Relevance of Lipoprotein Composition in Endothelial Dysfunction and the Development of Hypertension
Abstract
:1. Introduction
2. Relationship Between Lipoprotein Components and Endothelial Function
2.1. Lipoproteins
Lipoproteins Function
2.2. Endothelium
Endothelial Dysfunction Induced by Lipoproteins
Apolipoproteins | Functions | Refs. |
---|---|---|
Apo A-I | Involved in the transport of cholesterol and other lipids. | [66,67,68] |
Involved the formation of new lipoproteins. | ||
Antioxidant and anti-inflammatory properties. | ||
Apo A-II | The second most abundant protein in HDLs. | |
Apo A-IV | Increased in the intestine during fat absorption. | |
Apo A-V | Activator of lipolysis mediated by LPL; metabolism of lipoproteins rich in triglycerides. | |
Apo B | Two related proteins, B-48 and B-100. Biomarker of cardiovascular risk and development of atherosclerosis. B-100 is large in size, has moderate hydrophobicity, and is unable to be transferred to other lipoproteins. | [69,70] |
Apo C | Three different proteins; C-I, C-II, and C-III. Involved in the clearance of triglyceride-rich lipoproteins. C-III reduces the clearance of lipoproteins containing apo B and triglyceride-rich lipoproteins. Inhibits the binding of apo E and apo B to LDLr. Associated with HDL, inhibiting the apoptosis of endothelial cells and their capacity to inhibit monocyte adhesion to endothelial cells. A deficit of C-II increases Tgs, VLDL, and Cm while decreasing LDL, IDL, HDL, apo B, and apo A-I. Activates LPL. | [71,72,73] |
Apo D | Also named lipocalin. Associated with lipid metabolism, inflammation, and antioxidative response. Involved in the transport of arachidonic acid. Modulates eicosanoid acid production. Provides neuroprotection. | [74,75,76] |
Apo E2,3,4 | Mediates the elimination of Cms and VLDLs. Helps to enrich the nuclei of HDLs with CEs. Reduced levels are related to hypercholesterolemia and atherosclerosis. | [77,78] |
Apo J | Called “clusterin”. Protects cells against damage from oxidation, inflammation, and apoptosis. Associated with atherosclerosis, obesity, and diabetes. | [79,80] |
Apo M | Involved in HDL metabolism and pre-β-HDL formation. Promotes the flow of cholesterol associated with HDLs. Anti-atherogenic, anti-inflammatory, and antioxidant effects. Primarily carries S1P. | [81,82,83,84] |
Apo (a) | Binds to LDL-particles containing modified apo B-100.Pro-atherogenic, pro-inflammatory, and pro-thrombotic effects.Carrier of oxidized phospholipids. | [85,86,87,88,89] |
3. Hypertension and Lipoproteins
4. Pharmacological vs. No Pharmacological Therapy for Endothelial Dysfunction
Bioactive Compounds and Their Effect on Lipoproteins
Bioactive Compound | Food Matrix | Dose/Concentration | Experimental Model | Effects and Mechanisms of Action | Refs. |
---|---|---|---|---|---|
Phytosterols | Plant stanols | 2 g/day | Healthy volunteers | Reduced cholesterol absorption and LDL-C, apo B, and oxLDL levels. | [136] |
Plant sterols | 1.6–2.5 g/day | Dyslipidemic subjects | Decreased triglyceride levels. | [144] | |
Phytosterol esters (β-sitosterol) (Fitocor®) | Phytosterols (2.6 g/day) were prescribed and supplied in 650 mg gelatin capsules for 12 weeks | Patients >18 years, with LDL-c ≥130 mg/dL and <190 mg/dL and triglycerides <400 mg/dL. | Decreased total cholesterol, increased HDL-C, and reduced IDL. | [145] | |
Plant sterols | 400 mL of soy milk enriched with 1.6 g of phytosterols/4 weeks | Thirty-eight moderately hypercholesterolemic volunteers | Reduced endothelin-1 plasma concentration by 11%.Reduced total plasma cholesterol concentration, triglycerides, and apo B. | [146] | |
Terpenes | Reagent | Vitamin E: 10 mmol/L α-13′-OH and 5 mmol/L α-13′-COOH | THP-1 monocytes and human monocyte-derived macrophages | Decreased CD36 expression and oxLDL absorption. | [134] |
Iraqi Cicer areitinum | Terpenes (500 mg/kg)/56 days | Hyperlipidemic mice | Decreased levels of total cholesterol, triglycerides, LDL-C, and VLDL-C. Reduced ALT, AST, and ALP enzymatic activities also in total serum bilirubin levels. Increased levels of HDL-C. | [147] | |
Callistemon citrinus | High-fat-sucrose diet + 1,8-cineole (0.88 mg/kg body weight), limonene (0.43 mg/kg body weight), α-terpineol (0.32 mg/kg body weight), and a mixture of the three terpenes/15 weeks | Obese rats | Reduced triglycerides levels, advanced oxidation protein products and hydroxyalkenals, a lipid peroxidation product. Restored levels of reduced glutathione. | [148] | |
Polyunsaturated fatty acids | Fish oil | Mice diet containing 19% fish oil alone, mice diet containing 19% fish oil + aspirin (via drinking water 30 mg/L) | COX-1 neo mice (a neomycin (neo)-resistant cassette inserted in COX-1 intron 10 to ensure hypomorphic expression of COX-1 gene) | Hypolipidemic and antihypertensive effects. Increased levels of omega-3 PUFAs, including EPA, DPA, and DHA. Anti-inflammatory effect. Decreased expression of adhesion molecules. | [149] |
Fish oil | Capsule omega-3 PUFA equivalent to 640 mg (520 mg DHA and 120 mg EPA) | Healthy subjects and subjects with a history of CVD | Decreased P-selectin expression and the percentage of platelet–monocyte aggregates. | [150] | |
Purified omega-3 | 460 mg EPA and 380 mg DHA twice a day for 5 weeks | Hypertriglyceridemic patients | Decreased triglycerides and HDL-triglyceride plasma concentrations. Anti-inflammatory properties. Increase in endothelial function. | [12] | |
Fish oil | 12 g/day of EPA- or DHA-rich fish oil supplement (~4.8 g/d total EPA + DHA) | Healthy normolipidemic adults | Decreased plasma TG levels, as well as overall particle numbers of VLDLs and TG-rich lipoprotein subfractions. Increase in plasma levels of apo M. | [151] | |
Fish oil | 1 g fish oil capsules consumed for 8 weeks—370 mg of EPA and 230 mg of DHA, 3 times per day; total EPA + DHA = 1800 mg | 30–74-year-old subjects with at least one cardiovascular risk factor (dyslipidemia, high blood pressure, diabetes, or smoking) | Increased large HDLs and reduced small HDLs and the non-esterified fatty acids in HDL (NEFAs-HDL) levels. Reduced CETP activity. Decreased apo CIII and increased apo CII and PON1. | [152] |
5. Materials and Methods
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABCA1/G1 | ATP-binding cassette class A type 1/class G type 1 |
ACAT | Acyl-coenzyme A: cholesterol acyltransferase |
Apos | Apolipoproteins |
AT1R | Angiotensin II type 1 receptor |
BP | Blood pressure |
CE | Cholesterol ester |
CETP | Cholesteryl ester transfer protein |
Cm | Chylomicron |
COX-1 | Cyclooxygenase-1 |
CVD | Cardiovascular disease |
ED | Endothelial dysfunction |
eGlx | Endothelial glycocalyx |
EndoMT | Endothelial–mesenchymal transition |
eNOS | Endothelial nitric oxide synthase |
ERK | Extracellular-signal-regulated kinase |
FC | Free cholesterol |
FFA | Free fatty acid |
GM-CSF | Granulocyte–monocyte colony stimulating factor |
HDL | High-density lipoprotein |
HDL-C | HDL cholesterol |
HL | Hepatic lipase |
HUVECs | Human umbilical vein endothelial cells |
ICAM-1 | Intracellular adhesion molecule-1 |
IDL | Intermediate-density lipoprotein |
iNOS | Inducible nitric oxide synthase |
LCAT | Lecithin-cholesterol acyltransferase |
LDL | Low-density lipoprotein |
LDL-C | LDL cholesterol |
LDLr | LDL receptor |
LOX-1 | Lectin-like ox-LDL scavenger receptor-1 |
Lp (a) | Lipoprotein (a) |
LPL | Lipoprotein lipase |
LPS | Lipopolysaccharide |
LSR | Lipolysis-stimulated lipoprotein receptor |
MCP-1 | Monocyte chemotactic protein-1 |
MDA | Malondialdehyde |
MPO | Oxidative myeloperoxidase |
NF-kB | Nuclear factor kappa B |
NO | Nitric oxide |
NPC1L1 | Niemann-Pick C1-like 1 protein |
oxLDL | Oxidized low-density lipoprotein |
oxPL | Oxidized phospholipid |
Php | Phospholipid |
PLTP | Phospholipid transfer protein |
PON1 | Paraoxonase-1 |
RCT | Reverse cholesterol transport |
ROS | Reactive oxygen species |
S1P | Sphingosine-1-phosphate |
SAA | Serum amyloid protein A |
SCFA | Short-chain fatty acid |
SRA/B1 | Scavenger receptor A/class B type 1 |
Tg | Triglyceride |
TLR | Toll-like receptor |
TNF-α | Tumor necrosis factor alpha |
VLDL | Very low-density lipoprotein |
VLDLr | Very low-density lipoprotein receptor |
VSMCs | Vascular smooth muscle cells |
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Available online: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1 (accessed on 13 May 2024).
