for placebo + rituximab (p < 0.001) |
Oki et al., 2014 [20] | Double-hit lymphoma | R-CHOP, R-EPOCH, and R-hyperCVAD/MA | CD20 | 2-year event-free survival: 33% R-CHOP, 25% R-EPOCH, 67% hyperCVAD/MA |
Récher et al., 2011 [21] | Untreated DLBCL | Rituximab + doxorubicin, cyclophosphamide, vindesine, bleomycin and prednisone (R-ACVBP) vs. R-ECHOP | CD20 | 3-year event free survival 81% R-ACVBP vs. 67% R-CHOP (p = 0.0035) |
Glycoengineered Therapies—Obinutuzumab | ||||
Al-Sawaf et al., 2024 [22] | Untreated CLL | Venetoclax–obinutuzumab (Ven-Obi) or chlorambucil-obinutuzumab (Clb-Obi) | CD20 | PFS 76.4 months for Ven-Obi vs. 36.4 months for Clb-Obi |
GAUSS trial (Sehn et al., 2015) [23] | Relapsed indolent DLBCL | Obinutuzumab vs. rituximab | CD20 | ORR 44.6% obinutuzumab vs. 26.7% rituximab (p = 0.01); no statistical difference in PFS |
GALLIUM trial (Marcus et al., 2017; Townsend, 2023) [24,25] | Untreated FL | Obinutuzumab vs. rituximab | CD20 | 7-year PFS 63.4% obinutuzumab vs. 55.7% rituximab (p = 0.006), grade III/IV AE rate 4.5% vs. 4.4% respectively (p = 0.03) |
Antibody–Drug Conjugate Therapies | ||||
POLARIX trial (Tilly et al., 2021) [26] | Untreated DLBCL | Polatuzumab vedotin, rituximab, cyclophosphamide, doxorubicin, and prednisone (Pola-R-CHP) vs. R-CHOP | CD79b | 2-year PFS 76.7% in Pola-R-CHP group vs. 70.2% in R-CHOP group (p = 0.02) |
LOTIS-2 trial with 2-year follow-up (Caimi, 2021, 2024) [23,27] | Relapsed/refractory DLBCL | Loncastuximab tesirine (loncastuximab tesirine-lpyl [Lonca]) | CD19 | 2-year PFS 72.5%, 2-year OS rate 68.2% |
ESCHELON-1 trial with 6-year follow-up (Connors et al., 2018; Ansell et al., 2022) [28,29] | Untreated stage III/IV CHL | Brentuximab vedotin (BV) with doxorubicin, vinblastine, and dacarbazine (A+AVD) vs. doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) | CD30 | 6-Year OS 94.6% A+AVD vs. 89.4% ABVD (p = 0.009) |
Bispecific Antibody Therapies | ||||
BLAST study (Goekbuget et al., 2014) [30] | B-cell precursor ALL | Blinatumomab monotherapy | CD19 and CD3 | 1-cycle MRD rate 78% |
Budde et al., 2022 [31] | Relapsed/refractory B-cell non-Hodgkin lymphoma | Mosunetuzumab monotherapy | CD20 and CD3 | 3.5-year ORR 66.2%, 48.5% in indolent R/R NHL |
Budde et al., 2022 [32] | Relapsed/refractory follicular lymphoma | Mosunetuzumab monotherapy | CD20 and CD3 | IRC assessed post-treatment CRR 60% (p < 0.0001) |
EPCORE NHL-1 trial (Linton et al., 2024) [33] | Relapsed/refractory DLBCL | Epcoritamab monotherapy | CD20 and CD3 | 2-year ORR 63.1%, with 40.1% achieving CR; PFS 65.1% with OSR of 78.2% |
Dickinson et al., 2022 [34] | Relapsed/refractory DLBCL | Glofitamab monotherapy | CD20 and CD3 | CRR of 39% at 12.6 months |
Combination Therapies | ||||
EPCORE NHL-2 trial, arm 1 (Clausen et al., 2023 *) [35] | Untreated high-risk DLBCL | Epcoritamab + R-CHOP | CD20 and CD3 | Post-treatment CMR rate 76%, including double/triple-hit DLBCL; 9-month durable CMR rate 96% |
EPCORE NHL-2 trial, arms 6+7 (Lori et al., 2024 *) | Untreated FL | Arm 6: induction epcoritamab + rituximab + lenalidomide (R^2); arm 7: maintenance epcoritamab + R^2 | CD20 and CD3 | Arm 6: 21-month ORR 95%, CRR 85%; arm 7: 19.7-month 83% sustained conversion rate to CR |
Assouline et al., 2024 * [36] | Relapsed/refractory DLBCL | Mosunetuzumab + polatuzumab vedotin | CD20 and CD3; CD79a | IRC-assessed 33-month ORR 59.2%, CRR 45.9% |
Hutchings et al., 2023 * [37] | Relapsed/ refractory DLBCL | Glofitamab + polatuzumab vedotin | CD20 and CD3; CD79a | Post-treatment ORR 78%, CMR 56% |
EPCORE NHL-5 trial (Lavie et al., 2024) * [38] | Untreated DLBCL | Epcoritamab + Pola-R-CHP | CD20 and CD3 | 5.8-month ORR 100%, CRR 89% |
Morschhauser et al., 2023 * [39] | Untreated FL | Mosunetuzumab + lenalidomide (M + Len) | CD20 and CD3 | Post-treatment ORR 88.9%, CMR 81.5% |
Anti-CD47 Antibody Therapies | ||||
Sikic et al., 2019; Mehta et al., 2024 [40,41] | Indolent relapsed/refractory NHL | Magrolimab + rituximab (MR) | CD47, CD20 | ORR 52.2%, CRR 30.4%, grade 3+ AE 71.7% |
Maakaron et al., 2024 [42] | Relapsed/refractory DLBCL | Magrolimab + rituximab (MR) vs. MR, gemcitabine, oxaliplatin (MRGemOx) | CD47, CD20 | MR: ORR 24.2%, CRR 12.1%, serious AE 46.5%; MRGemOx: ORR 51.5%, CRR 39.4%, serious AE 78.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naman, J.; Shah, N.; Heyman, B.M. Antibody Therapy for Patients with Lymphoid Malignancies: Past and Present. Int. J. Mol. Sci. 2025, 26, 1711. https://doi.org/10.3390/ijms26041711
Naman J, Shah N, Heyman BM. Antibody Therapy for Patients with Lymphoid Malignancies: Past and Present. International Journal of Molecular Sciences. 2025; 26(4):1711. https://doi.org/10.3390/ijms26041711
Chicago/Turabian StyleNaman, Jacob, Nirja Shah, and Benjamin M. Heyman. 2025. "Antibody Therapy for Patients with Lymphoid Malignancies: Past and Present" International Journal of Molecular Sciences 26, no. 4: 1711. https://doi.org/10.3390/ijms26041711
APA StyleNaman, J., Shah, N., & Heyman, B. M. (2025). Antibody Therapy for Patients with Lymphoid Malignancies: Past and Present. International Journal of Molecular Sciences, 26(4), 1711. https://doi.org/10.3390/ijms26041711