Oxidative Stress Enhances Rubella Virus Infection in Immortalized Human First-Trimester Trophoblasts
Abstract
1. Introduction
2. Results
2.1. Expression of Cell Stress Markers by H2O2
2.2. Enhancement of RuV Infection Rate in Oxidative-Stressed Trophoblast Cells by FCM Analysis
2.3. Enhancement of RuV Infection and Replication in Oxidative-Stressed Trophoblast Cells as Shown by Immunofluorescence Assay and Real-Time PCR
3. Discussion
4. Materials and Methods
4.1. Cell Culture and Virus
4.2. Experimental Hydrogen Peroxide-Induced Oxidative Stress Conditions in Trophoblast Cells
4.3. Cell Viability Assay
4.4. Virus Infection
4.5. Immunofluorescence Assay
4.6. FCM Analysis
4.7. RNA Extraction and RT-PCR
4.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mankertz, A.; Chen, M.H.; Goldberg, T.L.; Hubschen, J.M.; Pfaff, F.; Ulrich, R.G.; Ictv Report, C. Ictv virus taxonomy profile: Matonaviridae 2022. J Gen Virol 2022, 103. [Google Scholar] [CrossRef] [PubMed]
- Hobman, T.C. Rubella virus. In Fields Virology, 6th ed.; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; Volume 1, pp. 687–711. [Google Scholar]
- Boss, A.L.; Chamley, L.W.; James, J.L. Placental formation in early pregnancy: How is the centre of the placenta made? Hum. Reprod. Update 2018, 24, 750–760. [Google Scholar] [CrossRef]
- Red-Horse, K.; Zhou, Y.; Genbacev, O.; Prakobphol, A.; Foulk, R.; McMaster, M.; Fisher, S.J. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J. Clin. Investig. 2004, 114, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Renaud, S.J.; Jeyarajah, M.J. How trophoblasts fuse: An in-depth look into placental syncytiotrophoblast formation. Cell Mol. Life Sci. 2022, 79, 433. [Google Scholar] [CrossRef]
- Kanbayashi, D.; Kurata, T.; Kaida, Y.; Miyoshi, T.; Okayama, F.; Kase, T.; Komano, J.; Takahashi, K.; Ikuta, K.; Motomura, K. How to prevent rubella epidemics and congenital rubella syndrome: Lessons from 42 years of longitudinal epidemiology in osaka prefecture, japan (1982–2023). J. Infect. Dis. 2024, jiae402. [Google Scholar] [CrossRef]
- Sugishita, Y.; Akiba, T.; Sumitomo, M.; Hayata, N.; Hasegawa, M.; Tsunoda, T.; Okazaki, T.; Murauchi, K.; Hayashi, Y.; Kai, A.; et al. Shedding of rubella virus among infants with congenital rubella syndrome born in tokyo, japan, 2013–2014. Jpn. J. Infect. Dis. 2016, 69, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.W.; Wakeland, A.K.; Parast, M.M. Trophoblast lineage specification, differentiation and their regulation by oxygen tension. J. Endocrinol. 2018, 236, R43–R56. [Google Scholar] [CrossRef] [PubMed]
- Straszewski-Chavez, S.L.; Abrahams, V.M.; Alvero, A.B.; Aldo, P.B.; Ma, Y.; Guller, S.; Romero, R.; Mor, G. The isolation and characterization of a novel telomerase immortalized first trimester trophoblast cell line, swan 71. Placenta 2009, 30, 939–948. [Google Scholar] [CrossRef] [PubMed]
- Pham, N.T.K.; Trinh, Q.D.; Takada, K.; Komine-Aizawa, S.; Hayakawa, S. Low susceptibility of rubella virus in first-trimester trophoblast cell lines. Viruses 2022, 14, 1169. [Google Scholar] [CrossRef] [PubMed]
- Trinh, Q.D.; Pham, N.T.K.; Takada, K.; Komine-Aizawa, S.; Hayakawa, S. Myelin oligodendrocyte glycoprotein-independent rubella infection of keratinocytes and resistance of first-trimester trophoblast cells to rubella virus in vitro. Viruses 2018, 10, 23. [Google Scholar] [CrossRef] [PubMed]