- Ray, K.K.; Ference, B.A.; Séverin, T.; Blom, D.; Nicholls, S.J.; Shiba, M.H.; Almahmeed, W.; Alonso, R.; Daccord, M.; Ezhov, M.; et al. World Heart Federation Cholesterol Roadmap 2022. Glob. Heart 2022, 17, 75. [Google Scholar] [CrossRef] [PubMed]
- Park, J.B.; Charbonneau, F.; Schiffrin, E.L. Correlation of endothelial function in large and small arteries in human essential hypertension. J. Hypertens. 2001, 19, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Hou, P.; Fang, J.; Liu, Z.; Shi, Y.; Agostini, M.; Bernassola, F.; Bove, P.; Candi, F.; Rovella, V.; Soca, G.; et al. Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis. 2023, 14, 691. [Google Scholar] [CrossRef]
- Casas, R.; Estruch, R.; Sacanella, E. Influence of bioactive nutrients on the atherosclerotic process: A review. Nutrients 2018, 10, 1630. [Google Scholar] [CrossRef] [PubMed]
- Zahid, M.K.; Sufian, H.B.; Choudhury, M.; Yamasaki, M.; Al-Harrasi, A.; Moustaid-Moussa, N.; Rahman, S.M. Role of macrophage autophagy in atherosclerosis: Modulation by bioactive compounds. Biochem. J. 2021, 478, 1359–1375. [Google Scholar] [CrossRef] [PubMed]
- Kotowska, D.E. Health Promoting Effects of Bioactive Compounds in Plants. Ph.D. Thesis, University of Copenhagen, Copenhagen, Denmark, 2013. [Google Scholar]
- Thilakarathna, S.H.; Rupasinghe, H.P.V. Anti-atherosclerotic effects of fruit bioactive compounds: A review of current scientific evidence. Can. J. Plant Sci. 2012, 92, 407–419. [Google Scholar] [CrossRef]
- Scolaro, B.; Soo Jin Kim, H.; de Castro, I.A. Bioactive compounds as an alternative for drug co-therapy: Overcoming challenges in cardiovascular disease prevention. Crit. Rev. Food Sci. Nutr. 2018, 58, 958–971. [Google Scholar] [CrossRef] [PubMed]
- Dorantes-Morales, A.; Estrada-Luna, D.; Bautista-Pérez, R.; Betanzos-Cabrera, G.; Luna-Luna, M.; Flores-Castillo, C.; Vargas-Alarcón, G.; Fragoso, J.M.; Pérez-Méndez, O.; Carreón-Torres, E. Microencapsulated Pomegranate Modifies the Composition and Function of High-Density Lipoproteins (HDL) in New Zealand Rabbits. Molecules 2020, 25, 3297. [Google Scholar] [CrossRef]
- Peña-De-La-Sancha, P.; Muñoz-García, A.; Espínola-Zavaleta, N.; Bautista-Pérez, R.; Mejía, A.M.; Luna-Luna, M.; López-Olmos, V.; Rodríguez-Pérez, J.M.; Fragoso, J.M.; Carreón-Torres, E.; et al. Eicosapentaenoic and docosahexaenoic acid supplementation increases HDL content in n-3 fatty acids and improves endothelial function in hypertriglyceridemic patients. Int. J. Mol. Sci. 2023, 24, 5390. [Google Scholar] [CrossRef]
- Dieckmann, M.; Dietrich, M.F.; Herz, J. Lipoprotein receptors--an evolutionarily ancient multifunctional receptor family. Biol. Chem. 2010, 391, 1341–1363. [Google Scholar] [CrossRef] [PubMed]
- Chiba, T.; Chang, M.Y.; Wang, S.; Wight, T.N.; McMillen, T.S.; Oram, J.F.; Vaisar, T.; Heinecke, J.W.; De Beer, F.C.; De Beer, M.C.; et al. Serum amyloid A facilitates the binding of high-density lipoprotein from mice injected with lipopolysaccharide to vascular proteoglycans. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1326–1332. [Google Scholar] [CrossRef]
- Radford-Smith, D.E.; Yates, A.G.; Rizvi, L.; Anthony, D.C.; Probert, F. HDL and LDL have distinct, opposing effects on LPS-induced brain inflammation. Lipids Health Dis. 2023, 22, 54. [Google Scholar] [CrossRef]
- Khovidhunkit, W.; Kim, M.S.; Memon, R.A.; Shigenaga, A.; Moser, A.; Feingold, K.; Grunfeld, C. Effects of infection and inflammation on lipid and lipoprotein metabolism: Mechanisms and consequences to the host. J. Lipid Res. 2004, 45, 1169–1196. [Google Scholar] [CrossRef] [PubMed]
- Netea, M.G.; Joosten, L.A.; Keuter, M.; Wagener, F.; Stalenhoef, A.F.H.; van der Meer, J.W.M.; Kullberg, B.J. Circulating lipoproteins are a crucial component of host defense against invasive Salmonella typhimurium infection. PLoS ONE 2009, 4, e4237. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Luna, D.; Ortiz-Rodriguez, M.A.; Medina-Briseño, L.; Carreón-Torres, E.; Izquierdo-Vega, J.A.; Sharma, A.; Cancino-Díaz, J.C.; Pérez-Méndez, O.; Belefant-Miller, H.; Betanzos-Cabrera, G. Current therapies focused on high-density lipoproteins associated with cardiovascular disease. Molecules 2018, 23, 2730. [Google Scholar] [CrossRef]
- Kuklenyik, Z.; Jones, J.I.; Gardner, M.S.; Schieltz, D.M.; Parks, B.A.; Toth, C.A.; Rees, J.C.; Andrews, M.L.; Carter, K.; Lehtikoski, A.K.; et al. Core lipid, surface lipid and apolipoprotein composition analysis of lipoprotein particles as a function of particle size in one workflow integrating asymmetric flow field-flow fractionation and liquid chromatography-tandem mass spectrometry. PLoS ONE 2018, 13, e0194797. [Google Scholar] [CrossRef]
- Stapleton, P.A.; Goodwill, A.G.; James, M.E.; Brock, R.W.; Frisbee, J.C. Hypercholesterolemia and microvascular dysfunction: Interventional strategies. J. Inflamm. 2010, 7, 54. [Google Scholar] [CrossRef]
- Vinagre, C.G.; Freitas, F.R.; de Mesquita, C.H.; Vinagre, J.C.; Mariani, A.C.; Kalil-Filho, R.; Maranhão, R.C. Removal of Chylomicron Remnants from the Bloodstream is Delayed in Aged Subjects. Aging Dis. 2018, 9, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Real, J.T.; Ascaso, J.F. Lipid metabolism and classification of hyperlipaemias. Metabolismo lipídico y clasificación de las hiperlipemias. Clin. Investig. Arterioscler. 2021, 33, 3–9. [Google Scholar] [PubMed]
- Errico, T.L.; Chen, X.; Martin Campos, J.M.; Julve, J.; Escolà-Gil, J.C.; Blanco-Vaca, F. Mecanismos básicos: Estructura, función y metabolismo de las lipoproteínas plasm. [Basic mechanisms: Structure, function and metabolism of plasma lipoproteins]. Clin. Investig. Arterioscler. 2013, 25, 98–103. [Google Scholar]
