The Role of miRNAs in Parkinson’s Disease: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Studies Included
2.2. Assessment of Risk Bias in Included Studies
3. Results
3.1. Studies Included Within the Review
3.2. Characteristics of PD Patient Studies
3.3. Findings of Included Studies
4. Discussion
4.1. miRNA Biomarkers in PD
4.2. Potential Treatments and miRNA Therapeutic Targets
4.3. Strengths, Limitations, and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| PD | Parkinson’s Disease |
| iPD | Idiopathic Parkinson’s Disease |
| fPD | Familial Parkinson’s Disease |
| SNCA | Alpha-Synuclein |
| VPS35 | Vesicle Protein Sorting 35 |
| PINK1 | PTEN Induced Kinase 1 |
| PRKN | Parkin |
| PARK7 | Parkinsonism Associated Deglycase |
| PLA2G6 | Phospholipase A2 Group VI |
| GBA | Glucosylceramidase Beta |
| LRRK2 | Leucine–Rich Repeat Kinase 2 |
| miRNA | Micro-RNA |
| AD | Alzheimer’s Disease |
| ALS | Amyotrophic Lateral Sclerosis |
| MS | Multiple Sclerosis |
| BBB | Blood–Brain Barrier |
| iRBD | Isolated Rapid Eye Movement Sleep Behavior Disorder |
| CSF | Cerebrospinal Fluid |
| PBMCs | Peripheral Blood Mononuclear Cells |
| iPSCs | Induced Pluripotent Stem Cells |
| AKT3 | AKT serine/threonine kinase 3 |
| PGC1α | Peroxisome proliferator-activated-receptor-γ cofactor 1-alpha |
| MSA | Multiple System Atrophy |
| ET | Essential Tremor |
| MEST | Mesoderm-specific transcript |
| SPARC | Secreted protein acidic and rich in cysteine |
| BACE1 | Beta-site Amyloid precursor protein Cleaving Enzyme 1 |
| KLF7 | Kruppel-like factor 7 |
| PTEN | Phosphatase and TENsin homolog |
| IL-8 | Interleukin-8 |
| DOAJs | Directory of Open Access Journals |
| SSRN | Social Science Research Network |
References
- Ye, H.; Robak, L.A.; Yu, M.; Cykowski, M.; Shulman, J.M. Genetics and Pathogenesis of Parkinson’s Syndrome. Annu. Rev. Pathol. 2023, 18, 95–121. [Google Scholar] [CrossRef]
- Day, J.O.; Mullin, S. The Genetics of Parkinson’s Disease and Implications for Clinical Practice. Genes 2021, 12, 1006. [Google Scholar] [CrossRef]
- Simon, D.K.; Tanner, C.M.; Brundin, P. Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin. Geriatr. Med. 2020, 36, 1–12. [Google Scholar] [CrossRef]
- Tang, Y.; Xiao, X.; Xie, H.; Wan, C.; Meng, L.; Liu, Z.; Liao, W.; Tang, B.; Guo, J. Altered Functional Brain Connectomes between Sporadic and Familial Parkinson’s Patients. Front. Neuroanat. 2017, 11, 99. [Google Scholar] [CrossRef]
- Qiu, L.; Tan, E.K.; Zeng, L. microRNAs and Neurodegenerative Diseases. In microRNA: Medical Evidence: From Molecular Biology to Clinical Practice; Springer: Cham, Switzerland, 2015; pp. 85–105. [Google Scholar] [CrossRef]
- Mori, M.A.; Ludwig, R.G.; Garcia-Martin, R.; Brandão, B.B.; Kahn, C.R. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metab. 2019, 30, 656–673. [Google Scholar] [CrossRef]
- Pradillo, M.; Santos, J.L. Genes involved in miRNA biogenesis affect meiosis and fertility. Chromosome Res. 2018, 26, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Hata, A.; Kashima, R. Dysregulation of microRNA biogenesis machinery in cancer. Crit. Rev. Biochem. Mol. Biol. 2016, 51, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Dhuppar, S.; Poller, W.C.; Murugaiyan, G. MicroRNAs in the biology and hallmarks of neurodegenerative diseases. Trends Mol. Med. 2025, 31, 955–969. [Google Scholar] [CrossRef] [PubMed]
- Alkhazaali-Ali, Z.; Sahab-Negah, S.; Boroumand, A.R.; Tavakol-Afshari, J. MicroRNA (miRNA) as a biomarker for diagnosis, prognosis, and therapeutics molecules in neurodegenerative disease. Biomed. Pharmacother. 2024, 177, 116899. [Google Scholar] [CrossRef]
- Tatura, R.; Kraus, T.; Giese, A.; Arzberger, T.; Buchholz, M.; Höglinger, G.; Müller, U. Parkinson’s disease: SNCA-, PARK2-, and LRRK2- targeting microRNAs elevated in cingulate gyrus. Park. Relat. Disord. 2016, 33, 115–121. [Google Scholar] [CrossRef]
- Schließer, P.; Struebing, F.; Northoff, B.; Kurz, A.; Rémi, J.; Holdt, L.; Höglinger, G.; Herms, J.; Koeglsperger, T. Detection of a Parkinson’s Disease-Specific MicroRNA Signature in Nasal and Oral Swabs. Mov. Disord. 2023, 38, 1706–1715. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Salemi, M.; Marchese, G.; Lanza, G.; Cosentino, F.; Salluzzo, M.; Schillaci, F.; Ventola, G.; Cordella, A.; Ravo, M.; Ferri, R. Role and Dysregulation of miRNA in Patients with Parkinson’s Disease. Int. J. Mol. Sci. 2022, 24, 712. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Wang, R.; Li, R.; Tao, T.; Zhang, D.; Qi, Y. Diagnostic Performance of miR-485-3p in Patients with Parkinson’s Disease and its Relationship with Neuroinflammation. Neuromolecular Med. 2022, 24, 195–201. [Google Scholar] [CrossRef]
- Citterio, L.A.; Mancuso, R.; Agostini, S.; Meloni, M.; Clerici, M. Serum and Exosomal miR-7-1-5p and miR-223-3p as Possible Biomarkers for Parkinson’s Disease. Biomolecules 2023, 13, 865. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Deng, N.; Lu, K.; Liao, Q.; Long, X.; Gou, D.; Bi, F.; Zhou, J. Elevated plasma miR-133b and miR-221-3p as biomarkers for early Parkinson’s disease. Sci. Rep. 2021, 11, 15268. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Niu, W.; Xu, F.; Wang, Y.; Hu, S.; Niu, C. Differential expression and significance of miRNAs in plasma extracellular vesicles of patients with Parkinson’s disease. Int. J. Neurosci. 2022, 132, 673–688. [Google Scholar] [CrossRef]
- Ravanidis, S.; Bougea, A.; Papagiannakis, N.; Koros, C.; Simitsi, A.; Pachi, I.; Breza, M.; Stefanis, L.; Doxakis, E. Validation of differentially expressed brain-enriched microRNAs in the plasma of PD patients. Ann. Clin. Transl. Neurol. 2020, 7, 1594–1607. [Google Scholar] [CrossRef]
- Ravanidis, S.; Bougea, A.; Papagiannakis, N.; Maniati, M.; Koros, C.; Simitsi, A.; Bozi, M.; Pachi, I.; Stamelou, M.; Paraskevas, G.; et al. Circulating Brain-enriched MicroRNAs for detection and discrimination of idiopathic and genetic Parkinson’s disease. Mov. Disord. 2020, 35, 457–467. [Google Scholar] [CrossRef]
- Scheper, M.; Iyer, A.; Anink, J.J.; Mesarosova, L.; Mills, J.D.; Aronica, E. Dysregulation of miR-543 in Parkinson’s disease: Impact on the neuroprotective gene SIRT1. Neuropathol. Appl. Neurobiol. 2023, 49, e12864. [Google Scholar] [CrossRef]
- Cressatti, M.; Juwara, L.; Galindez, J.; Velly, A.; Nkurunziza, E.; Marier, S.; Canie, O.; Gornistky, M.; Schipper, H. Salivary microR-153 and microR-223 Levels as Potential Diagnostic Biomarkers of Idiopathic Parkinson’s Disease. Mov. Disord. 2020, 35, 468–477. [Google Scholar] [CrossRef]
- Grossi, I.; Radeghieri, A.; Paolini, L.; Porrini, V.; Pilotto, A.; Padovani, A.; Marengoni, A.; Barbon, A.; Belluci, A.; Pizzi, M.; et al. MicroRNA 34a 5p expression in the plasma and in its extracellular vesicle fractions in subjects with Parkinson’s disease: An exploratory study. Int. J. Mol. Med. 2021, 47, 533–546. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, F.C.; Rode, M.; Vietta, G.; Iop, R.; Creczynski-Pasa, T.; Martin, A.; Da Silva, R. Expression levels of specific microRNAs are increased after exercise and are associated with cognitive improvement in Parkinson’s disease. Mol. Med. Rep. 2021, 24, 618. [Google Scholar] [CrossRef]
- Fazeli, S.; Motovali-Bashi, M.; Peymani, M.; Hashemi, M.; Etemadifar, M.; Nasr-Esfahani, M.; Ghaedi, K. A compound downregulation of SRRM2 and miR-27a-3p with upregulation of miR-27b-3p in PBMCs of Parkinson’s patients is associated with the early stage onset of disease. PLoS ONE 2020, 15, e0240855. [Google Scholar] [CrossRef]
- Marques, T.M.; Kuiperij, H.; Bruinsma, I.; van Rumund, A.; Aerts, M.; Esselink, R.; Bloem, B.; Verbeek, M. MicroRNAs in Cerebrospinal Fluid as Potential Biomarkers for Parkinson’s Disease and Multiple System Atrophy. Mol. Neurobiol. 2017, 54, 7736–7745. [Google Scholar] [CrossRef]
- Hsu, Y.-F.; Lin, S.; Chu, Y.; Tsai, Y.; Huang, J.; Phoa, F.; Wu, R. Plasma miR-203a-3p as a Novel Predictor of Dementia in Patients with Parkinson’s Disease. Int. J. Mol. Sci. 2024, 25, 3554. [Google Scholar] [CrossRef]
