Associations of Candidate Gene Polymorphisms with Egg Production and Egg Quality Traits in Atak-S Laying Hens
Abstract
1. Introduction
2. Results
2.1. PCR-RFLP Analysis
2.2. Descriptive Statistics and Correlation Analysis of Performance and Egg Quality Traits
2.3. Association of Genotypes with Egg Quality Traits
3. Discussion
4. Materials and Methods
4.1. Experimental Population and Phenotypic Measurements
4.2. DNA Isolation and PCR-RFLP Analysis
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| GH | Growth Hormone |
| GHR | Growth Hormone Receptor |
| IGF-1R | Insulin-like Growth Factor 1 Receptor |
| VIP | Vasoactive Intestinal Polypeptide |
| NPY | Neuropeptide Y |
| PCR | Polymerase Chain Reaction |
| RFLP | Restriction Fragment Length Polymorphism |
| kb | Kilobase |
| bp | Base Pair |
| ANOVA | Analysis of Variance |
| MAS | Marker-Assisted Selection |
| ddH2O | Double Distilled Water |
| TE buffer | Tris-EDTA buffer used for preserving DNA |
| SPSS | Statistical Package for the Social Sciences |
| Ho | Observed Heterozygosity |
| He | Expected Heterozygosity |
| ME | Metabolizable Energy |
| Ca | Calcium |
| P | Phosphorus |
| HWE | Hardy–Weinberg Equilibrium |
References
- Özdemir, S.; Arslan, H.; Özentürk, U.; Yıldırım, F.; Yıldız, A. Estimated genetic diversity between Atak-S and Isa Brown chickens with SSR markers. Kocatepe Vet. J. 2018, 11, 53–62. [Google Scholar]
- Gök, İ.; Kurşun, K. Comparative Estimation Models of Egg Albumen Index in Atak-S Hens with Ridge and Principal Component Regression Methods. Turk. J. Agric. Food Sci. Technol. 2025, 13, 2615–2622. [Google Scholar] [CrossRef]
- Yılmaz Dikmen, B.; Gündüz, M.; Kaşif, A.; Sevinç, B.F. Determination of Genotype, Housing System and Age Effect on Egg Production and Quality Traits of Layers. J. Poult. Res. 2025, 22, 7–17. [Google Scholar]
- Sözcü, A.; İpek, A.; Oguz, Z.; Gunnarsson, S.; Riber, A.B. Comparison of performance, egg quality, and yolk fatty acid profile in two Turkish genotypes (Atak-S and Atabey) in a free-range system. Animals 2021, 11, 1458. [Google Scholar] [CrossRef]
- Aygun, A.; Narinç, D.; Arısoy, H. Comparison of Performance, Egg Quality, and Egg Cost of Different Laying Genotypes in Free-Range System from 21 to 44 Weeks of Age. Animals 2025, 15, 86. [Google Scholar] [CrossRef]
- Kazemi, H.; Rezaei, M.; Hafezian, H.; Mianji, G.; Najafi, M. Genetic analysis of SNPs in GH, GHR, IGF-I and IGFBPII genes and their association with some productive and reproductive traits in native breeder hens. Gene Technol. 2018, 7, 145. [Google Scholar] [CrossRef]
- Wu, X.; LI, H.F.; Yan, M.J.; Tang, Q.P.; Chen, K.W.; Wang, J.Y.; Gao, Y.S.; Tu, Y.J.; Yu, Y.B.; Zhu, W.Q. Associations of gonadotropin-releasing hormone receptor (GnRHR) and neuropeptide Y (NPY) genes’ polymorphisms with egg-laying traits in Wenchang chicken. Agric. Sci. China 2007, 6, 499–504. [Google Scholar] [CrossRef]
- Ruangwittayanusorn, K.; Promket, D.; Pimrueng, K.; Kammongkun, J. The association of dopamine receptor D2 (DRD2) and vasoactive intestinal peptide (VIP) polymorphisms on egg production in high egg strain of pradu hangdum chiangmai chickens. Adv. Anim. Vet. Sci. 2022, 10, 212–218. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H.; Lei, Y.; Wang, Q.; Li, G.; Bai, J. Association of Novel Mutations in the Vasoactive Intestinal Peptide Receptor-1 Gene with Egg Shell Thickness in Three Strains of Laying-Type Quail. Animals 2025, 15, 1373. [Google Scholar] [CrossRef]