- Yen, F.T.; Roitel, O.; Bonnard, L.; Notet, V.; Pratte, D.; Stenger, C.; Magueur, E.; Bihain, B.E. Lipolysis stimulated lipoprotein receptor: A novel molecular link between hyperlipidemia, weight gain, and atherosclerosis in mice. J. Biol. Chem. 2008, 283, 25650–25659. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Stern, J.; Bouzid, D.; Robert, T.; Dehoux, M.; Snauwaert, A.; Zappella, N.; Cournot, M.; Lortat-Jacob, B.; Augustin, P.; et al. Relationship between lipoprotein concentrations and short-term and 1-year mortality in intensive care unit septic patients: Results from the HIGHSEPS study. Ann. Intensive Care 2021, 11, 11. [Google Scholar] [CrossRef]
- Xu, Q.; Li, C.; Jing, P.; Li, H.; Tian, X.; Xia, X.; Zhang, Y.; Zhang, X.; Wang, Y.; Wang, A.; et al. Low-Density Lipoprotein Cholesterol to Triglyceride Ratio and Clinical Outcomes after Acute Ischaemic Stroke or Transient Ischaemic Attack. J. Atheroscler. Thromb. 2024, 31, 1162–1178. [Google Scholar] [CrossRef] [PubMed]
- Barker, G.; Leeuwenburgh, C.; Brusko, T.; Moldawer, L.; Reddy, S.T.; Guirgis, F.W. Lipid and lipoprotein dysregulation in sepsis: Clinical and mechanistic insights into chronic critical illness. J. Clin. Med. 2021, 10, 1693. [Google Scholar] [CrossRef]
- Muñoz-Vega, M.; Massó, F.; Páez, A.; Vargas-Alarcón, G.; Coral-Vázquez, R.; Mas-Olivia, J. Carreón-Torres, E.; Pérez-Méndez, O. HDL-Mediated Lipid Influx to Endothelial Cells Contributes to Regulating Intercellular Adhesion Molecule (ICAM)-1 Expression and eNOS Phosphorylation. Int. J. Mol. Sci. 2018, 19, 3394. [Google Scholar] [CrossRef]
- Anderson, C.M.; Stahl, A. SLC27 fatty acid transport proteins. Mol. Asp. Med. 2013, 34, 516–528. [Google Scholar] [CrossRef] [PubMed]
- Escribá, P.V.; Busquets, X.; Inokuchi, J.I.; Balogh, G.; Török, Z.; Horváth, I.; Harwood, J.L.; Vígh, L. Membrane lipid therapy: Modulation of the cell membrane composition and structure as a molecular base for drug discovery and new disease treatment. Prog. Lipid Res. 2015, 59, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Ginsberg, H.N. Increased very low density lipoprotein (VLDL) secretion, hepatic steatosis, and insulin resistance. Trends Endocrinol. Metab. 2011, 22, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Hesse, D.; Jaschke, A.; Chung, B.; Schürmann, A. Trans-Golgi proteins participate in the control of lipid droplet and chylomicron formation. Biosci. Rep. 2013, 33, e00001. [Google Scholar] [CrossRef] [PubMed]
- Erridge, C.; Attina, T.; Spickett, C.M.; Webb, D.J. A high-fat meal induces low-grade endotoxemia: Evidence of a novel mechanism of postprandial inflammation. Am. J. Clin. Nutr. 2007, 86, 1286–1292. [Google Scholar] [CrossRef]
- Medina-Leyte, D.J.; Zepeda-García, O.; Domínguez-Pérez, M.; González-Garrido, A.; Villarreal-Molina, T.; Jacobo-Albavera, L. Endothelial dysfunction, inflammation and coronary artery disease: Potential biomarkers and promising therapeutical approaches. Int. J. Mol. Sci. 2021, 22, 3850. [Google Scholar] [CrossRef]
- Dahlbäck, B. Blood coagulation. Lancet 2000, 355, 1627–1632. [Google Scholar] [CrossRef]
- Gimbrone Jr, M.A.; García-Cardeña, G. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc. Pathol. 2013, 22, 9–15. [Google Scholar] [CrossRef]
- Vanhoutte, P.M.; Shimokawa, H.; Feletou, M.; Tang, E.H. Endothelial dysfunction and vascular disease—A 30th anniversary update. Acta Physiol. 2017, 219, 22–96. [Google Scholar]
- Tousoulis, D.; Antoniades, C.; Stefanadis, C. Evaluating endothelial function in humans: A guide to invasive and non-invasive techniques. Heart 2005, 91, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Foote, C.A.; Soares, R.N.; Ramirez-Perez, F.I.; Ghiarone, T.; Aroor, A.; Manrique-Acevedo, C.; Padilla, J.; Martinez-Lemus, L.A. Endothelial glycocalyx. Compr. Physiol. 2022, 12, 3781. [Google Scholar]
- Enseleit, F.; Hürlimann, D.; Lüscher, T.F. Vascular protective effects of angiotensin converting enzyme inhibitors and their relation to clinical events. J. Cardiovasc. Pharmacol. 2001, 37, S21–S30. [Google Scholar] [CrossRef] [PubMed]
- Eelen, G.; De Zeeuw, P.; Simons, M.; Carmeliet, P. Endothelial cell metabolism in normal and diseased vasculature. Circ. Res. 2015, 116, 1231–1244. [Google Scholar] [CrossRef]
- Higashi, Y.; Sasaki, S.; Nakagawa, K.; Kimura, M.; Noma, K.; Sasaki, S.; Hara, K.; Matsuura, H.; Goto, C.; Oshima, T.; et al. Low body mass index is a risk factor for impaired endothelium-dependent vasodilation in humans: Role of nitric oxide and oxidative stress. J. Am. Coll. Cardiol. 2003, 42, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Khaddaj Mallat, R.; Mathew John, C.; Kendrick, D.J.; Braun, A.P. The vascular endothelium: A regulator of arterial tone and interface for the immune system. Crit. Rev. Clin. Lab. Sci. 2017, 54, 458–470. [Google Scholar] [CrossRef]
- Sandoo, A.; Van Zanten, J.J.V.; Metsios, G.S.; Carroll, D.; Kitas, G.D. The endothelium and its role in regulating vascular tone. Open Cardiovasc. Med. J. 2010, 4, 302. [Google Scholar] [CrossRef] [PubMed]
- Weseler, A.R.; Bast, A. Oxidative stress and vascular function: Implications for pharmacologic treatments. Curr. Hypertens. Rep. 2010, 12, 154–161. [Google Scholar] [CrossRef]
- Deanfield, J.E.; Halcox, J.P.; Rabelink, T.J. Endothelial function and dysfunction: Testing and clinical relevance. Circulation 2007, 115, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Lawrence-Mills, S.J.; Hughes, D.; Hezzell, M.J.; Butler, M.; Neal, C.; Foster, R.R.; Welsh, G.I.; Finch, N. The microvascular endothelial glycocalyx: An additional piece of the puzzle in veterinary medicine. Vet. J. 2022, 285, 105843. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, C.; Donato, L.; Alibrandi, S.; Scimone, C.; D’Angelo, R.; Sidoti, A. Oxidative stress and the neurovascular unit. Life 2021, 11, 767. [Google Scholar] [CrossRef] [PubMed]