- Li, H.; Yu, L.; Li, M.; Chen, X.; Tian, Q.; Jiang, Y.; Li, N. MicroRNA-150 serves as a diagnostic biomarker and is involved in the inflammatory pathogenesis of Parkinson’s disease. Mol. Genet. Genom. Med. 2020, 8, e1189. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, T.; Li, S.; Wei, M.; Qi, H.; Shen, B.; Chang, R.; Le, W.; Piao, F. Altered Expression Levels of MicroRNA-132 and Nurr1 in Peripheral Blood of Parkinson’s Disease: Potential Disease Biomarkers. ACS Chem. Neurosci. 2019, 10, 2243–2249. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yang, J.; Lü, J.; Cao, S.; Zhao, Q.; Yu, Z. Identification of aberrant circulating miRNAs in Parkinson’s disease plasma samples. Brain Behav. 2018, 8, e00941. [Google Scholar] [CrossRef]
- Baghi, M.; Rostamian Delavar, M.; Yadegari, E.; Peymani, M.; Pozo, D.; Hossein Nasr-Esfahani, M.; Ghaedi, K. Modified level of miR-376a is associated with Parkinson’s disease. J. Cell Mol. Med. 2020, 24, 2622–2634. [Google Scholar] [CrossRef]
- Qin, L.-X.; Tan, J.; Zhang, H.; Tang, J.; Jiang, B.; Shen, X.; Guo, J.; Tan, L.; Tang, B.; Wang, C. Preliminary Study of hsa-mir-626 Change in the Cerebrospinal Fluid in Parkinson’s Disease. Neurol. India 2021, 69, 115–118. [Google Scholar] [CrossRef]
- Ma, W.; Li, Y.; Wang, C.; Xu, F.; Wang, M.; Liu, Y. Serum miR-221 serves as a biomarker for Parkinson’s disease. Cell Biochem. Funct. 2016, 34, 511–515. [Google Scholar] [CrossRef]
- Behbahanipour, M.; Peymani, M.; Salari, M.; Hashemi, M.-S.; Nasr-Esfahani, M.H.; Ghaedi, K. Expression Profiling of Blood microRNAs 885, 361, and 17 in the Patients with the Parkinson’s disease: Integrating Interaction Data to Uncover the Possible Triggering Age-Related Mechanisms. Sci. Rep. 2019, 9, 13759. [Google Scholar] [CrossRef]
- Bai, X.; Tang, Y.; Yu, M.; Wu, L.; Liu, F.; Ni, J.; Wang, Z.; Wang, J.; Fei, J.; Wang, W.; et al. Downregulation of blood serum microRNA 29 family in patients with Parkinson’s disease. Sci. Rep. 2017, 7, 5411. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Wan, W.; Wang, L.; Wang, C.; Xiao, J.; Zhang, F.; Zhao, J.; Wang, J.; Zhan, C.; Zhong, C. Elevated microRNA-520d-5p in the serum of patients with Parkinson’s disease, possibly through regulation of cereloplasmin expression. Neurosci. Lett. 2018, 687, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Gui, Y.; Liu, H.; Zhang, L.; Lv, W.; Hu, X. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 2015, 6, 37043–37053. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Wang, C.; Lu, S.; Yu, C.; Huang, L.; Feng, W.; Xu, H.; Chen, X.; Zen, K.; Yan, Q.; et al. A panel of four decreased serum microRNAs as a novel biomarker for early Parkinson’s disease. Biomarkers 2016, 21, 129–137. [Google Scholar] [CrossRef]
- Khoo, S.K.; Petillo, D.; Kang, U.; Resau, J.; Berryhill, B.; Linder, J.; Forsgren, L.; Neuman, L.; Tan, A. Plasma-based circulating MicroRNA biomarkers for Parkinson’s disease. J. Park. Dis. 2012, 2, 321–331. [Google Scholar] [CrossRef]
- Nair, V.D.; Ge, Y. Alterations of miRNAs reveal a dysregulated molecular regulatory network in Parkinson’s disease striatum. Neurosci. Lett. 2016, 629, 99–104. [Google Scholar] [CrossRef]
- Yu, Z.; Zheng, Y.; Cai, H.; Li, S.; Liu, G.; Kou, W.; Yang, C.; Cao, S.; Chen, L.; Liu, X.; et al. Molecular beacon-based detection of circulating microRNA-containing extracellular vesicle as an α-synucleinopathy biomarker. Sci. Adv. 2024, 10, eadl6442. [Google Scholar] [CrossRef]
- Cho, H.J.; Liu, G.; Jin, S.; Parisiadou, L.; Xie, C.; Yu, J.; Sun, L.; Ma, B.; Ding, J.; Vancraenenbroeck, R.; et al. MicroRNA-205 regulates the expression of Parkinson’s disease-related leucine-rich repeat kinase 2 protein. Hum. Mol. Genet. 2013, 22, 608–620. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, E.; Botta-Orfila, T.; Morato, X.; Calatayud, C.; Ferrer-Lorente, R.; Martí, M.; Fernández, M.; Gaig, C.; Raya, A.; Consiglio, A.; et al. MicroRNA alterations in iPSC-derived dopaminergic neurons from Parkinson disease patients. Neurobiol. Aging 2018, 69, 283–291. [Google Scholar] [CrossRef]
- Starhof, C.; Heji, A.; Heegaard, N.; Carlsen, A.; Burton, M.; Lilje, B.; Winge, K. The biomarker potential of cell-free microRNA from cerebrospinal fluid in Parkinsonian Syndromes. Mov. Disord. 2019, 34, 246–254. [Google Scholar] [CrossRef]
- Serafin, A.; Foco, L.; Zanigni, S.; Blankenburg, H.; Picard, A.; Zanon, A.; Giannini, G.; Pichler, I.; Facheris, M.; Cortelli, P.; et al. Overexpression of blood microRNAs 103a, 30b, and 29a in L-dopa-treated patients with PD. Neurology 2015, 84, 645–653. [Google Scholar] [CrossRef]
- Margis, R.; Margis, R.; Rieder, C.R.M. Identification of blood microRNAs associated to Parkinsonĭs disease. J. Biotechnol. 2011, 152, 96–101. [Google Scholar] [CrossRef]
- Tan, X.; Hu, J.; Ming, F.; Lv, L.; Yan, W.; Peng, X.; Bai, R.; Xiao, Q.; Zhang, H.; Tang, B.; et al. MicroRNA-409-3p Targeting at ATXN3 Reduces the Apoptosis of Dopamine Neurons Based on the Profile of miRNAs in the Cerebrospinal Fluid of Early Parkinson’s Disease. Front. Cell Dev. Biol. 2021, 9, 755254. [Google Scholar] [CrossRef]
- Soreq, L.; Salomonis, N.; Bronstein, M.; Greenberg, D.; Israel, Z.; Bergman, H.; Soreq, H. Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced splicing changes that classify brain region transcriptomes. Front. Mol. Neurosci. 2013, 6, 10. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, J.; Sun, Y.; Li, F.; Wei, L.; Sun, W.; Deng, J.; Yuan, Y.; Wang, Z. Profiling of Differentially Expressed MicroRNAs in Saliva of Parkinson’s Disease Patients. Front. Neurol. 2021, 12, 738530. [Google Scholar] [CrossRef] [PubMed]
- Vallelunga, A.; Iannitti, T.; Capece, S.; Somma, G.; Russillo, M.; Foubert-Samier, A.; Laurens, B.; Sibon, I.; Meissner, W.; Barone, P.; et al. Serum miR-96-5P and miR-339-5P Are Potential Biomarkers for Multiple System Atrophy and Parkinson’s Disease. Front. Aging Neurosci. 2021, 13, 632891. [Google Scholar] [CrossRef] [PubMed]
- Vallelunga, A.; Ragusa, M.; Di Mauro, S.; Iannitti, T.; Pilleri, M.; Biundo, R.; Weis, L.; Di Pietro, C.; De Iuliis, A.; Nicoletti, A. Identification of circulating microRNAs for the differential diagnosis of Parkinson’s disease and Multiple System Atrophy. Front. Cell Neurosci. 2014, 8, 156. [Google Scholar] [CrossRef]
- Dobricic, V.; Schilling, M.; Farkas, I.; Gveric, D.; Ohlei, O.; Schulz, J.; Middleton, L.; Gentleman, S.; Parkkinen, L.; Bertam, L.; et al. Common signatures of differential microRNA expression in Parkinson’s and Alzheimer’s disease brains. Brain Commun. 2022, 4, fcac274. [Google Scholar] [CrossRef]
- Caggiu, E.; Paulus, K.; Mameli, G.; Arru, G.; Sechi, G.P.; Sechi, L.A. Differential expression of miRNA 155 and miRNA 146a in Parkinson’s disease patients. eNeurologicalSci 2018, 13, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ren, J.; Pac, C.; Li, Y.; Xu, J.; Dong, H.; Chen, Y.; Liu, W. Serum miR-214 Serves as a Biomarker for Prodromal Parkinson’s Disease. Front. Aging Neurosci. 2021, 13, 700959. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, C.; Sun, Q.; Pan, H.; Huang, P.; Ding, J.; Chen, S. MicroRNA-4639 Is a Regulator of DJ-1 Expression and a Potential Early Diagnostic Marker for Parkinson’s Disease. Front. Aging Neurosci. 2017, 9, 232. [Google Scholar] [CrossRef]
- Hoss, A.G.; Labadorf, A.; Beach, T.G.; Latourelle, J.C.; Myers, R.H. microRNA Profiles in Parkinson’s Disease Prefrontal Cortex. Front. Aging Neurosci. 2016, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, R.; Hu, B.; Lu, P.; Zhou, L.; He, Z.; Wu, H.; Zhu, J. Reduced Circulating Levels of miR-433 and miR-133b Are Potential Biomarkers for Parkinson’s Disease. Front. Cell Neurosci. 2017, 11, 170. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.; Fernández, M.; Bravo, P.; Lahoz, S.; Garrido, A.; Sánchez-Rodríguez, A.; Rivera-Sánchez, M.; Sierra, M.; Melón, P.; Roig-García, A. Differential serum microRNAs in premotor LRRK2 G2019S carriers from Parkinson’s disease. NPJ Park. Dis. 2023, 9, 15. [Google Scholar] [CrossRef]