- Shaker, A.S.; Ameen, Q.A.; Beige, M.M.; Ortega Torres, M.; Alsalihi, L.W. Using linear regression equation of egg dimensions in chicken to predict (Area, Volume, and Egg shape index). J. Kirkuk Univ. Agri. Sci. 2021, 12, 33–38. [Google Scholar]
- Xu, H.; Zeng, H.; Luo, C.; Zhang, D.; Wang, Q.; Sun, L.; Yang, L.; Zhou, M.; Nie, Q.; Zhang, X. Genetic effects of polymorphisms in candidate genes and the QTL region on chicken age at first egg. BMC Genet. 2011, 12, 33. [Google Scholar] [CrossRef] [PubMed]
- Promket, D.; Pengmeesri, K.; Kammongkun, J.; Somchan, T. Identification of melatonin receptors type c (MTNR1C) and neuropeptide y (NPY) genes related to egg production in Thai indigenous chickens. Adv. Anim. Vet. Sci. 2024, 12, 206–215. [Google Scholar] [CrossRef]
- Hosnedlova, B.; Vernerova, K.; Kizek, R.; Bozzi, R.; Kadlec, J.; Curn, V.; Kouba, F.; Fernandez, C.; Machander, V.; Horna, H. Associations between IGF1, IGFBP2 and TGFß3 genes polymorphisms and growth performance of broiler chicken lines. Animals 2020, 10, 800. [Google Scholar] [CrossRef]
- Fu, M.; Wu, Y.; Shen, J.; Pan, A.; Zhang, H.; Sun, J.; Liang, Z.; Huang, T.; Du, J.; Pi, J. Genome-wide association study of egg production traits in Shuanglian chickens using whole genome sequencing. Genes 2023, 14, 2129. [Google Scholar] [CrossRef]
- Alig, B.N.; Malheiros, R.D.; Anderson, K.E. Evaluation of physical egg quality parameters of commercial brown laying hens housed in five production systems. Animals 2023, 13, 716. [Google Scholar] [CrossRef] [PubMed]
- Darmawan, A.; Hermana, W.; Suci, D.M.; Mutia, R.; Jayanegara, A.; Ozturk, E. Dietary phytogenic extracts favorably influence productivity, egg quality, blood constituents, antioxidant and immunological parameters of laying hens: A meta-analysis. Animals 2022, 12, 2278. [Google Scholar] [CrossRef]
- Alfonso-Carrillo, C.; Benavides-Reyes, C.; de Los Mozos, J.; Dominguez-Gasca, N.; Sanchez-Rodríguez, E.; Garcia-Ruiz, A.I.; Rodriguez-Navarro, A.B. Relationship between bone quality, egg production and eggshell quality in laying hens at the end of an extended production cycle (105 weeks). Animals 2021, 11, 623. [Google Scholar] [CrossRef]
- Li, Z.; Wu, H.; Fu, J.; Mushtaq, M.; Khan, M.; Liu, Y.; Azeem, Z.; Shi, H.; He, Y.; Zhang, R. Eggshell Quality Traits and Transcriptome Gene Screening Between Yunnong and Jingfen Chicken Breeds. Biology 2024, 13, 1048. [Google Scholar] [CrossRef]
- Saleh, A.A.; El-Awady, A.; Amber, K.; Eid, Y.Z.; Alzawqari, M.H.; Selim, S.; Soliman, M.M.; Shukry, M. Effects of sunflower meal supplementation as a complementary protein source in the laying hen’s diet on productive performance, egg quality, and nutrient digestibility. Sustainability 2021, 13, 3557. [Google Scholar] [CrossRef]
- Esenbuga, N.; Ekinci, O. Dietary effects of some plant extracts on laying performance, egg quality, and some blood parameters in laying hens at different cage densities. Animals 2023, 13, 3866. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Qu, L.; Yi, G.; Yuan, J.; Duan, Z.; Shen, M.; Qu, L.; Xu, G.; Wang, K.; Yang, N. Genome-wide association study revealed a promising region and candidate genes for eggshell quality in an F2 resource population. BMC Genom. 2015, 16, 565. [Google Scholar] [CrossRef]