- Cominacini, L.; Pasini, A.F.; Garbin, U.; Davoli, A.; Tosetti, M.L.; Campagnola, M.; Rigoni, A.; Pastorino, A.M.; Lo Cascio, V.; Sawamura, T. Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-κB through an increased production of intracellular reactive oxygen species. J. Biol. Chem. 2000, 275, 12633–12638. [Google Scholar] [CrossRef]
- Mitra, R.; O’Neil, G.L.; Harding, I.C.; Cheng, M.J.; Mensah, S.A.; Ebong, E.E. Glycocalyx in Atherosclerosis-Relevant Endothelium Function and as a Therapeutic Target. Curr. Atheroscler. Rep. 2017, 19, 63. [Google Scholar] [CrossRef]
- Rajendran, P.; Rengarajan, T.; Thangavel, J.; Nishigaki, Y.; Sakthisekaran, D.; Sethi, G.; Nishigaki, I. The vascular endothelium and human diseases. Int. J. Biol. Sci. 2013, 9, 1057. [Google Scholar] [CrossRef] [PubMed]
- Brosolo, G.; Da Porto, A.; Marcante, S.; Picci, A.; Capilupi, F.; Capilupi, P.; Bulfone, L.; Vacca, A.; Bertin, N.; Vivarelli, C.; et al. Lipoprotein (a): Just an innocent bystander in arterial hypertension? Int. J. Mol. Sci. 2023, 24, 13363. [Google Scholar] [CrossRef]
- Barlage, S.; Gnewuch, C.; Liebisch, G.; Wolf, Z.; Audebert, F.X.; Glück, T.; Fröhlich, D.; Krämer, B.K.; Rothe, G.; Schmitz, G. Changes in HDL-associated apolipoproteins relate to mortality in human sepsis and correlate to monocyte and platelet activation. Intensive Care Med. 2009, 35, 1877–1885. [Google Scholar] [CrossRef] [PubMed]
- Munno, M.; Mallia, A.; Greco, A.; Modafferi, G.; Banfi, C.; Eligini, S. Radical Oxygen Species, Oxidized Low-Density Lipoproteins, and Lectin-like Oxidized Low-Density Lipoprotein Receptor 1: A Vicious Circle in Atherosclerotic Process. Antioxidants 2024, 13, 583. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Zhao, W.; Tang, S.Y.; Levi, M.G.; Ibrahim, A.; Yang, Y.; Roberts, E.; Lai, L.; Li, J.; Assoian, R.K.; et al. Endothelial lipid droplets suppress eNOS to link high fat consumption to blood pressure elevation. J. Clin. Investig. 2023, 133, e173160. [Google Scholar] [CrossRef]
- Alipour, A.; Elte, J.W.; van Zaanen, H.C.; Rietveld, A.P.; Cabezas, M.C. Postprandial inflammation and endothelial dysfuction. Biochem. Soc. Trans. 2007, 35, 466–469. [Google Scholar] [CrossRef] [PubMed]
- Alaupovic, P. The concept of apolipoprotein-defined lipoprotein families and its clinical significance. Curr. Atheroscler. Rep. 2003, 5, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.-L.; Wu, C.-L.; Zhao, S.-P. Plasma apolipoprotein O level increased in the patients with acute coronary syndrome. J. Lipid Res. 2012, 53, 1952–1957. [Google Scholar] [CrossRef] [PubMed]
- Segrest, J.P.; Jones, M.K.; De Loof, H.; Dashti, N. Structure of apolipoprotein B-100 in low density lipoproteins. J. Lipid Res. 2001, 42, 1346–1367. [Google Scholar] [CrossRef] [PubMed]
- van der Vorst, E.P. Vertebrate and Invertebrate Respiratory Proteins, Lipoproteins and Other Body Fluid Proteins; Springer International Publishing: Cham, Switzerland, 2020; pp. 399–420. [Google Scholar]
- Kanter, J.E.; Shao, B.; Kramer, F.; Barnhart, S.; Shimizu-Albergine, M.; Vaisar, T.; Graham, M.J.; Crooke, R.M.; Manuel, C.R.; Haeusler, R.A.; et al. Increased apolipoprotein C3 drives cardiovascular risk in type 1 diabetes. J. Clin. Investig. 2019, 129, 4165–4179. [Google Scholar] [CrossRef]
- Chan, D.C.; Watts, G.F. Apolipoproteins as markers and managers of coronary risk. QJM Int. J. Med. 2006, 99, 277–287. [Google Scholar] [CrossRef]
- Kastelein, J.J.; Van Der Steeg, W.A.; Holme, I.; Gaffney, M.; Cater, N.B.; Barter, P.; Deedwania, P.; Olsson, A.G.; Boekholdt, S.M.; Demicco, D.A.; et al. Lipids, apolipoproteins, and their ratios in relation to cardiovascular events with statin treatment. Circulation 2008, 117, 3002–3009. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Yi, J.; Li, W.; Zheng, X.; Liu, J.; Wang, J.; Du, G. Apolipoproteins and cancer. Cancer Med. 2019, 8, 7032–7043. [Google Scholar] [CrossRef] [PubMed]
- Hoofnagle, A.N.; Heinecke, J.W. Lipoproteomics: Using mass spectrometry-based proteomics to explore the assembly, structure, and function of lipoproteins: Thematic Review Series: Proteomics. J. Lipid Res. 2009, 50, 1967–1975. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.F.; Rader, D.J. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ. Res. 2005, 96, 1221–1232. [Google Scholar] [CrossRef]
- Hubacek, J.A. Apolipoprotein A5 fifteen years anniversary: Lessons from genetic epidemiology. Gene 2016, 592, 193–199. [Google Scholar] [CrossRef]
- Wang, F.; Kohan, A.B.; Lo, C.M.; Liu, M.; Howles, P.; Tso, P. Apolipoprotein A-IV: A protein intimately involved in metabolism. J. Lipid Res. 2015, 56, 1403–1418. [Google Scholar] [CrossRef]
- Olofsson, S.O.; Borèn, J. Apolipoprotein B: A clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis. J. Intern. Med. 2005, 258, 395–410. [Google Scholar] [CrossRef]
- Whitfield, A.J.; Barrett, P.H.R.; van Bockxmeer, F.M.; Burnett, J.R. Lipid disorders and mutations in the APOB gene. Clin. Chem. 2004, 50, 1725–1732. [Google Scholar] [CrossRef]
- Zheng, C.; Khoo, C.; Furtado, J.; Sacks, F.M. Apolipoprotein C-III and the metabolic basis for hypertriglyceridemia and the dense low-density lipoprotein phenotype. Circulation 2010, 121, 1722–1734. [Google Scholar] [CrossRef]
- Morton, A.M.; Koch, M.; Mendivil, C.O.; Furtado, J.D.; Tjønneland, A.; Overvad, K.; Wang, L.; Jensen, M.K.; Sacks, F.M. Apolipoproteins E and CIII interact to regulate HDL metabolism and coronary heart disease risk. JCI Insight 2018, 3, e98045. [Google Scholar] [CrossRef]
- Kawakami, A.; Aikawa, M.; Libby, P.; Alcaide, P.; Luscinskas, F.W.; Sacks, F.M. Apolipoprotein CIII in apolipoprotein B lipoproteins enhances the adhesion of human monocytic cells to endothelial cells. Circulation 2006, 113, 691–700. [Google Scholar] [CrossRef]