- Baghi, M.; Yadegari, E.; Rostamian Delavar, M.; Peymani, M.; Ganjalikhani-Hakemi, M.; Salari, M.; Nasr-Esfahani, M.; Megraw, T.; Ghaedi, K. MiR-193b deregulation is associated with Parkinson’s disease. J. Cell Mol. Med. 2021, 25, 6348–6360. [Google Scholar] [CrossRef]
- Nie, C.; Sun, Y.; Zhen, H.; Guo, M.; Ye, J.; Liu, Z.; Yang, Y.; Zhang, X. Differential Expression of Plasma Exo-miRNA in Neurodegenerative Diseases by Next-Generation Sequencing. Front. Neurosci. 2020, 14, 438. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, J.; Su, L.; Chen, F.; Zhu, R.; Chen, X.; Ye, Q. Increased Salivary microRNAs That Regulate DJ-1 Gene Expression as Potential Markers for Parkinson’s Disease. Front. Aging Neurosci. 2020, 12, 210. [Google Scholar] [CrossRef]
- Li, Y.; Cao, Y.; Liu, W.; Chen, F.; Zhang, H.; Zhou, H.; Zhao, A.; Luo, N.; Liu, J.; Wu, L. Candidate biomarkers of EV-microRNA in detecting REM sleep behavior disorder and Parkinson’s disease. NPJ Park. Dis. 2024, 10, 18. [Google Scholar] [CrossRef]
- Shu, Y.; Qian, J.; Wang, C. Aberrant expression of microRNA-132-3p and microRNA-146a-5p in Parkinson’s disease patients. Open Life Sci. 2020, 15, 647–653. [Google Scholar] [CrossRef]
- Santos, M.C.T.D.; Barreto-Sanz, M.; Correia, B.; Bell, R.; Widnall, C.; Perez, L.; Berteau, C.; Schulte, C.; Scheller, D.; Berg, D.; et al. miRNA-based signatures in cerebrospinal fluid as potential diagnostic tools for early stage Parkinson’s disease. Oncotarget 2018, 9, 17455–17465. [Google Scholar] [CrossRef]
- Ardashirova, N.S.; Abramycheva, N.Y.; Fedotova, E.Y.; Illarioshkin, S.N. MicroRNA Expression Profile Changes in the Leukocytes of Parkinson’s Disease Patients. Acta Naturae 2022, 14, 79–84. [Google Scholar] [CrossRef]
- Wu, L.; Xu, Q.; Zhou, M.; Chem, Y.; Jiang, C.; Jiang, Y.; Lin, Y.; He, Q.; Zhao, L.; Dong, Y.; et al. Plasma miR-153 and miR-223 Levels as Potential Biomarkers in Parkinson’s Disease. Front. Neurosci. 2022, 16, 865139. [Google Scholar] [CrossRef] [PubMed]
- Braunger, L.J.; Knab, F.; Gasser, T. Using Extracellular miRNA Signatures to Identify Patients with LRRK2-Related Parkinson’s Disease. J. Park. Dis. 2024, 14, 977–991. [Google Scholar] [CrossRef]
- He, S.; Huang, L.; Shao, C.; Nie, T.; Xia, L.; Cui, B.; Lu, F.; Zhu, L.; Chen, B.; Yang, Q. Several miRNAs derived from serum extracellular vesicles are potential biomarkers for early diagnosis and progression of Parkinson’s disease. Transl. Neurodegener. 2021, 10, 25. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Z.; Hu, S.; He, M. Identification of serum microRNA alterations associated with long-term exercise-induced motor improvements in patients with Parkinson disease. Medicine 2024, 103, e37470. [Google Scholar] [CrossRef]
- Wang, G.; van der Walt, J.; Mayhew, G.; Li, Y.; Züchner, S.; Scott, W.; Martin, E.; Vance, J. Variation in the miRNA-433 Binding Site of FGF20 Confers Risk for Parkinson Disease by Overexpression of α-Synuclein. Am. J. Human. Genet. 2008, 82, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Shioya, M.; Obayashi, S.; Tabunoki, H.; Arima, K.; Saito, Y.; Ishida, T.; Satoh, J. Aberrant microRNA expression in the brains of neurodegenerative diseases: miR-29a decreased in Alzheimer disease brains targets neurone navigator 3. Neuropathol. Appl. Neurobiol. 2010, 36, 320–330. [Google Scholar] [CrossRef]
- Serafin, A.; Foco, L.; Blankenburg, H.; Picard, A.; Zanigni, S.; Zanon, A.; Pramstaller, P.; Hicks, A.; Schwienbacher, C. Identification of a set of endogenous reference genes for miRNA expression studies in Parkinson’s disease blood samples. BMC Res. Notes 2014, 7, 715. [Google Scholar] [CrossRef] [PubMed]
- Salta, E.; De Strooper, B. Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurol. 2012, 11, 189–200. [Google Scholar] [CrossRef]
- Mouradian, M.M. MicroRNAs in Parkinson’s disease. Neurobiol. Dis. 2012, 46, 279–284. [Google Scholar] [CrossRef]
- Junn, E.; Lee, K.-W.; Jeong, B.S.; Chan, T.W.; Im, J.-Y.; Mouradian, M.M. Repression of α-synuclein expression and toxicity by microRNA-7. Proc. Natl. Acad. Sci. USA 2009, 106, 13052–13057. [Google Scholar] [CrossRef]
- Filatova, E.V.; Alieva, A.K.; Shadrina, M.I.; Slominsky, P.A. MicroRNAs: Possible role in pathogenesis of Parkinson’s disease. Biochemistry 2012, 77, 813–819. [Google Scholar] [CrossRef]
- Cardo, L.F.; Coto, E.; Mena, L.; Ribacoba, R.; Moris, G.; Menéndez, M.; Alvarez, V. Profile of microRNAs in the plasma of Parkinson’s disease patients and healthy controls. J. Neurol. 2013, 260, 1420–1422. [Google Scholar] [CrossRef] [PubMed]
- Asikainen, S.; Rudgalvyte, M.; Heikkinen, L.; Louhiranta, K.; Lakso, M.; Wong, G.; Nass, R. Global microRNA Expression Profiling of Caenorhabditis elegans Parkinson’s Disease Models. J. Mol. Neurosci. 2010, 41, 210–218. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, M.; Du, R.; Qiao, C.; Jiang, C.; Zhang, K.; Ding, J.; Hu, G. MicroRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson’s disease. Mol. Neurodegener. 2016, 11, 28. [Google Scholar] [CrossRef]
- Miñones-Moyano, E.; Porta, S.; Escaramís, G.; Rabionet, R.; Iraola, S.; Kagerbauer, B.; Espinosa-Parrilla, Y.; Ferrer, I.; Estivill, X.; Martí, E. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum. Mol. Genet. 2011, 20, 3067–3078. [Google Scholar] [CrossRef]
- Yılmaz, Ş.G.; Geyik, S.; Neyal, A.M.; Soko, N.D.; Bozkurt, H.; Dandara, C. Hypothesis: Do miRNAs Targeting the Leucine-Rich Repeat Kinase 2 Gene (LRRK2) Influence Parkinson’s Disease Susceptibility? OMICS 2016, 20, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Botta-Orfila, T.; Morató, X.; Compta, Y.; Lozano, J.; Falgàs, N.; Valldeoriola, F.; Pont-Sunyer, C.; Vilas, D.; Mengual, L.; Fernández, M.; et al. Identification of blood serum micro-RNAs associated with idiopathic and LRRK2 Parkinson’s disease. J. Neurosci. Res. 2014, 92, 1071–1077. [Google Scholar] [CrossRef]
- Thomas, R.R.; Keeney, P.M.; Bennett, J.P. Impaired Complex-I Mitochondrial Biogenesis in Parkinson Disease Frontal Cortex. J. Park. Dis. 2012, 2, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Huang, Z.; Chen, M.; Wang, C.; Chen, X.; Chen, J.; Zhang, J. Identification of a panel of five serum miRNAs as a biomarker for Parkinson’s disease. Park. Relat. Disord. 2016, 22, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.R.; Dionísio, P.; Correia Guedes, L.; Gonçalves, N.; Coelho, M.; Rosa, M.; Amaral, J.; Ferreira, J.; Rodrigues, C. Circulating Inflammatory miRNAs Associated with Parkinson’s Disease Pathophysiology. Biomolecules 2020, 10, 945. [Google Scholar] [CrossRef]
- Mo, M.; Xiao, Y.; Huang, S.; Cen, L.; Chen, X.; Zhang, L.; Luo, Q.; Li, S.; Yang, X.; Lin, X.; et al. MicroRNA expressing profiles in A53T mutant alpha-synuclein transgenic mice and Parkinsonian. Oncotarget 2017, 8, 15–28. [Google Scholar] [CrossRef]
- Cardo, L.F.; Coto, E.; Ribacoba, R.; Menéndez, M.; Moris, G.; Suárez, E.; Alvarez, V. MiRNA Profile in the Substantia Nigra of Parkinson’s Disease and Healthy Subjects. J. Mol. Neurosci. 2014, 54, 830–836. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, L.; Li, Y.; Mei, R.; Yu, H.; Gong, Y.; Du, M.; Wang, F. MicroRNA-128 Protects Dopamine Neurons from Apoptosis and Upregulates the Expression of Excitatory Amino Acid Transporter 4 in Parkinson’s Disease by Binding to AXIN1. Cell. Physiol. Biochem. 2018, 51, 2275–2289. [Google Scholar] [CrossRef]
- Alexandrov, P.N.; Dua, P.; Hill, J.M.; Bhattacharjee, S.; Zhao, Y.; Lukiw, W.J. microRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). Int. J. Biochem. Mol. Biol. 2012, 3, 365–373. [Google Scholar] [PubMed]
- Li, N.; Pan, X.; Zhang, J.; Ma, A.; Yang, S.; Ma, J.; Xie, A. Plasma levels of miR-137 and miR-124 are associated with Parkinson’s disease but not with Parkinson’s disease with depression. Neurol. Sci. 2017, 38, 761–767. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C.; Zhang, Y. An investigation of microRNA-103 and microRNA-107 as potential blood-based biomarkers for disease risk and progression of Alzheimer’s disease. J. Clin. Lab. Anal. 2020, 34, e23006. [Google Scholar] [CrossRef]