- Trinh, Q.D.; Takada, K.; Pham, N.T.K.; Takano, C.; Namiki, T.; Ikuta, R.; Hayashida, S.; Okitsu, S.; Ushijima, H.; Komine-Aizawa, S.; et al. Enhancement of rubella virus infection in immortalized human first-trimester trophoblasts under low-glucose stress conditions. Front. Microbiol. 2022, 13, 904189. [Google Scholar] [CrossRef] [PubMed]
- Welch, B.M.; Bommarito, P.A.; Cantonwine, D.E.; Milne, G.L.; Motsinger-Reif, A.; Edin, M.L.; Zeldin, D.C.; Meeker, J.D.; McElrath, T.F.; Ferguson, K.K. Predictors of upstream inflammation and oxidative stress pathways during early pregnancy. Free Radic. Biol. Med. 2024, 213, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lin, Y.; Ge, Y.; Craig, E.; Liu, X.; Miller, R.K.; Thurston, S.W.; Brunner, J.; Barrett, E.S.; O’Connor, T.G.; et al. Systemic oxidative stress levels during the course of pregnancy: Associations with exposure to air pollutants. Environ. Pollut. 2024, 357, 124463. [Google Scholar] [CrossRef] [PubMed]
- Joo, E.H.; Kim, Y.R.; Kim, N.; Jung, J.E.; Han, S.H.; Cho, H.Y. Effect of endogenic and exogenic oxidative stress triggers on adverse pregnancy outcomes: Preeclampsia, fetal growth restriction, gestational diabetes mellitus and preterm birth. Int. J. Mol. Sci. 2021, 22, 10122. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.M.; Zimmerman, M.C.; Moore, T.A. Oxidative stress in early pregnancy and the risk of preeclampsia. Pregnancy Hypertens. 2019, 18, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Trinh, Q.D. Recent research in cell stress and microbial infection. Microorganisms 2022, 10, 622. [Google Scholar] [CrossRef]
- Cong, H.; Jiang, Y.; Tien, P. Identification of the myelin oligodendrocyte glycoprotein as a cellular receptor for rubella virus. J. Virol. 2011, 85, 11038–11047. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, C.; Chen, Y.; Hao, Y.; Zhou, W.; Chen, C.; Yu, Z. Hypoxia enhances cxcr4 expression favoring microglia migration via hif-1alpha activation. Biochem. Biophys. Res. Commun. 2008, 371, 283–288. [Google Scholar] [CrossRef]
- Dai, J.; Gu, L.; Su, Y.; Wang, Q.; Zhao, Y.; Chen, X.; Deng, H.; Li, W.; Wang, G.; Li, K. Inhibition of curcumin on influenza a virus infection and influenzal pneumonia via oxidative stress, tlr2/4, p38/jnk mapk and nf-kappab pathways. Int. Immunopharmacol. 2018, 54, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.M.; Jawad, M.J.; Ahjel, S.W.; Singh, R.B.; Singh, J.; Awad, S.M.; Hadi, N.R. The nrf2 activator (dmf) and COVID-19: Is there a possible role? Med. Arch. 2020, 74, 134–138. [Google Scholar] [CrossRef]
- Riedl, T.; Faure-Dupuy, S.; Rolland, M.; Schuehle, S.; Hizir, Z.; Calderazzo, S.; Zhuang, X.; Wettengel, J.; Lopez, M.A.; Barnault, R.; et al. Hypoxia-inducible factor 1 alpha-mediated relb/apobec3b down-regulation allows hepatitis b virus persistence. Hepatology 2021, 74, 1766–1781. [Google Scholar] [CrossRef] [PubMed]
- Wise, L.M.; Xi, Y.; Purdy, J.G. Hypoxia-inducible factor 1alpha (hif1alpha) suppresses virus replication in human cytomegalovirus infection by limiting kynurenine synthesis. mBio 2021, 12, e02956-20. [Google Scholar] [CrossRef]
- Devaux, C.A.; Raoult, D. The impact of covid-19 on populations living at high altitude: Role of hypoxia-inducible factors (hifs) signaling pathway in sars-cov-2 infection and replication. Front. Physiol. 2022, 13, 960308. [Google Scholar] [CrossRef] [PubMed]