- Martínez-Pinilla, E.; Rubio-Sardón, N.; Peláez, R.; García-Álvarez, E.; Del Valle, E.; Tolivia, J.; Larráyoz, I.M.; Navarro, A. Neuroprotective effect of apolipoprotein D in cuprizone-induced cell line models: A potential therapeutic approach for multiple sclerosis and demyelinating diseases. Int. J. Mol. Sci. 2021, 22, 1260. [Google Scholar] [CrossRef]
- Pérez, C.; Navarro, A.; Martínez, E.; Ordóñez, C.; Del Valle, E.; Tolivia, J. Age-related changes of apolipoprotein D expression in female rat central nervous system with chronic estradiol treatment. Age 2012, 34, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Do Carmo, S.; Forest, J.C.; Giguère, Y.; Masse, A.; Lafond, J.; Rassart, E. Modulation of Apolipoprotein D levels in human pregnancy and association with gestational weight gain. Reprod. Biol. Endocrinol. 2009, 7, 92. [Google Scholar] [CrossRef] [PubMed]
- Mahley, R.W.; Weisgraber, K.H.; Huang, Y. Apolipoprotein E: Structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. J. Lipid Res. 2009, 50, S183–S188. [Google Scholar] [CrossRef]
- Seeberg, J.C.; Loibl, M.; Moser, F.; Schwegler, M.; Büttner-Herold, M.; Daniel, C.; Engel, F.B.; Hartmann, A.; Schlötzer-Schrehardt, U.; Goppelt-Struebe, M.; et al. Non-professional phagocytosis: A general feature of normal tissue cells. Sci. Rep. 2019, 9, 11875. [Google Scholar] [CrossRef]
- Herz, J.; Bock, H.H. Lipoprotein receptors in the nervous system. Annu. Rev. Biochem. 2022, 71, 405–434. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Turner, J.; McCarthy, S.; Scaltriti, M.; Bettuzzi, S.; Yeatman, T.J. Clusterin-mediated apoptosis is regulated by adenomatous polyposis coli and is p21 dependent but p53 independent. Cancer Res. 2004, 64, 7412–7419. [Google Scholar] [CrossRef]
- Yi-zhou, Y.; Bing, C.; Ming-qiu, L.; Wei, W.; Ru-xing, W.; Jun, R.; Liu-yan, W.; Zhao-hui, J.; Yong, J.; Guo qing, J.; et al. Dihydrotestosterone regulating apolipoprotein M expression mediates via protein kinase C in HepG2 cells. Lipids Health Dis. 2012, 11, 68–168. [Google Scholar] [CrossRef] [PubMed]
- Christoffersen, C.; Jauhiainen, M.; Moser, M.; Porse, B.; Ehnholm, C.; Boesl, M.; Boesl, M.; Dahlbacck, B.; Nielsen, L.B. Effect of apolipoprotein M on high density lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knock-out mice. J. Biol. Chem. 2008, 283, 1839–1847. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.-Z.; Gao, J.-L.; Pu, C.; Zhang, P.-H.; Wang, L.-Z.; Feng, G.; Zhang, Y. Apolipoprotein M: Research progress, regulation and metabolic functions. Mol. Med. Rep. 2015, 12, 1617–1624. [Google Scholar]
- Mattisson, I.Y.; Christoffersen, C. Apolipoprotein M and its impact on endothelial dysfunction and inflammation in the cardiovascular system. Atherosclerosis 2021, 334, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Januzzi, J.L., Jr.; van Kimmenade, R.R.J.; Liu, Y.; Hu, X.; Browne, A.; Plutzky, J.; Tsimikas, S.; Blankstein, R.; Natarajan, R. Lipoprotein(a), Oxidized Phospholipids, and Progression to Symptomatic Heart Failure: The CASABLANCA Study. J. Am. Heart Assoc. 2024, 13, e034774. [Google Scholar] [CrossRef]
- Tsimikas, S.; Witztum, J.L. Oxidized phospholipids in cardiovascular disease. Nat. Rev. Cardiol. 2024, 21, 170–191. [Google Scholar] [CrossRef]
- Schmidt, K.; Noureen, A.; Kronenberg, F.; Utermann, G. Structure, function, and genetics of lipoprotein (a). J. Lipid Res. 2016, 57, 1339–1359. [Google Scholar] [CrossRef]
- Simantiris, S.; Antonopoulos, A.S.; Papastamos, C.; Benetos, G.; Koumallos, N.; Tsioufis, K.; Tousoulis, D. Lipoprotein (a) and inflammation-pathophysiological links and clinical implications for cardiovascular disease. J. Clin. Lipidol. 2023, 17, 55–63. [Google Scholar] [CrossRef]
- Gilliland, T.C.; Liu, Y.; Mohebi, R.; Miksenas, H.; Haidermota, S.; Wong, M.; Hu, X.; Cristino, J.R.; Browne, A.; Plutzky, J.; et al. Lipoprotein(a), Oxidized Phospholipids, and Coronary Artery Disease Severity and Outcomes. J. Am. Coll. Cardiol. 2023, 81, 1780–1792. [Google Scholar] [CrossRef]
- Glass, C.K.; Witztum, J.L. Atherosclerosis: The Road Ahead. Cell 2001, 104, 503–516. [Google Scholar] [CrossRef]
- Park, -S.; Yoon, S.-J.; Tae, H.-J.; Shim, C.Y. RAGE and cardiovascular disease. Front. Biosci. 2011, 16, 486–497. [Google Scholar] [CrossRef]
- Dauphinee, S.M.; Karsan, A. Lipopolysaccharide signaling in endothelial cells. Lab. Investig. 2006, 86, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Lidgard, B.; Hoofnagle, A.N.; Zelnick, L.R.; de Boer, I.H.; Fretts, A.M.; Kestenbaum, B.R.; Lemaitre, R.N.; Robinson-Cohen, C.; Bansal, N. High-Density Lipoprotein Lipidomics and Mortality in CKD. Kidney Med. 2023, 5, 100708. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yang, X.; Xing, S.; Bian, F.; Yao, W.; Bai, X.; Zheng, T.; Wu, G.; Jin, S. Endogenous ceramide contributes to the transcytosis of oxLDL across endothelial cells and promotes its subendothelial retention in vascular wall. Oxidative Med. Cell. Longev. 2014, 2014, 823071. [Google Scholar] [CrossRef] [PubMed]
- Peters, L.; Kuebler, W.M.; Simmons, S. Sphingolipids in Atherosclerosis: Chimeras in Structure and Function. Int. J. Mol. Sci. 2022, 23, 11948. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.J.; Freeman, M.W. Scavenger receptors in atherosclerosis: Beyond lipid uptake. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 1702–1711. [Google Scholar] [CrossRef]
- Younis, N.; Sharma, R.; Soran, H.; Charlton-Menys, V.; Elseweidy, M.; Durrington, P.N. Glycation as an atherogenic modification of LDL. Curr. Opin. Lipidol. 2008, 19, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Norata, G.D.; Tonti, L.; Roma, P.; Catapano, A.L. Apoptosis and proliferation of endothelial cells in early atherosclerotic lesions: Possible role of oxidised LDL. Nutr. Metab. Cardiovasc. Dis. 2002, 12, 297–305. [Google Scholar]