- Heman-Ackah, S.M.; Hallegger, M.; Rao, M.S.; Wood, M.J.A. RISC in PD: The impact of microRNAs in Parkinson’s disease cellular and molecular pathogenesis. Front. Mol. Neurosci. 2013, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Dorval, V.; Mandemakers, W.; Jolivette, F.; Coudert, L.; Mazroui, R.; De Strooper, B.; Hébert, S. Gene and MicroRNA Transcriptome Analysis of Parkinson’s Related LRRK2 Mouse Models. PLoS ONE 2014, 9, e85510. [Google Scholar] [CrossRef] [PubMed]
- Briggs, C.E.; Wang, Y.; Kong, B.; Woo, T.-U.W.; Iyer, L.K.; Sonntag, K.C. Midbrain dopamine neurons in Parkinson׳s disease exhibit a dysregulated miRNA and target-gene network. Brain Res. 2015, 1618, 111–121. [Google Scholar] [CrossRef]
- Koh, H.; Lee, S.; Lee, H.; Min, J.; Iwatsubo, T.; Teunissen, C.; Cho, H.; Ryu, J. Targeting MicroRNA-485-3p Blocks Alzheimer’s Disease Progression. Int. J. Mol. Sci. 2021, 22, 13136. [Google Scholar] [CrossRef]
- Ryu, I.S.; Kim, D.H.; Cho, H.-J.; Ryu, J.-H. The role of microRNA-485 in neurodegenerative diseases. Rev. Neurosci. 2023, 34, 49–62. [Google Scholar] [CrossRef]
- Zhang, S.; Jin, J.; Tian, X.; Wu, L. hsa-miR-29c-3p regulates biological function of colorectal cancer by targeting SPARC. Oncotarget 2017, 8, 104508–104524. [Google Scholar] [CrossRef]
- Li, H.; Lv, J.; Wang, J.; Wang, H.; Luo, L. MiR-29c-3p represses gastric cancer development via modulating MEST. Histol. Histopathol. 2023, 38, 549–557. [Google Scholar] [CrossRef]
- Cao, Y.; Tan, X.; Lu, Q.; Huang, K.; Tang, X.; He, Z. MiR-29c-3p May Promote the Progression of Alzheimer’s Disease through BACE1. J. Healthc. Eng. 2021, 2021, 2031407. [Google Scholar] [CrossRef]
- Xu, Y. MicroRNA-136-3p inhibits glioma tumorigenesis in vitro and in vivo by targeting KLF7. World J. Surg. Oncol. 2020, 18, 169. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yu, H.; Zhu, D.; Liu, P.; Yin, J.; Liu, D.; Zheng, M.; Gao, J.; Zhang, C.; Gao, Y. miR-136-3p targets PTEN to regulate vascularization and bone formation and ameliorates alcohol-induced osteopenia. FASEB J. 2020, 34, 5348–5362. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Feng, K.; Niu, Q.; Xin, Y.; Xuan, S.; Liu, S. MiR-146a-5p-enriched exosomes inhibit M1 macrophage activation and inflammatory response by targeting CD80. Mol. Biol. Rep. 2024, 51, 1133. [Google Scholar] [CrossRef] [PubMed]
- Cazzanelli, P.; Lamoca, M.; Hasler, J.; Hausmann, O.; Mesfin, A.; Puvanesarajah, V.; Hitzl, W.; Wuertz-Kozak, K. The role of miR-155-5p in inflammation and mechanical loading during intervertebral disc degeneration. Cell Commun. Signal 2024, 22, 419. [Google Scholar] [CrossRef] [PubMed]

| First Author, Year, and Country | Study Type, Subjects, and Ethnicity | Mean Age at Sample Collection (Years) | Sample Type | Methods | Clinical Outcome, Analysis, and Effect Estimation | p-Value | Results Validation |
|---|---|---|---|---|---|---|---|
| Salemi et al., 2022 (Italy) [14] | Case–control PD patients: (n = 16) Males/Females: (n = 10/6) Controls: (n = 14) Males/Females: (n = 10/4) Ethnicity: Italian (Sicily) | PD: 68.00 ± 6.47 Controls: 71.94 ± 13.19 | PBMCs | miRNA extraction, miRNA sequencing, and data analysis | Upregulated in PD: miR-1275, miR-23a-5p, miR-432-5p, miR-4433b-3p, miR-4443. Downregulated in PD: miR-142-5p, miR-143-3p, miR-374a-3p, miR-542-3p, miR-99a-5p. | NR | Yes (enrichment analysis) |
| Fazeli et al., 2020 (Iran) [25] | Case–control PD patients: (n = 30) Males/Female: (n = 21/9) Controls: (n = 14) Males/Females: (n = 11/3) Ethnicity: N/A | PD: 62 ± 11.11 Controls: 63.93 ± 11.96 | PBMCs | PBMC isolation RNA extraction qRT-PCR Statistical analysis | miR-27a-3p expression was decreased in patients with PD, with its concentration being lower according to the disease progression. SRRM2 expression was also reduced in a similar way. | 0.015 * | Yes (enrichment analysis) |
| Baghi et al., 2020 (Iran) [31] | Case–control PD patients: (n = 33) Males/Females: (n = 23/10) Controls: (n = 25) Males/Females: (n = 16/9) Ethnicity: N/A | PD: 62.904 ± 11.430 Controls: 60.28 ± 10.125 | PBMCs | PBMC isolation Candidate miRNA selection Cell culture neurotoxin treatment Cell viability assessment Flow Cytometry Intracellular ROS Measurement RNA extraction, synthesis of cDNA RT-PCR Statistical analysis | miR-376a expression increased in patients with PD, with higher concentrations being associated with greater disease severity. | <0.001 * | Yes (cell model) |
| Behbahanipour et al., 2019 (Iran) [34] | Case–control PD patients: (n = 36) Males/Females: (n = 25/11) Controls: (n = 16) Males/Females: (n = 11/5) Ethnicity: N/A | PD: 61.3 ± 11.4 Controls: 62.5 ± 12.4 | PBMCs | PBMC isolation RNA extraction, and quality control qRT-PCR Statistical analysis miRNA target analysis Functional enrichment and pathway analysis | miR-885-5p, miR-361-5p, and miR-17-5p were significantly dysregulated in the blood of patients with PD. miR-361-5p and miR-17-5p can distinguish between early and late-stage patients with PD. | <0.001 * 0.036 * 0.034 * <0.001 * 0.116 0.009 * 0.332 <0.001 * 0.416 0.023 * 0.021 * | Yes (pathway and enrichment analysis) |
| Serafin et al., 2015 (Italy) [45] | Case–control/cohort L-dopa PD patients: (n = 36) Drug-naïve PD patients: (n = 10) Controls: (n = 46) Ethnicity: N/A | NR | PBMCs | RNA isolation qRT-PCR Relative Quantification of miRNAs Statistical analysis Prioritization of miRNA targets | miR-29a-3p, miR-30b-5p, and miR-103a-3p were significantly overexpressed in patients treated with L-dopa. | 0.005 * 0.002 * <0.0001 * | No |
| Caggiu et al., 2018 (Italy) [53] | Case–control PD patients: (n = 37) Males/Females: (n = 20/17) Controls: (n = 43) Males/Females: (n = 16/27) Ethnicity: Italian (Sardinian) | PD: 71.3 ± 9.6 Controls: 60 ± 13.14 | PBMCs | miRNAs cDNA Synthesis qPCR Heat Maps Statistical analysis | miR-155-5p was upregulated in PD samples vs. controls, while miR-146a-5p expression was significantly reduced. Patients receiving a higher Levodopa dose showed a milder increase in miR-155-5p expression. | <0.0001 * 0.0015 * | No |
| Baghi et al., 2021 (Iran) [59] | Case–control PD patients: (n = 20) Males/Females: (n = 12/8) Controls: (n = 20) Males/Females: (n = 14/6) Ethnicity: N/A | PD: 61.7 ± 12.55 Controls: 58.45 ± 9.39 | PBMCs | Pathway enrichment analysis Cell culture Cell transfection MPP+ treatment Intracellular ROS Measurement Annexin V Staining RNA extraction qRT-PCR Statistical analysis | The levels of miR-193b were significantly increased in PD. miR-193b was found to be involved in PD progression through the PGC1a-FNDC5-BDNF pathway. | <0.0001 * | Yes (cell model) |
| Lin et al., 2022 (China) [15] | Case–control PD patients: (n = 92) AD patients: (n = 66) Controls: (n = 64) Ethnicity: N/A | NR | Serum | RNA extraction qRT-PCR Statistical analysis Diagnostic performance of serum miR-485-3p in patients with PD | Significant upregulation of miR-485-3p in patients with PD serum compared to AD and control samples. | <0.001 * <0.001 * | Yes (animal models) |
| Citterio et al., 2023 (Italy) [16] | Case–control PD patients: (n = 45) Males/Females: (n = 26/19) Controls: (n = 49) Males/Females: (n = 25/24) Ethnicity: N/A | PD: 67.30 ± 9.02 Controls: 65.49 ± 12.15 | Serum | RNA extraction qRT-PCR Statistical analysis | Increased levels of miR-7-1-5p and miR-223-3p compared to healthy controls. | 0.0004 * 0.0006 * | No |