- Dunn, I.; Joseph, N.; Bain, M.; Edmond, A.; Wilson, P.; Milona, P.; Nys, Y.; Gautron, J.; Schmutz, M.; Preisinger, R. Polymorphisms in eggshell organic matrix genes are associated with eggshell quality measurements in pedigree Rhode Island Red hens. Anim. Genet. 2009, 40, 110–114. [Google Scholar] [CrossRef]
- Fleet, J.C.; Bruns, M.E.; Hock, J.M.; Wood, R.J. Growth hormone and parathyroid hormone stimulate intestinal calcium absorption in aged female rats. Endocrinology 1994, 134, 1755–1760. [Google Scholar] [CrossRef]
- Alkan, S.; Karslı, T.; Durmuş, İ.; Karabağ, K. Effects of egg shape index on egg quality in guinea fowl (Numida meleagris) [in Tukish]. Turk. J. Agric. -Food Sci. Technol. 2016, 4, 758–762. [Google Scholar]
- Alkan, S.; Türker, İ. Effects of egg shape index on egg quality in partridges. Ordu Univ. J. Sci. Technol. 2021, 11, 140–151. [Google Scholar] [CrossRef]
- Sekeroglu, A.; Kayaalp, G.; Sarıca, M. The regression and correlation analysis an egg parameters in Denizli poultry. J. Agric. Fac. Cukurova Univ. 2000, 15, 69–74. [Google Scholar]
- Alasahan, S.; Copur, A. Hatching characteristics and growth performance of eggs with different egg shapes. Rev. Bras. Ciência Avícola 2016, 18, 1–8. [Google Scholar] [CrossRef]
- Wu, F.; Gu, L.; Shang, Y.; Zhang, X.; Xu, Z.; Xu, T. A novel 22-bp InDel in the intron 1 of the IGF1 gene is associated with slaughtering performance of Chinese Jiaji duck. Anim. Prod. Sci. 2025, 65, AN24308. [Google Scholar] [CrossRef]
- Yang, W.; Yu, S.; Song, D.; Lin, W.; Xu, H.; Lang, X.; Zhang, C.; Guo, L.; Chen, X. A genome-wide association study identified candidate genes associated with egg quality traits in Muscovy duck. BMC Genom. 2025, 26, 422. [Google Scholar] [CrossRef] [PubMed]
- Dang, D.X.; Chung, Y.H.; Kim, I.H. Effects of dietary supplementation of herbal active ingredients promoting insulin-like growth factor-1 secretion on production performance, egg quality, blood hematology, and excreta gas emission in laying hens. Anim. Biosci. 2021, 34, 1802. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Du, Y.; Nie, Q.; Liang, Y.; Luo, C.; Zeng, H.; Zhang, X. Associations between polymorphisms in the chicken VIP gene, egg production and broody traits. Brit Poult. Sci. 2010, 51, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Amir, M.J.A.; Al-Anbari, E.H.; Razuki, W.M. Polymorphism of VIP gene C+ 338T and its Association with the egg production of local Iraqi brown chicken. Biochem. Cell. Arch. 2019, 19, 1343–1346. [Google Scholar]
- Karslı, T.; Demir, E.; Fidan, H.G.; Karslı, B.A.; Aslan, M.; Aktan, S.; Kamanlı, S.; Karabağ, K.; Semerci, E.Ş.; Balcıoğlu, M. Polymorphisms in candidate genes associated with egg yield and quality in brown layer pure lines. Mediterr. Agric. Sci. 2020, 33, 433–439. [Google Scholar] [CrossRef]
- Nguyen, T.T.B.; Duc, N.H.; Quy, V.C.; Yen, H.T.; Loan, T.T.; Thuy, D.T.N.; Tien, V.T.; Thuy, N.T.D. Effect of nucleotide polymorphism of candidate genes on egg production traits in native Lien Minh chicken. Livest. Res. Rural. Dev. 2018, 30, 103. [Google Scholar]
- Jun, L.; Yan, L. Anti-bacterial activity of recombinant human β-defensin-3 secreted in the milk of transgenic goats produced by somatic cell nuclear transfer. PLoS ONE 2013, 8, e65379. [Google Scholar]