- Bhale, A.S.; Meilhac, O.; d’Hellencourt, C.L.; Vijayalakshmi, M.A.; Venkataraman, K. Cholesterol transport and beyond: Illuminating the versatile functions of HDL apolipoproteins through structural insights and functional implications. BioFactors 2024, 50, 922–956. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Li, X.A. Dysfunctional high-density lipoprotein. Curr. Opin. Endocrinol. Diabetes Obes. 2009, 16, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Ambale, V.B.; Volpe, G.J.; Donekal, S.; Mewton, N.; Liu, C.Y.; Shea, S.; Liu, K.; Burke, G.; Wu, C.; Bluemke, D.A.; et al. Association of longitudinal changes in left ventricular structure and function with myocardial fibrosis: The Multi-Ethnic Study of Atherosclerosis study. Hypertension 2014, 64, 508–515. [Google Scholar] [CrossRef]
- Virk, R.; Cook, K.; Cavazos, A.; Wassall, S.R.; Gowdy, K.M.; Shaikh, S.R. How membrane phospholipids containing long chain polyunsaturated fatty acids and their oxidation products orchestrate lipid raft dynamics to control inflammation. J. Nutr. 2024, 154, 2862–2870. [Google Scholar] [CrossRef]
- Vladimirova-Kitova, L.; Deneva, T.; Angelova, E.; Nikolov, F.; Marinov, B.; Mateva, N. Relationship of asymmetric dimethylarginine with flow-mediated dilatation in subjects with newly detected severe hypercholesterolemia. Clin. Physiol. Funct. Imaging 2008, 28, 417–425. [Google Scholar] [CrossRef]
- Stancu, C.S.; Toma, L.; Sima, A.V. Dual role of lipoproteins in endothelial cell dysfunction in atherosclerosis. Cell Tissue Res. 2012, 349, 433–446. [Google Scholar] [CrossRef]
- Ku, I.A.; Imboden, J.B.; Hsue, P.Y.; Ganz, P. Rheumatoid arthritis a model of systemic inflammation driving atherosclerosis. Circ. J. 2009, 73, 977–985. [Google Scholar] [CrossRef]
- Kattoor, A.J.; Goel, A.; Mehta, J.L. LOX-1: Regulation, Signaling and Its Role in Atherosclerosis. Antioxidants 2019, 8, 218. [Google Scholar] [CrossRef]
- Besler, C.; Heinrich, K.; Rohrer, L.; Doerries, C.; Riwanto, M.; Shih, D.M.; Chroni, A.; Yonekawa, K.; Stein, S.; Schaefe Chroni, A.; et al. Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J. Clin. Investig. 2011, 121, 2693–2708. [Google Scholar] [CrossRef] [PubMed]
- Speer, T.; Rohrer, L.; Blyszczuk, P.; Shroff, R.; Kuschnerus, K.; Kränkel, N.; Kania, G.; Zewinger, S.; Akhmedov, A.; Shi, Y.; et al. Abnormal high-density lipoprotein induces endothelial dysfunction via activation of Toll-like receptor-2. Immunity 2013, 38, 754–768. [Google Scholar] [CrossRef]
- Mehta, J.L.; Chen, J.; Hermonat, P.L.; Romeo, F.; Novelli, G. Lectin-like, oxidized low-density lipoprotein receptor-1 (LOX-1): A critical player in the development of atherosclerosis and related disorders. Cardiovasc. Res. 2006, 69, 36–45. [Google Scholar] [CrossRef]
- Aldonza, M.B.D.; Son, Y.S.; Sung, H.J.; Ahn, J.M.; Choi, Y.; Kim, Y.; Cho, S.; Cho, J. Paraoxonase-1 (PON1) induces metastatic potential and apoptosis escape via its antioxidative function in lung cancer cells. Oncotarget 2017, 8, 42817–42835. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wu, Z.; Riwanto, M.; Gao, S.; Levison, B.S.; Gu, X.; Fu, X.; Wagner, M.A.; Besler, C.; Gerstenecker, G.; et al. Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex. J. Clin. Investig. 2013, 123, 3815–3828. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, G.; May-Zhang, L.S.; Yermalitsky, V.; Dikalov, S.; Voynov, M.A.; Amarnath, V.; Kon, V.; Linton, M.F.; Vickers, K.C.; Davies, S.S. Myeloperoxidase-induced modification of HDL by isolevuglandins inhibits paraoxonase-1 activity. J. Biol. Chem. 2021, 297, 101019. [Google Scholar] [CrossRef]
- Sirca, T.B.; Mureșan, M.E.; Pallag, A.; Marian, E.; Jurca, T.; Vicaș, L.G.; Tunduc, I.P.; Manole, F.; Stefan, L. The Role of Polyphenols in Modulating PON1 Activity Regarding Endothelial Dysfunction and Atherosclerosis. Int. J. Mol. Sci. 2024, 25, 2962. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Luna, D.; Carreón-Torres, E.; Bautista-Pérez, R.; Betanzos-Cabrera, G.; Dorantes-Morales, A.; Luna-Luna, M.; Vargas-Barrón, J.; Mejía, A.M.; Fragoso, J.M.; Carvajal-Aguilera, K.; et al. Microencapsulated Pomegranate Reverts High-Density Lipoprotein (HDL)-Induced Endothelial Dysfunction and Reduces Postprandial Triglyceridemia in Women with Acute Coronary Syndrome. Nutrients 2019, 11, 1710. [Google Scholar] [CrossRef]
- Li, C.; Tu, Y.; Liu, T.R.; Guo, Z.G.; Xie, D.; Zhong, J.K.; Fan, Y.Z.; Lai, W.Y.; Lai, W.Y. Rosiglitazone attenuates atherosclerosis and increases high-density lipoprotein function in atherosclerotic rabbits. Int. J. Mol. Med. 2015, 35, 715–723. [Google Scholar] [CrossRef]
- Engin, A. Endothelial Dysfunction in Obesity and Therapeutic Targets. Adv. Exp. Med. Biol. 2024, 1460, 489–538. [Google Scholar] [PubMed]
- Kirkpatrick, C.F.; Sikand, G.; Petersen, K.S.; Anderson, C.A.M.; Aspry, K.E.; Bolick, J.P.; Kris-Etherton, P.M.; Maki, K.C. Nutrition interventions for adults with dyslipidemia: A Clinical Perspective from the National Lipid Association. J. Clin. Lipidol. 2023, 17, 428–451. [Google Scholar] [CrossRef] [PubMed]
- Charchar, F.J.; Prestes, P.R.; Mills, C.; Mooi, C.S.; Dinesh, N.; Francine, M.; James, S.; Liffert, V.; Louise, B.; Lyudmilla, K.; et al. Lifestyle management of hypertension: International Society of Hypertension position paper endorsed by the World Hypertension League and European Society of Hypertension. J. Hypertens. 2024, 42, 23–49. [Google Scholar] [CrossRef] [PubMed]
- Imran, T.F.; Khan, A.A.; Has, P.; Jacobson, A.; Bogin, S.; Khalid, M.; Khan, A.; Kim, S.; Erqou, S.; Choudhary, G.; et al. Proprotein convertase subtilisn/kexin type 9 inhibitors and small interfering RNA therapy for cardiovascular risk reduction: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0295359. [Google Scholar] [CrossRef]