| He et al., 2021 (China) [68] | Cohort PD stage II: (n = 8) Males/Females: (n = 5/3) PD stage III: (n = 42) Males/Females: (n = 26/16) PD stage IV: (n = 22) Males/Females: (n = 12/10) Controls: (n = 31) Males/Females: (n = 17/14) Ethnicity: N/A | PD II: 59.75 ± 7.55 PD III: 61.62 ± 7.6 PD IV: 64.73 ± 8.14 Controls: 63.94 ± 7.45 | Serum | EV extraction and validation RNA isolation qRT-PCR RNA sequencing and data pre-processing Differential expression analysis and WGCNA Statistical analysis | PD serum derived EVs, revealed dysregulated miRNAs: miR-374a-5p, miR-374b-5p, miR-199a-3p, miR-28-5p, miR-22-5p, miR-151a-5p. miRNAs expression fluctuated between PD stages. | < 0.0001 * < 0.0001 * < 0.0001 * < 0.0001 * < 0.0001 * < 0.0001 * | No |
| Da Silva et al., 2021 (Brazil) [24] | Case–control PD patients: (n = 4) Males/Females: (n = 4/0) Controls: (n = 4) Males/Females: (n = 4/0) Ethnicity: N/A | PD: 66.25 ± 12.97 Controls: 63.50 ± 9.60 | Serum | RNA extraction qRT-PCR Prediction of target genes Interval Training Program Statistical analysis | Expression of miR-106a-5p, miR-103a-3p, and miR-29a-3p increased in patients with PD patients and controls after exercise. Increased concentrations of these miRNAs were correlated to better cognitive function. | 0.04 * | No |
| Li et al., 2020 (China) [28] | Case–control PD patients: (n = 80) Males/Females: (n = 42/38) Controls: (n = 60) Males/Females: (n = 31) Ethnicity: N/A | PD: 64.6 ± 7.54 Control: 64.0 ± 7.29 | Serum | Cell culture and treatment RNA extraction qRT-PCR ELISA Luciferase Activity Assay Statistical analysis | miR-150 was significantly downregulated patients with PD. | <0.001 * | Yes (cell model) |
| Ma et al., 2016 (China) [33] | Case–control PD patients: (n = 138) Males/Females: (n = 75/63) Controls: (n = 112) Males/Females: (n = 61/51) Ethnicity: N/A | PD: 29.36 ± 13.25 Controls: 31.23 ± 19.16 | Serum | RNA isolation qRT-PCR Statistical analysis | Significantly dysregulated in patients with PD: miR-146a-5p, miR-214, miR-221, miR-29c. | 0.0042 * <0.001 * <0.001 * 0.0037 * | No |
| Bai et al., 2017 (China) [35] | Case–control PD patients: (n = 80) Males/Females: (n = 48/32) AD patients: (n = 30) Males/Females: (n = 14/16) PD controls: (n = 80) Males/Females: (n = 48/32) AD controls: (n = 30) Males/Females: (n = 18/12) Ethnicity: N/A | PD: 64.0 ± 5.8 PD controls: 63.3 ± 5.4 AD: 78.6 ± 9.5 AD controls: 42.6 ± 11.9 | Serum | RNA extraction qRT-PCR Statistical analysis | miR-29s expression was greatly decreased in the serum of patients with PD. | < 0.01 * | No |
| Jin et al., 2018 (China) [36] | Case–control PD patients: (n = 46) AD patients: (n = 40) MSA patients: (n = 35) Controls: (n = 46) Ethnicity: N/A | NR | Serum | qRT-PCR Cell culture Plasmid Construction miRNA mimics and inhibitors Luciferase Assay Western Blot Statistical analysis | miR-520d-5p was overexpressed in the serum of patients with PD compared to controls but not significantly when compared to MSA and AD. | 0.0011 * | Yes (cell model) |
| Dong et al., 2016 (China) [38] | Case–control PD patients: (n = 122) Males/Females: (n = 62/60) Controls: (n = 104) Males/Females: (n = 51/53) Ethnicity: N/A | PD: 67.6 (7.5) Controls: 66.0 (5.3) | Serum | RNA isolation Solexa sequencing In silico analysis qRT-PCR Statistical analysis | Thirty miRNAs found to be differentially expressed in serum PD, the four most significant were: miR-141, miR-214, miR-146b-5p, miR-193a-3p. | <0.0001 * | No |
| Zhang et al., 2024 (China) [69] | Cohort PD patients exercise: (n = 13) Males/Females: (n = 6/7) PD patient controls: (n = 6) Males/Females: (n = 4/2) Ethnicity: N/A | PD exercise: 53.231 (6.735) PD controls: 52.667 (7.685) | Serum | Exercise intervention MiRNAs extraction Small RNA sequencing qRT-PCR Gene ontology and KEGG enrichment analysis Statistical analysis | Between the patients with PD who exercise and those who did not, ten miRNAs were found to be significantly upregulated: miR-1268a, miR-181a-2-3p, miR-320c, miR-320d, miR-619-5p, miR-877-5p, miR-115-5p, miR-116-5p, miR-209-3p, miR-255-5p. While another was downregulated: miR-181-3p. | 2.19 × 10−5 * 0.0002 * 3.26 × 10−5 * 5.91 × 10−5 * 9.52 × 10−6 * 0.0004 * 3.01 × 10−5 * 3.51 × 10−7 * 0.0003 * 0.0005 * 0.0002 * | No |
| Vallelunga et al., 2021 (Italy) [50] | Case–control PD patients: (n = 51) MSA patients: (n = 52) Controls: (n = 56) Ethnicity: N/A | NR | Serum | miRNAs quantification Data analysis Statistical analysis Target prediction | miR-96-5p concentration was significantly increased in PD and MSA samples vs. controls. miR-339-5p distinguished between MSA and PD, but only reliable in female patients. | <0.0001 * <0.01 * | Yes (validation of previous study by the same researchers [51]) |
| Li et al., 2021 (China) [54] | Case–control/cohort pPD patients: (n = 25) Males/Females: (n = 13/12) dnPD patients: (n = 20) Males/Females: (n = 9/11) aPD patients: (n = 24) Males/Females: (n = 12/12) Controls: (n = 21) Males/Females: (n = 10/11) Ethnicity: N/A | pPD: 68.00 (63.00–70.00) dnPD: 65.00 (64.00–68.00) aPD: 66.50 (63.25–69.00) Controls: 64.00 (62.00–66.00) | Serum | qRT-PCR Clinical assessment Statistical analysis | miR-31 was significantly increased in aPD vs. controls and dnPD patient serum. miR-214 was increased in the pPD group compared to controls and aPD. | 0.005 * 0.001 * 0.003 * | No |
| Vallelunga et al., 2014 (Italy) [51] | Case–control PD patients: (n = 25) Males/Females: (n = 13/12) MSA patients: (n = 25) Males/Females: (n = 12/13) Controls: (n = 25) Males/Females: (n = 13/12) Ethnicity: N/A | NR | Serum | RNA isolation qRT-PCR TaqMan Low Density Array Data analysis miRNA target prediction Gene ontology analysis | PD samples: Three miRNAs were upregulated and three were downregulated compared to controls. Upregulated: miR-223, miR-324-3p, miR-24. Downregulated: miR-339-5p, miR-30c, miR-148b. MSA samples: Four miRNAs upregulated and one was downregulated when compared to controls. Upregulated: miR-223, miR-324-3p, miR-24, miR-148b. Downregulated: miR-339-5p. Three miRNAs that distinguish between PD and MSA: miR-24, miR-34b, miR-148b. | 0.03 * 0.036 * 0.039 * 0.006 * 0.036 * 0.00008 * 0.00009 * 0.0003 * 0.0002 * 0.032 * 0.00004 * 0.012 * 0.0006 * | Yes (partially validated by other study from the same researchers [50]) |
| Soto et al., 2023 (Spain) [58] | Case–control/cohort Cohort 1: (n = 99) iPD patients: (n = 19) Males/Females: (n = 12/7) L2NMC-: (n = 20) Males/Females: (n = 8/12) L2NMC+: (n = 20) Males/Females: (n = 12/8) L2PD: (n = 20) Males/Females: (n = 12/8) Controls: (n = 40) Males/Females: (n = 28/12) Cohort 2: (n = 39) L2PD: (n = 19) Males/Females: (n = 8/11) Controls: (n = 20) Males/Females: (n = 8/12) Ethnicity: N/A | iPD 1: 63.53 ± 11.77 L2NMC- 1: 52.30 ± 10.12 L2NMC+ 1: 60.50 ± 14.49 L2PD 1: 65 ± 10.90 Controls 1: 65.48 ± 11.69 L2PD 2: 64.47 ± 11.34 Controls 2: 63.65 ± 10.75 | Serum | RNA isolation Genome-wide miRNA analysis qRT-PCR ROC analysis Biological enrichment analysis | Seven miRNAs were found to be dysregulated in L2NMC mutation carriers, with miR-8069 being novel. miR-4505 was identified in the blood of patients with L2PD, while miR-185-5p and miR-221-3p could discriminate between PD and controls. | <0.05 * | Yes (enrichment analysis) |
| Shu et al., 2020 (China) [63] | Case–control PD patients: (n = 82) Males/Females: (n = 52/30) Controls: (n = 44) Males/Females: (n = 27/17) Ethnicity: N/A | PD: 68.53 ± 7.53 Controls: 66.24 ± 8.62 | Serum | qRT-PCR Statistical analysis | Serum PD showed a notable decrease in miR-132-3p and miR-146a-5p expression, more evident in severe cases of PD. | <0.01 * <0.01 * | No |
| Chen et al., 2021 (China) [17] | Case–control Cohort 1: (n = 156) PD patients: (n = 78) Males/Females: (n = 42/36) Controls: (n = 78) Males/Females: (n = 40/38) Cohort 2: (n = 42) PD patients: (n = 27) Males/Females: (n = 13/14) Controls: (n = 15) Males/Females: (n = 7/8) Cohort 3: (n = 112) PD patients: (n = 46) Males/Females: (n = 13/33) MSA: (n = 21) Males/Females: (n = 7/14) Controls: (n = 45) Males/Female: (n = 18/27) Ethnicity: N/A | C1 PD: 60.80 (58.64–62.96) C1 controls: 59.68 (58.22–60.14) C2 PD: 60.11 (56.51–63.71) C2 controls 59.92 (55.32–64.52) C3 PD: 63.09 (60.19–65.99) C3 MSA: 61.86 (58.75–64.97) C3 controls: 61.54 (59.96–63.12) | Plasma | RNA extraction Polyadenylation qRT-PCR Statistical analysis | Thirty-two miRNAs were dysregulated in plasma samples. Seven selected as biomarker candidates: miR-432-5p, miR-133b, miR-320a, miR-4454, miR-221-3p, miR-627-5p, miR-205. | 0.028 * 0.041 * 0.024 * 0.028 * 0.05 * 0.016 * 0.032 * | Yes (validation cohort) |