- Muzammil, K.; Sabah Ghnim, Z.; Saeed Gataa, I.; Fawzi Al-Hussainy, A.; Ali Soud, N.; Adil, M.; Ali Shallan, M.; Yasamineh, S. Nrf2-mediated regulation of lipid pathways in viral infection. Mol. Asp. Med. 2024, 97, 101279. [Google Scholar] [CrossRef]
- Thomaz, N.K.; Bobermin, L.D.; Sesterheim, P.; Varela, A.P.M.; Fumaco, T.; Seady, M.; Parmeggiani, B.; Leite, M.C.; Leipnitz, G.; Santi, L.; et al. High glucose potentiates zika virus induced-astroglial dysfunctions. J. NeuroVirology 2024. [Google Scholar] [CrossRef] [PubMed]
- Bae, T.; Hallis, S.P.; Kwak, M.K. Hypoxia, oxidative stress, and the interplay of hifs and nrf2 signaling in cancer. Exp. Mol. Med. 2024, 56, 501–514. [Google Scholar] [CrossRef]
- Ransy, C.; Vaz, C.; Lombes, A.; Bouillaud, F. Use of h(2)o(2) to cause oxidative stress, the catalase issue. Int. J. Mol. Sci. 2020, 21, 9149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, X.; Bi, K.; He, Y.; Yan, W.; Yang, C.S.; Zhang, J. Potential protective mechanisms of green tea polyphenol egcg against COVID-19. Trends Food Sci. Technol. 2021, 114, 11–24. [Google Scholar] [CrossRef]
- Lock, M.C.; Botting, K.J.; Allison, B.J.; Niu, Y.; Ford, S.G.; Murphy, M.P.; Orgeig, S.; Giussani, D.A.; Morrison, J.L. Mitoq as an antenatal antioxidant treatment improves markers of lung maturation in healthy and hypoxic pregnancy. J. Physiol. 2023, 601, 3647–3665. [Google Scholar] [CrossRef] [PubMed]
- Afrose, D.; Alfonso-Sanchez, S.; McClements, L. Targeting oxidative stress in preeclampsia. Hypertens. Pregnancy 2025, 44, 2445556. [Google Scholar] [CrossRef] [PubMed]
- Pham, N.T.K.; Trinh, Q.D.; Takada, K.; Takano, C.; Sasano, M.; Okitsu, S.; Ushijima, H.; Komine-Aizawa, S.; Hayakawa, S. The epithelial-to-mesenchymal transition-like process induced by tgf-beta1 enhances rubella virus binding and infection in a549 cells via the smad pathway. Microorganisms 2021, 9, 662. [Google Scholar] [CrossRef]
- Grigorov, B.; Rabilloud, J.; Lawrence, P.; Gerlier, D. Rapid titration of measles and other viruses: Optimization with determination of replication cycle length. PLoS ONE 2011, 6, e24135. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trinh, Q.D.; Takada, K.; Pham, N.T.K.; Takano, C.; Namiki, T.; Ito, S.; Takeda, Y.; Okitsu, S.; Ushijima, H.; Hayakawa, S.; et al. Oxidative Stress Enhances Rubella Virus Infection in Immortalized Human First-Trimester Trophoblasts. Int. J. Mol. Sci. 2025, 26, 1041. https://doi.org/10.3390/ijms26031041
Trinh QD, Takada K, Pham NTK, Takano C, Namiki T, Ito S, Takeda Y, Okitsu S, Ushijima H, Hayakawa S, et al. Oxidative Stress Enhances Rubella Virus Infection in Immortalized Human First-Trimester Trophoblasts. International Journal of Molecular Sciences. 2025; 26(3):1041. https://doi.org/10.3390/ijms26031041
Chicago/Turabian StyleTrinh, Quang Duy, Kazuhide Takada, Ngan Thi Kim Pham, Chika Takano, Takahiro Namiki, Shun Ito, Yoshinori Takeda, Shoko Okitsu, Hiroshi Ushijima, Satoshi Hayakawa, and et al. 2025. "Oxidative Stress Enhances Rubella Virus Infection in Immortalized Human First-Trimester Trophoblasts" International Journal of Molecular Sciences 26, no. 3: 1041. https://doi.org/10.3390/ijms26031041
APA StyleTrinh, Q. D., Takada, K., Pham, N. T. K., Takano, C., Namiki, T., Ito, S., Takeda, Y., Okitsu, S., Ushijima, H., Hayakawa, S., & Komine-Aizawa, S. (2025). Oxidative Stress Enhances Rubella Virus Infection in Immortalized Human First-Trimester Trophoblasts. International Journal of Molecular Sciences, 26(3), 1041. https://doi.org/10.3390/ijms26031041