- Giglio, R.V.; Pantea Stoian, A.; Al-Rasadi, K.; Banach, M.; Patti, A.M.; Ciaccio, M.; Rizvi, A.A.; Rizzo, M. Novel Therapeutical Approaches to Managing Atherosclerotic Risk. Int. J. Mol. Sci. 2021, 22, 4633. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.I.; Sakuma, I.; Sohn, I.S.; Hayashi, T.; Shimada, K.; Koh, K.K. Best Treatment Strategies With Statins to Maximize the Cardiometabolic Benefits. Circ. J. 2018, 82, 937–943. [Google Scholar] [CrossRef]
- Jiang, J.; Gan, Z.; Li, Y.; Zhao, W.; Li, H.; Zheng, J.-P.; Ke, Y. REM sleep deprivation induces endothelial dysfunction and hypertension in middle-aged rats: Roles of the eNOS/NO/cGMP pathway and supplementation with L-arginine. PLoS ONE 2017, 12, e0182746. [Google Scholar] [CrossRef]
- Matsuzawa, Y.; Lerman, A. Endothelial dysfunction and coronary artery disease: Assessment, prognosis and treatment. Coron. Artery Dis. 2014, 25, 713. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Q.; Zhang, H.; Wang, C.; Xiu, R. Effects of nebivolol versus other antihypertensive drugs on the endothelial dysfunction in patients with essential hypertension. Biosci. Rep. 2020, 40, BSR20200436. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Abel, L.; Langford, O.; Monaghan, G.; Aronson, J.K.; Stevens, R.J.; Lay-Flurrie, S.; Koshiaris, C.; McManus, R.J.; Hobbs, F.D.R.; et al. Associations between statins and adverse events in primary prevention of cardiovascular disease: Systematic review with pairwise, network, and dose-response meta-analyses. Bmj 2021, 374, n1537. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Gutierrez, R.; Garcia-Leal, M.; Raygoza-Cortez, K.; Flores-Rodríguez, A.; Moreno-Alvarado, M.; Heredia-Martínez, E.M.; Vazquez-Baquerizo, B.; Guerra-Espiricueta, R.; Muñoz-Silva, V.; Gonzalez-Gonzalez, J.G. Benefits and harms of fibrate therapy in patients with type 2 diabetes: A systematic review and meta-analysis. Endocrine 2023, 81, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Tome, J.; Sehgal, K.; Kamboj, A.K.; Harmsen, W.S.; Khanna, S.; Pardi, D.S. Bile acid sequestrants in microscopic colitis: Clinical outcomes and utility of bile acid testing. Clin. Gastroenterol. Hepatol. 2023, 21, 3125–3131. [Google Scholar] [CrossRef]
- Richter, C.K.; Skulas-Ray, A.C.; Gaugler, T.L.; Meily, S.; Petersen, K.S.; Kris-Etherton, P.M. Effects of Cranberry Juice Supplementation on Cardiovascular Disease Risk Factors in Adults with Elevated Blood Pressure: A Randomized Controlled Trial. Nutrients 2021, 13, 2618. [Google Scholar] [CrossRef]
- Cho, K.H.; Yadav, D.; Kim, S.J.; Kim, J.R. Blood Pressure Lowering Effect of Cuban Policosanol is Accompanied by Improvement of Hepatic Inflammation, Lipoprotein Profile, and HDL Quality in Spontaneously Hypertensive Rats. Molecules 2018, 23, 1080. [Google Scholar] [CrossRef] [PubMed]
- Al-Jarallah, A.; Babiker, F. High Density Lipoprotein Reduces Blood Pressure and Protects Spontaneously Hypertensive Rats Against Myocardial Ischemia-Reperfusion Injury in an SR-BI Dependent Manner. Front. Cardiovasc. Med. 2022, 9, 825310. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Hamaguchi, M.; Fukui, M. Fermented soybean foods and diabetes. J. Diabetes Investig. 2023, 14, 1329–1340. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Long, X.; Zou, Y.; Liu, F.; Li, Q. Mulberry leaf phenolics and fiber exert anti-obesity through the gut microbiota-host metabolism pathway. J. Food Sci. 2021, 86, 1432–1447. [Google Scholar] [CrossRef]
- Irondi, E.A.; Agboola, S.O.; Oboh, G.; Boligon, A.A.; Athayde, M.L.; Shode, F.O. Guava leaves polyphenolics-rich extract inhibits vital enzymes implicated in gout and hypertension in vitro. J. Intercult. Ethnopharmacol. 2016, 5, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Esterbauer, H.; Puhl, H.; Waeg, G.; Krebs, A.; Dieber-Rotheneder, M. The role of vitamin E in lipoprotein oxidation. In Vitamin E in Health and Disease; CRC Press: Boca Raton, FL, USA, 2023; pp. 649–672. [Google Scholar]
- Esser, D.; Mars, M.; Oosterink, E.; Stalmach, A.; Müller, M.; Afinan, L.A. Dark chocolate consumption improves leukocyte adhesion factors and vascular function in overweight men. FASEB J. 2014, 28, 1464–1473. [Google Scholar] [CrossRef] [PubMed]
- Demonty, I.; Ras, R.T.; van der Knaap, H.C.M.; Meijer, L.; Zock, P.L.; Geleijnse, J.M.; Trautwein, E.A. The effect of plant sterols on serum triglyceride concentrations is dependent on baseline concentrations: A pooled analysis of 12 randomised controlled trials. Eur. J. Nutr. 2013, 52, 153–160. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.-P.-P.; Sulaiman Rahman, H. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Front. Pharmacol. 2018, 9, 1162. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Xu, L.; Zhang, J.; Mo, J.; Zhuang, P.; Zheng, L. Oxyresveratrol from mulberry branch extract protects HUVECs against oxidized Low-density Lipoprotein-induced oxidative injury via activation of the Nrf-2/HO-1 pathway. J. Funct. Foods 2022, 100, 105371. [Google Scholar] [CrossRef]
- Basu, A. Role of Berry Bioactive Compounds on Lipids and Lipoproteins in Diabetes and Metabolic Syndrome. Nutrients 2019, 11, 1983. [Google Scholar] [CrossRef]
- Tsiantas, K.; Konteles, S.J.; Kritsi, E.; Sinanoglou, V.J.; Tsiaka, T.; Zoumpoulakis, P. Effects of Non-Polar Dietary and Endogenous Lipids on Gut Microbiota Alterations: The Role of Lipidomics. Int. J. Mol. Sci. 2022, 23, 4070. [Google Scholar] [CrossRef]
- Luqman, A.; Hassan, A.; Ullah, M.; Naseem, S.; Ullah, M.; Zhang, L.; Din, A.D.; Ullah, K.; Ahmad, W.; Wang, G. Role of the intestinal microbiome and its therapeutic intervention in cardiovascular disorder. Front. Immunol. 2024, 15, 1321395. [Google Scholar] [CrossRef]