| Xie et al., 2022 (China) [18] | Case–control PD patients: (n = 30) Males/Females: (n = 17/13) Controls: (n = 30) Males/Females: (n = 17/13) Ethnicity: N/A | PD: 59.97 ± 7.89 Controls: 58.20 ± 9.36 | Plasma | EVs isolation and TEM DLS measurements Cell culture Changes of SH-SY5Y cells after MPP+ induction Western Blot Data analysis | Plasma EV concentrations of these miRNAs were altered: miR-15b-5p, miR-30c-2-3p, miR-138-5p, miR-338-3p, miR-106b-3p, miR-431-5p, miR-146a-5p, miR-411-5p. | 0.0065 * 0.0035 * 0.0106 * 0.0224 * 0.0169 * 0.0075 * 0.4991 0.1444 | Yes (cell model) |
| Ravanidis, Bougea, Papagiannakis, Maniati, et al., 2020 (Greece) [20] | Case–control/cohort iPD patients: (n = 99) Males/Females: (n = 55/44) GBA-PD patients: (n = 27) Males/Females: (n = 14/13) A53T-PD patients: (n = 26) Males/Females: (n = 11/15) Controls: (n = 101) Males/Females: (n = 23/78) Ethnicity: N/A | iPD: 67.13 ± 12.42 GBA-PD: 60.00 ± 10.87 A53T-PD: 51.83 ± 11.59 Controls: 61.57 ± 10.55 | Plasma | miRNA isolation from plasma and qRT-PCR analysis List of brain-enriched miRNAs Statistical analysis | Each PD type had its own profile of dysregulated miRNAs. Common miRNAs between all types were: miR-136-3p, miR-433-3p. | 0.000003 * 0.005 * | Yes (validated by other study from the same researchers [19]) |
| Grossi et al., 2021 (Italy) [23] | Case–control PD patients: (n = 15) Males/Females: (n = 15/0) Controls: (n = 14) Males/Females: (n = 14/0) Ethnicity: N/A | PD: 75.7 ± 3.0 Controls: 78.5 ± 7.3 | Plasma | Plasma pre-analytical processing EV preparations from plasma Western Blot AFM Imaging and Size distribution EV subpopulations Purity assessment Total RNA isolation Statistical analysis | miR-34a-5p expression in PD plasma was significantly upregulated compared to controls. | <0.05 * | No |
| Hsu et al., 2024 (Taiwan) [27] | Case–control/cohort Cohort 1: (n = 123) PD patients: (n = 37) PD-MCI: (n = 23) PDD: (n = 23) Controls: (n = 40) Cohort 2: (n = 120) PD patients: (n = 30) PD-MCI: (n = 30) PDD: (n = 30) Controls: (n = 30) Ethnicity: N/A | PD 1: 64.78 ± 12.51 PD-MCI 1: 67.70 ± 7.15 PDD 1: 72.00 ± 5.52 Controls 1: 69.08 ± 6.05 PD 2: 69.67 ± 7.03 PD-MCI 2: 70.13 ± 6.75 PDD 2: 75.20 ± 6.92 Controls 2: 66.67 ± 5.14 | Plasma | Cognitive assessments Plasma collection RNA extraction Plasma miRNA sequencing BOLD selector data analysis Statistical analysis | Significantly upregulated in PD vs. controls: miR-22-3p, miR-124-3p, miR-136-3p, miR-154-5p, miR-323a-3p. miRNAs distinguished between non-demented patients with PD and patients with PD with MCI: miR-203a-3p, miR-626, miR-662, miR-3182, miR-4274, miR-4295. | NR | Yes (validation cohort) |
| Yang et al., 2019 (China) [29] | Case–control Cohort 1: (n = 667) PD patients: (n = 269) Males/Females: (n = 157/112) ND controls: (n = 176) Males/Females: (n = 105/71) Healthy controls: (n = 222) Males/Females: (n = 130/92) Cohort 2: (n = 345) PD patients: (n = 142) Males/Females: (n = 79/63) ND controls: (n = 105) Males/Females: (n = 56/49) Healthy controls: (n = 98) Males/Females: (n = 54/44) Ethnicity: Chinese | PD1: 66.10 ± 0.61 NDC1: 66.15 ± 0.74 HC1: 66.16 ± 0.61 PD2: 67.19 ± 0.75 NDC2: 67.44 ± 1.12 HC2: 66.87 ± 0.91 | Plasma | Plasma miRNA and PBL RNA extraction qRT-PCR Statistical analysis | miR-132 expression was significantly increased PD vs. healthy controls and controls with other neurological conditions. miR-132 expression was negatively correlated to the expression of Nurr1. | <0.05 * | Yes (validation cohort) |
| Chen et al., 2018 (China) [30] | Case–control PD patients: (n = 25) Males/Females: (n = 16/9) Controls: (n = 25) Males/Females: (n = 16/9) Ethnicity: N/A | PD: 64.96 ± 8.66 Controls: Age matched to be at ± 5 years of PD patients age | Plasma | RNA extraction Synthesis of cDNA miRNA expression Profiling analysis Data analysis | Eleven upregulated miRNAs in plasma: let-7g, miR-1, miR-10b, miR-144, miR-150, miR-29a, miR-34c, miR-382, miR-422a, miR-433, miR-539. Fourteen downregulated miRNAs in plasma: let-7a, let-7f, miR-125b, miR-130a, miR-130b, miR-142-3p, miR-185, miR-200a, miR-21, miR-222, miR-30a, miR-423-5p, miR-485-5p, miR-874. | All miRNAs listed <0.05 * | Yes (panel by other studies [39,70,71,72,73,74,75,76,77,78]) |
| Khoo et al., 2012 (USA) [39] | Case–control Cohort 1: (n = 64) PD patients: (n = 32) Males/Females: (n = 16/16) Controls: (n = 32) Males/Females: (n = 15/17) Cohort 2: (n = 72) PD patients: (n = 42) Males/Females: (n = 20/22) Controls: (n = 30) Males/Females: (n = 10/20) Cohort 3: (n = 38) PD patients: (n = 30) Males/Females: (n = 16/14) Controls: (n = 8) Males/Females: (n = 3/5) Ethnicity: N/A | PD 1: 65 (66 ± 11)/69 (67 ± 11) Controls 1: 67 (65 ± 10)/68 (62 ± 17) PD 2: 69 (68 ± 6)/73 (72 ± 8) Controls 2: 65 (64 ± 15)/63 (59 ± 14) PD 3: 66 (68 ± 10)/73 (71 ± 7) Controls 3: 71 (71 ± 3)/73 (73 ± 4) | Plasma | RNA isolation miRNA expression microarrays Statistical analyses qRT-PCR Biomarkers evaluation | Five dysregulated miRNA pairs: miR-1826/miR-450b-3p, miR-506/miR-1253, miR-200a/miR-455-3p, miR-192/miR-485, miR-488/miR-518c. Three additional sole miRNA candidate biomarkers detected: miR-222, miR-505, miR-626. | 0.0004 * 0.0001 * 0.0001 * | Yes (partially replicated by other study [30]) |
| Ravanidis, Bougea, Papagiannakis, Koros, et al., 2020 (Greece) [19] | Case–control PD patients: (n = 109) Males/Females: (n = 57/52) Controls: (n = 92) Males/Females: (n = 33/59) Ethnicity: N/A | iPD: 64.22 ± 10.41 Controls: 57.10 ± 12.01 | Plasma | miRNA isolation qRT-PCR Statistical analysis Pathway analysis | Twelve miRNAs tested and four found to be significantly altered: miR-22-3p, miR-139-5p, miR-154-5p, miR-330-5p. | 0.007 * 0.021 * 0.038 * 0.028 * | Yes (validation of previous study by the same researchers [20]) |
| Y. Chen et al., 2017 (China) [55] | Case–control PD patients: (n = 169) Males/Females: (n = 81/88) ET patients: (n = 60) Males/Females: (n = 32/28) Controls: (n = 170) Males/Females: (n = 83/87) Ethnicity: N/A | PD: 61.9 ± 5.1 ET: 61.5 ± 7.2 Controls: 61.6 ± 3.3 | Plasma | MicroRNA microarray qRT-PCR CCK-8 Statistical analysis | Seven dysregulated miRNAs detected, with six of the being significant: miR-34c-3p, miR-148b-5p, let-7i-3p, miR-4639-5p, miR-34a-3p, miR-181a-5p, miR-30a-5p. miR-4639-5p found to regulate DJ-1 expression. Cells with overexpressed miR-4639-5p showed decreased viability. | <0.01 * <0.001 * <0.001 * <0.001 * 0.195 <0.001 * <0.001 * | Yes (cell model) |
| X. Zhang et al., 2017 (China) [57] | Case–control PD patients: (n = 46) Males/Females: (n = 22/24) Controls: (n = 49) Males/Females: (n = 22/27) Ethnicity: Chinese | PD: 63.13 ± 1.46 Controls: 60.35 ± 1.16 | Plasma | RNA extraction qRT-PCR Pathway and gene ontology analyses of miRNA targets Supervised Learning Algorithms Statistical analysis | miR-433 and miR-133b were significantly downregulated in PD. | 0.003 * 0.006 * | No |
| Nie et al., 2020 (China) [60] | Case–control PD patients: (n = 7) Males/Females: (n = 1/6) AD patients: (n = 5) Males/Females: (n = 1/4) Controls: (n = 20) Males/Females: (n = 10/10) Ethnicity: N/A | PD: 61.86 (47-74) AD: 67.8 (61–76) Controls: 34.45 (22–60) | Plasma | RNA extraction RNA sequencing Data analysis Target prediction KEGG pathway analysis Statistical analysis | Thirty-seven miRNAs dysregulated in AD: miR-197-3p, miR-576-5p, miR-1468-5p, miR-375, let-7e-5p, miR-483-3p, miR-3173-5p, miR-320e, miR-197-5p, miR-193b-5p, miR-6749-3p, miR-20a-5p, miR-191-3p, miR-4659a-3p, let-7b-3p, miR-17-5p, miR-3591-3p, miR-125a-5p, miR-204-5p, miR-122-5p, miR-19b-3p, miR-183-5p, let-7b-5p, miR-22-3p, miR-151a-5p, miR-27b-3p, miR-21-5p, miR-27a-3p, miR-146a-5p, miR-28-3p, miR-379-5p, miR-23a-3p, miR-199a-3p, miR-369-5p, miR-382-5p, miR-378i, miR-423-5p. Twenty dysregulated in PD samples: miR-197-3p, miR-576-5p, miR-1468-5p, miR-375, let-7e-5p, miR-211-5p, let-7e-3p, miR-122-3p, miR-941, miR-30d-5p, miR-192-5p, miR-93-5p, miR-425-5p, miR-99b-5p, let-7i-5p, miR-652-3p, miR-4732-3p, miR-6131, miR-3184-3p, miR-378g. Five were common: miR-197-3p, miR-576-5p, miR-1468-5p, miR-375, let-7e-5p. | <0.05 * | No |
| Li et al., 2024 (China) [62] | Case–control PD patients: (n = 53) Males/Females: (n = 25/28) iRBD patients (n = 56) Males/Females: (n = 34/22) Controls: (n = 60) Males/Females: (n = 35/25) Ethnicity: Chinese | PD: 63.0 ± 9.0 RBD: 64.0 ± 7.3 Controls: 63.5 ± 9.0 | Plasma | Clinical assessment EV-RNA extraction EV isolation construction of cDNA TEM NTA Western Blot RNA sequencing Statistical analysis | In PD samples, a downregulation of 5 miRNAs: miR-96-5p, miR-155-5p, miR-150-5p, miR-150-3p, miR-3615. Upregulation of 10 miRNAs compared to controls: miR-27b-3p, miR-199a-5p, miR-151a-3p, miR-584-5p, miR-889-3p, miR-619-5p, miR-130b-5p, miR-197-3p, miR-4433b-5p, miR-4433a-3p. | NR | No |
| Wu et al., 2022 (China) [66] | Case–control PD patients: (n = 75) Males/Females: (n = 44/31) Controls: (n = 73) Males/Females: (n = 33/40) Ethnicity: N/A | PD: 68.0 (62.0–72.0) Controls: 67.0 (64.0–70.5) | Plasma | RNA extraction qRT-PCR Clinical evaluation Statistical analysis | miR-153 and miR-223 being notably reduced in PD plasma, while miR-7 was not significantly dysregulated. | 0.006 * <0.001 * 0.546 | Yes (results replicated by other included study [22]) |
| Cressatti et al., 2020 (Canada) [22] | Case–control iPD patients: (n = 84) Males/Females: (n = 49/35) Controls: (n = 83) Males/Females: (n = 39/44) Ethnicity: N/A | iPD: 71.39 (1.38) Controls: 67.31 (1.04) | Saliva | Quantification of miRNA expression levels ELISA Statistical analysis | Significant downregulation of miR-153 and miR-223. | 0.01 * 0.02 * | Yes (results replicated by other included study [66]) |
| Jiang et al., 2021 (China) [49] | Case–control PD patients: (n = 50) Males/Females: (n = 19/31) MSA patients: (n = 20) Males/Females: (n = 6/14) ET patients: (n = 20) Males/Females: (n = 8/12) Controls: (n = 30) Males/Females: (n = 14/16) Ethnicity: N/A | PD: 63.62 ± 11.65 MSA: 63.00 ± 7.74 ET: 64.70 ± 9.07 Controls: 59.67 ± 11.18 | Saliva | Microarray analysis Quantification of miRNA expression levels Statistical analysis | miR-29a-3p and miR-29c-3p were significantly reduced in expression, while miR-6756-5p was significantly upregulated. | 0.004 * 0.027 * 0.032 * | Yes (partially validated by other included studies [24,45,65]) |
| Chen et al., 2020 (China) [61] | Case–control PD patients: (n = 30) Males/Females: (n = 20/10) Controls: (n = 30) Males/Females: (n = 16/14) Ethnicity: N/A | PD: 63.20 ± 10.17 Controls: 59.57 ± 12.83 | Saliva | RNA extraction qRT-PCR Statistical processing | miR-874 and miR-145-3p were detectable in most samples and found to regulate the expression of DJ-1. | NR | No |
| Ardashirova et al., 2022 (Russia) [65] | Case–control PD patients: (n = 70) Males/Females: (n = 35/35) Controls: (n = 40) Ethnicity: N/A | PD: 60.5 ± 11.8 Controls: NR | Leukocyte | RNA isolation qRT-PCR Statistical analysis | Five miRNAs significantly dysregulated: miR-7-1-5p, miR-29a-3p, miR-29c-3p, miR-30c-1-5p, miR-185-5p. | 0.024 * 0.003 * 0.003 * 0.043 * 0.017 * | Yes (validated by other included studies [49,58]) |
| Soreq et al., 2013 (Israel) [48] | Case–control PD patients: (n = 7) Males/Females: (n = 7/0) Controls: (n = 6) Males/Females: (n = 6/0) Ethnicity: N/A | NR | Leukocyte | RNA extraction RNA sequencing Mapping to miRBase and to human reference genome differential expression analysis Affymetrix HJAY Splice Junction Microarray HJAY Microarray Profiling, database Construction and analysis Brain transcriptome Microarray analysis Exon Microarrays Hybridization Cellular Lineage Analysis miRNA target predictions | Significant changes were found in the expression of 16 miRNAs pre-DBS treatment: miR-320a, miR-320b, miR-320c, miR-769, miR-92b, miR-16, miR-199b, miR-1274b, miR-21, miR-150, miR-671, miR-1249, miR-20a, miR-18b, miR-378c, miR-4293. Post treatment: miR-320a, miR-320b, miR-320c, miR-769, miR-92b, miR-16, miR-199b, miR-1274b, miR-21, miR-150, miR-671. | <0.05 * | Yes (pathway analysis) |
| Marques et al., 2017 (Netherlands) [26] | Case–control PD patients: (n = 28) Males/Females: (n = 21/7) MSA: (n = 17) Males/Female: (n = 13/4) Controls: (n = 28) Males/Female: (n = 15/13) Ethnicity: N/A | PD: 54.5 ± 10.4 MSA: 62.5 ± 9.7 Controls: 62.9 ± 8 | CSF | RNA isolation qRT-PCR Data analysis | Ten miRNAs were screened. miR-205 and miR-24 could distinguish between controls and PD, while miR-24, miR-19a, miR-19b, and miR-34c could distinguish between MSA and controls. | <0.001 * <0.001 * <0.001 * <0.05 * <0.05 * <0.05 * | No |
| Qin et al., 2021 (China) [32] | Case–control PD patients: (n = 15) Males/Females: (n = 9/6) AD patients (n = 11) Males/Females: (n = 7/4) Controls: (n = 16) Males/Females: (n = 11/5) Ethnicity: N/A | PD: 70.6 ± 12.1 AD: 72.1 ± 10.8 Controls: 70.2 ± 15.8 | CSF | RNA extraction qRT-PCR Statistical analysis | Concentration of miR-626 in the CSF was significantly decreased compared in both patients with AD and controls. | 0.0018 * 0.0429 * | No |
| Gui et al., 2015 (China) [37] | Case–control Cohort 1: PD patients: (n = 47) Males/Females: (n = 25/22) AD patients: (n = 28) Males/Females: (n = 15/13) Controls: (n = 27) Males/Females: (n = 9/18) Cohort 2: PD patients: (n = 78) Males/Females: (n = 41/37) AD patients: (n = 53) Controls: (n = 35) Ethnicity: N/A | PD 1: 63 ± 9 (45–77) AD 1: 65 ± 12 (40–78) Controls 1: 60 ± 13 (42–79) | CSF | Exosome isolation Exosome characterization Electron Microscopy RNA processing miRNA profiling miRNA target prediction pathway analysis TaqMan miRNA Assay qRT-PCR Statistical analysis | Twenty-seven differentially expressed in CSF of patients with PD compared to controls: miR-1, miR-103a, miR-22, miR-29, miR-30b, miR-16-2, miR-26a, miR-331-5p, miR-153, miR-374, miR-132-5p, miR-119a, miR-485-5p, miR-127-3p, miR-126, miR-409-3p, miR-433, miR-370, let-7g-3p, miR-151, miR-28, miR-301a, miR-873-3p, miR-136-3p, miR-19b-3p, miR-10a-5p, miR-29c. Seven were significantly different compared to AD: miR-16-2, miR-331-5p, miR-132-5p, miR-485-5p, miR-151, miR-136-3p, miR-29c. | 0.0078 * 0.0084 * 0.0090 * 0.0047 * 0.0044 * 0.0039 * 0.0058 * 0.0082 * 0.0057 * 0.0095 * 0.0023 * 0.0061 * 0.0025 * 0.0035 * 0.0038 * 0.0039 * 0.0043 * 0.0069 * 0.0068 * 0.0073 * 0.0035 * 0.0054 * 0.0052 * 0.0068 * 0.0109 * 0.0017 * 0.0013 * | Yes (validation cohort) |
| Tan et al., 2021 (China) [47] | Case–control PD patients: (n = 7) Males/Females: (n = 3/4) Controls: (n = 4) Males/Females: (n = 1/3) Ethnicity: N/A | PD: 53 ± 5 Controls: 46 ± 10 | CSF | RNA isolation Cell culture Cell Treatment Cell Transfection qRT-PCR TUNEL Assay Western Blot Dual Luciferase Reporter Gene Assay Immunofluorescence Flow Cytometry Statistical analysis | Twenty-one differentially expressed miRNAs in patients with PD CSF samples: miR-486-5p, miR-122-5p, miR-451a, miR-423-5p, let-7b-5p, miR-151a-3p, miR-320a, miR-574-5p, miR-206, miR-204-5p, miR-1298-5p, miR-320b, miR-1246, miR-1307-3p, miR-128-3p, miR-409-3p, let-7a-5p, miR-144-3p, let-7d-3p, miR-4508, miR-155-5p. When tested on SH-SY5Y cells, miR-409-3p was the only one found to be significantly dysregulated. | 0.000009 * 0.00002 * 0.00004 * 0.0001 * 0.0003 * 0.0003 * 0.002 * 0.003 * 0.003 * 0.004 * 0.005 * 0.007 * 0.008 * 0.01 * 0.01 * 0.02 * 0.02 * 0.03 * 0.03 * 0.03 * 0.04 * | Yes (cell model) |
| Dos Santos et al., 2018 (Belgium) [64] | Case–control PD patients: (n = 40) Males/Females: (n = 20/20) Controls: (n = 40) Males/Females: (n = 20/20) Ethnicity: N/A | PD: 61 ± 1 Controls: 64 ± 1 | CSF | RNA extraction RNA sequencing Ligand Binding Assay Measurement Biomarker panel identification Gene target analysis Statistical analysis | One hundred twenty-one miRNAs expressed in the first 3 years of PD development. Five miRNAs as the most viable set of biomarkers: let-7f-5p, miR-125a-5p, miR-151a-3p, miR-27a-3p, miR-423-5p. | <0.05 * | No |