- Andersen, C.J.; Blesso, C.N.; Lee, J.; Barona, J.; Shah, D.; Thomas, M.J.; Fernandez, M.L. Egg consumption modulates HDL lipid composition and increases the cholesterol-accepting capacity of serum in metabolic syndrome. Lipids 2013, 48, 57–567. [Google Scholar] [CrossRef]
- Martin-Ventura, J.L.; Rodrigues-Diez, R.; Martinez-Lopez, D.; Salaices, M.; Blanco-Colio, L.M.; Briones, A.M. Oxidative stress in human atherothrombosis: Sources, markers and therapeutic targets. Int. J. Mol. Sci. 2017, 18, 2315. [Google Scholar] [CrossRef]
- Bard, J.-M.; Paillard, F.; Lecerf, J.-M. Effect of phytosterols/stanols on LDL concentration and other surrogate markers of cardiovascular risk. Diabetes Metab. 2015, 41, 69–75. [Google Scholar] [CrossRef]
- Machado, V.A.; Santisteban, A.R.N.; Martins, C.M.; Damasceno, N.R.T.; Fonseca, F.A.; Neto, A.M.F.; Izar, M.C. Effects of phytosterol supplementation on lipoprotein subfractions and LDL particle quality. Sci. Rep. 2024, 14, 11108. [Google Scholar] [CrossRef] [PubMed]
- Oliveira Godoy Ilha, A.; Sutti Nunes, V.; Silva Afonso, M.; Regina Nakandakare, E.; da Silva Ferreira, G.; de Paula Assis Bombo, R.; Rodrigues Giorgi, R.; Marcondes Machado, R.; Rocha Quintão, E.C.; Lottenberg, A.M. Phytosterols supplementation reduces endothelin-1 plasma concentration in moderately hypercholesterolemic individuals independently of their cholesterol-lowering properties. Nutrients 2020, 12, 1507. [Google Scholar] [CrossRef] [PubMed]
- Hwerif, N.; Raghif, A.; Kadhim, E. Effect of terpenes fraction of Iraqi cicer arietinum in experimentally induced hyperlipidemic mice. Int. J. Health Sci. 2022, 6, 10514–10530. [Google Scholar] [CrossRef]
- Ayala-Ruiz, L.A.; Ortega-Pérez, L.G.; Piñón-Simental, J.S.; Magana-Rodriguez, O.R.; Meléndez-Herrera, E.; Rios-Chavez, P. Role of the major terpenes of Callistemon citrinus against the oxidative stress during a hypercaloric diet in rats. Biomed. Pharmacother. 2022, 153, 113505. [Google Scholar] [CrossRef]
- Gong, Y.; Lin, M.; Piao, L.; Li, X.; Yang, F.; Zhang, J.; Xiao, B.; Zhang, Q.; Song, W.L.; Yin, H.; et al. Aspirin enhances protective effect of fish oil against thrombosis and injury-induced vascular remodelling. Br. J. Pharmacol. 2015, 172, 5647–5660. [Google Scholar] [CrossRef]
- McEwen, B.J.; Morel-Kopp, M.-C.; Chen, W.; Tofler, G.H.; Ward, C.M. Effects of omega-3 polyunsaturated fatty acids on platelet function in healthy subjects and subjects with cardiovascular disease. Semin. Thromb. Hemost. 2013, 39, 025–032. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.H.; Amar, M.; Sampson, M.; Courville, A.B.; Sorokin, A.V.; Gordon, S.M.; Aponte, A.M.; Stagliano, M.; Playford, M.P.; Fu, Y.; et al. Comparison of omega-3 eicosapentaenoic acid versus docosahexaenoic acid-rich fish oil supplementation on plasma lipids and lipoproteins in normolipidemic adults. Nutrients 2020, 12, 749. [Google Scholar] [CrossRef] [PubMed]
- Cartolano, F.D.C.; Dias, G.D.; Miyamoto, S.; Damasceno, N.R.T. Omega-3 fatty acids improve functionality of high-density lipoprotein in individuals with high cardiovascular risk: A randomized, parallel, controlled and double-blind clinical trial. Front. Nutr. 2022, 8, 767535. [Google Scholar] [CrossRef] [PubMed]
Lipoproteins | Electrophoretic Mobility | Source of Synthesis | Flotation Density (g/mL) | Size (nm) | Main Chemical Composition | Main Apolipoproteins |
---|---|---|---|---|---|---|
Cm | Origin | Intestine | <0.940 | >70 | Triglycerides 90–95%, phospholipids 3–6%, cholesterol 1–3%, protein 1–2% * | Apo B-48, apo C-I, II, III, apo E, apo A-I, II, IV, V |
VLDL | pre- β | Liver | 1.006 | 30–70 | Triglycerides 45–65%, phospholipids 15–20%, cholesterol 4–8%, protein 6–10% * | Apo B-100, apo C-I, II, III, apo E |
IDL | β | Blood vessel | 1.019 | 20–30 | Triglycerides 20–30%, phospholipids 20–30%, cholesterol 35–40%, protein 15–20% * | Apo B-100, apo C-I, II, III, apo E |
LDL | β | Blood vessel | 1.063 | 19–23 | Triglycerides 4–8%, phospholipids 18–24%, cholesterol 50–60%, protein 18–22% * | Apo B-100 |
Lp (a) | pre-β | Liver | 1.085 | 21–26 | Triglycerides 3–5%, phospholipids 19–21%, cholesterol 40–45%, protein 27–29% * | Apo (a) |
HDL (Subclasses 2a, 2b, 3a, 3b, 3c) | α | Liver, intestine | 1.210 | 7.5–12.5 | Triglycerides 2–7%, phospholipids 26–32%, cholesterol 20–25%, protein 45–55% * | Apo A-I, II, IV, apo C-I, II, III Apo D, apo E, apo M, apo J |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Melo, L.M.; Estrada-Luna, D.; Rubio-Ruiz, M.E.; Castañeda-Ovando, A.; Fernández-Martínez, E.; Jiménez-Osorio, A.S.; Pérez-Méndez, Ó.; Carreón-Torres, E. Relevance of Lipoprotein Composition in Endothelial Dysfunction and the Development of Hypertension. Int. J. Mol. Sci. 2025, 26, 1125. https://doi.org/10.3390/ijms26031125
Ramírez-Melo LM, Estrada-Luna D, Rubio-Ruiz ME, Castañeda-Ovando A, Fernández-Martínez E, Jiménez-Osorio AS, Pérez-Méndez Ó, Carreón-Torres E. Relevance of Lipoprotein Composition in Endothelial Dysfunction and the Development of Hypertension. International Journal of Molecular Sciences. 2025; 26(3):1125. https://doi.org/10.3390/ijms26031125
Chicago/Turabian StyleRamírez-Melo, Lisette Monsibaez, Diego Estrada-Luna, María Esther Rubio-Ruiz, Araceli Castañeda-Ovando, Eduardo Fernández-Martínez, Angélica Saraí Jiménez-Osorio, Óscar Pérez-Méndez, and Elizabeth Carreón-Torres. 2025. "Relevance of Lipoprotein Composition in Endothelial Dysfunction and the Development of Hypertension" International Journal of Molecular Sciences 26, no. 3: 1125. https://doi.org/10.3390/ijms26031125
APA StyleRamírez-Melo, L. M., Estrada-Luna, D., Rubio-Ruiz, M. E., Castañeda-Ovando, A., Fernández-Martínez, E., Jiménez-Osorio, A. S., Pérez-Méndez, Ó., & Carreón-Torres, E. (2025). Relevance of Lipoprotein Composition in Endothelial Dysfunction and the Development of Hypertension. International Journal of Molecular Sciences, 26(3), 1125. https://doi.org/10.3390/ijms26031125