| Nair & Ge, 2016 (USA) [40] | Case–control PD patients: (n = 12) Males/Females: (n = 6/6) Controls: (n = 12) Males/Females: (n = 6/6) Ethnicity: N/A | PD: 75.6 ± 8.4 Controls: 74.1 ± 11.6 | Post-mortem brain tissue | RNA isolation RNA expression analysis Gene expression analysis qRT-PCR Functional network analysis | Post-mortem PD patient tissues six significantly upregulated miRNAs: miR-3195, miR-204-5p, miR-485-3p, miR-221-3p, miR-95, miR-425-5p. Seven significantly downregulated miRNAs: miR-155-5p, miR-219-2-3p, miR-3200-3p, miR-423-5p, miR-4421, miR-421, miR-382-5p. | 0.041 * 0.009 * 0.045 * 0.049 * 0.028 * 0.017 * 0.0163 * 0.0390 * 0.0003 * 0.0085 * 0.0120 * 0.0231 * 0.0465 * | No |
| Yu et al., 2024 (China) [41] | Case–control Cohort 1: (n = 718) PD patients: (n = 302) Males/Females: (n = 167/135) MSA patients: (n = 119) Males/Females: (n = 59/60) PSP patients: (n = 21) Males/Females: (n = 11/10) Controls: (n = 276) Males/Females: (n = 150/126) Cohort 2: (n = 425) PD patients: (n = 208) Males/Females: (n = 110/98) Controls: (n = 217) Males/Females: (n = 121/96) Cohort 3: (n = 60) iRBD patients: (n = 30) Males/Females: (n = 22/8) Controls: (n = 30) Males/Females: (n = 17/13) Cohort 4: (n = 88) PD patients: (n = 88) Males/Females: (n = 55/33) Ethnicity: N/A | PD 1: 66 (36–85) MSA 1: 62 (41–80) PSP 1: 65 (56–77) Controls 1: n (49–76) PD 2: 66 (34–87) Controls 2: 60 (51–89) iRBD 3: 65 (43–78) Controls 3: 59 (55–71) PD 4: 68 (36–87) | Post-mortem brain tissue | miR-44438–NCMB preparation TEM analysis Nanoscale Flow Cytometry Fluorescence Staining ZetaView NTA Analysis Statistical analysis | The concentration of miR-44438 in PD sample EVs was significantly increased compared to controls. miRNA concentration was also altered based on disease stage. | <0.001 * | Yes (validation cohorts) |
| Cho et al., 2013 (USA) [42] | Case–control PD patients: (n = 8) PDD patients: (n = 8) Controls: (n = 7) Ethnicity: N/A | PD/PDD: 80 ± 6.9 Controls: 85 ± 6.6 | Post-mortem brain tissue | Western Blot qRT-PCR LCM RNA isolation Immunostaining Light Microscopy Cell cultures Constructs Transfection Luciferase Assays Image quantification Statistical analysis | PD patient post-mortem brain tissue showed an increased expression of LRRK2 proteins and a decreased expression of miR-205. Human cell model experiments showed that miR-205 expression is connected to downregulation of LRRK2. | 0.0017 * | Yes (cell model) |
| Dobricic et al., 2022 (Germany) [52] | Case–control PD patients: (n = 214) AD patients: (n = 99) Controls: (n = 138) Ethnicity: N/A | NR | Post-mortem brain tissue | RNA extraction qPCR Statistical analysis | miR-132-3p was downregulated in PD and AD post-mortem brain tissue. | 4.89 × 10−6 * 3.20 × 10−24 * | No |
| Hoss et al., 2016 (USA) [56] | Case–control/cohort PD patients: (n = 18) Males/Females: (n = 18/0) PDD patients: (n = 11) Males/Females: (n = 11/0) Controls: (n = 33) Males/Females: (n = 33/0) Ethnicity: N/A | PD: 76.1 ± 8.9 PDD: 79.9 ± 9.0 Controls: 68.1 ± 14.8 | Post-mortem brain tissue | Small RNA sequencing Statistical analysis | Sixty-four miRNAs downregulated, while sixty-one were upregulated in PD brain tissue. One hundred-five were significant. No significant changes between standard PD and PDD patients. | <0.05 * | No |
| Margis et al., 2011 (Brazil) [46] | Case–control/cohort Drug-naïve PD patients: (n = 8) Males/Females: (n = 4/4) EOPD: (n = 7) Males/Females: (n = 4/3) Controls: (n = 8) Males/Females: (n = 4/4) Ethnicity: N/A | Untreated PD: 66 (6.7) EOPD: 45 (8.7) Controls: 67 (8.0) | Blood | qPCR Data analysis | Untreated patients with PD had a significantly lower expression of these miRNAs compared to the other groups: miR-1, miR-22, miR-29a. | <0.05 * 0.07 * <0.05 * | No |
| Tolosa et al., 2018 (Spain) [43] | Case–control/cohort PD patients: (n = 3) Males/Females: (n = 0/3) L2PD patients: (n = 3) Males/Females: (n = 1/2) Controls: (n = 4) Males/Females: (n = 2/2) Ethnicity: N/A | NR | iPSCs | Generation of iPSCs miRNA isolation miRNA expression analysis Identification of differentially expressed miRNAs qRT-PCR Enrichment analysis association of miRNA and gene expression Functional network analysis | Five miRNAs upregulated in PD patient-derived iPSCs: miR-9-5p, miR-135a-5p, miR-135b-5p, miR-449a, miR-449b-5p Five miRNAs downregulated in PD patient-derived iPSCs: miR-141-3p, miR-199a-5p, miR-299-5p, miR-518e-3p, miR-519a-3p. | NR | Yes (enrichment and functional network analysis) |
| Scheper et al., 2023 (Netherlands) [21] | Case–control PD4 patients: (n = 16) Males/Females: (n = 8/8) PD 5/6 patients: (n = 9) Males/Females: (n = 6/3) PDD 5/6 patients: (n = 19) Males/Females: (n = 13/6) Controls: (n = 19) Males/Females: (n = 9/10) Ethnicity: N/A | PD4: 71 ± 11.75 PD 5/6: 73.3 ± 9.15 PDD 5/6: 78.8 ± 6.01 Controls: 89.43 ± 11.22 | Post-mortem brain tissue, CSF | RNA sequencing Read quality and alignment miRNA target prediction RNA isolation qRT-PCR Immunohistochemistry Cell cultures and transfection Western Blot Statistical analysis | miRNAs significantly dysregulated: let-7e-3p, miR-424-3p, miR-543. | < 0.05 * < 0.05 * < 0.05 * | Yes (cell model) |
| Braunger et al., 2024 (Germany) [67] | Cohort Sporadic PD: (n = 10) LRRK2 PD: (n = 6) LRRK2 carriers: (n = 4) Controls: (n = 11) Ethnicity: N/A | Sporadic PD: 64.5 ± 10.9 LRRK2 PD: 66.8 ± 8.7 LRRK2 carriers: 52.3 ± 19.6 Controls: 60.1 ± 14.5 | Plasma, CSF | RNA isolation qRT-PCR Processing of raw data and visualization Integration of CSF and plasma data sets Identification of discriminatory miRNAs Target prediction enrichment analysis | miR-29c-3p, miR-128-3p, miR-424-5p, miR-223-3p were found to overlap between LRRK2 PD, LRRK2 carriers and sporadic PD. miRNAs could also discriminate between these models. | NR | Yes (panel by other studies [11,15,17,26,37,39,40,54,55,64,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94]) |
| Starhof et al., 2019 (Denmark) [44] | Case–control Cohort 1: (n = 40) PD patients: (n = 10) MSA patients: (n = 10) PSP patients: (n = 10) Controls: (n = 10) Cohort 2 (n = 121) PD patients: (n = 37) Males/Females: (n = 25/12) MSA patients: (n = 29) Males/Females: (n = 10/19) PSP patients: (n = 32) Males/Females: (n = 22/10) Controls: (n = 23) Males/Females: (n = 11/12) Ethnicity: N/A | PD 2: 66.3 (12.0) MSA 2: 63.2 (11.9) PSP: 69.4 (5.6) Controls 2: 41.5 (17.6) | Plasma, CSF | RNA isolation miRNA analysis CSF/α-synuclein Quantitation Statistical analysis | Eight miRNAs were differentially expressed at significant levels in the CSF of patients: let-7b-5p, miR-106b-5p, miR-184, miR-218-5p, miR-331-5p, miR-34c-3p, miR-7-5p, miR-99a-5p. | <0.001 * 0.003 * 0.007 * 0.007 * 0.030 * 0.032 * 0.047 * 0.047 * | Yes (validation cohort) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chrysanthou, M.; Christodoulou, C.C.; Papanicolaou, E.Z. The Role of miRNAs in Parkinson’s Disease: A Systematic Review. Int. J. Mol. Sci. 2025, 26, 12164. https://doi.org/10.3390/ijms262412164
Chrysanthou M, Christodoulou CC, Papanicolaou EZ. The Role of miRNAs in Parkinson’s Disease: A Systematic Review. International Journal of Molecular Sciences. 2025; 26(24):12164. https://doi.org/10.3390/ijms262412164
Chicago/Turabian StyleChrysanthou, Michalis, Christiana C. Christodoulou, and Eleni Zamba Papanicolaou. 2025. "The Role of miRNAs in Parkinson’s Disease: A Systematic Review" International Journal of Molecular Sciences 26, no. 24: 12164. https://doi.org/10.3390/ijms262412164
APA StyleChrysanthou, M., Christodoulou, C. C., & Papanicolaou, E. Z. (2025). The Role of miRNAs in Parkinson’s Disease: A Systematic Review. International Journal of Molecular Sciences, 26(24), 12164. https://doi.org/10.3390/ijms262412164