- Al-Zubaidi, K.; Al-Rekabi, M.; Allaw, A. Effect of polymorphism of the Neuropeptide Y (NPY) gene on some productive traits of Iraqi local white chickens. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: England, UK, 2023; p. 012121. [Google Scholar]
- Padwar, P.; Thakur, M. Association of neuropeptide-Y gene polymorphic variants with quantitative traits in Jabalpur colour and Kadaknath chicken. Indian. J. Anim. Sci. 2021, 91, 729–732. [Google Scholar] [CrossRef]
- Kammongkun, J.; Promket, D. Growth performance and morphology traits associated with neuropeptide y (npy) genes expression in native chickens. Adv. Anim. Vet. Sci. 2024, 12, 2263–2274. [Google Scholar] [CrossRef]
- Daş, H.; Tarim, B.; Demir, S.; Küçükkent, N.; Cengiz, S.; Tülek, E.; Aksakal, V. Association of IGF and IGFBP2 gene polymorphisms with growth and egg traits in Atak-S laying hens. J. Hell. Vet. Med. Soc. 2017, 68, 237–242. [Google Scholar] [CrossRef]
- Haugh, R.R. The Haugh unit for measuring egg quality. US Egg Poult. Mag. 1937, 43, 522–573. [Google Scholar]
- Xiao, X.; Zhu, Y.; Deng, B.; Wang, J.; Shi, S.; Wang, S.; Han, X.; Zhao, L.; Song, T. Effects of Dietary Phytosterol Supplementation on the Productive Performance, Egg Quality, Length of Small Intestine, and Tibia Quality in Aged Laying Hens. Animals 2023, 13, 662. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Wang, Y.; Song, F.; Xu, X.; Liu, M.; Wei, Y.; Zhu, H.; Liu, Y.; Wei, J.; Xu, X. A Comparison between Vitamin D3 and 25-Hydroxyvitamin D3 on Laying Performance, Eggshell Quality and Ultrastructure, and Plasma Calcium Levels in Late Period Laying Hens. Animals 2022, 12, 2824. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.A.; Dykes, D.D.; Polesky, H. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Parmar, S.; Chaudhari, M.; Bhardwaj, J. Growth hormone gene polymorphism and its association with egg production in Kadaknath chicken. Livest. Res. Rural. Dev. 2009, 21, 132. [Google Scholar]
- Attarchi, H.; Tahmoorespur, M.; Ahani, A.M.; Sekhavati, M.H.; Mohajer, M. Allelic polymorphism of GH, GHR and IGF-1 genes and their association with growth and carcass traits in Mazandaran native fowl. Poult. Sci. J. 2017, 5, 25–30. [Google Scholar]
- Wu, P.; Wang, D.; Jin, C.; Zhang, X.; Wu, H.; Zhang, L.; Ding, F.; Xie, K.; Zhang, G. Polymorphisms of AluI and Hin1I loci of the IGF-1R gene and their genetic effects on growth traits in Bian chickens. Genet. Mol. Res. 2017, 16. [Google Scholar] [CrossRef] [PubMed]

| Locus | Region | Length | Restriction Enzyme | Restriction Site | Genotypes | bp |
|---|---|---|---|---|---|---|
| GH | Intron 1 | 770 | MspI | 5′-C/CGG-3′ | AA | 529/241 |
| AB | 529/373/241/156 | |||||
| GHR | Exon 2 | 718 | HindIII | 5′-A/AGCTT-3′ | AA | 314/247/157 |
| IGF-1R | Intron 1 | 195 | Hinf1 | 5′-G/ANTC-3′ | CC | 195 |
| CD | 195/110/85 | |||||
| VIP12 | Intron 2 | 520 | Hinf1 | 5′-G/ANTC-3′ | TT | 520 |
| CT | 520/480/40 | |||||
| CC | 480/40 | |||||
| NPY | Transcription Start Site | 252 | DraI | 5′-TTT/AAA-3′ | II | 252 |
| ID | 252/167/81 | |||||
| DD | 167/81 |
| Gene | Allele Frequencies | Genotypes Frequencies (n) | Ho | He | χ2 | ||
|---|---|---|---|---|---|---|---|
| GH | A | 0.59 | AA (13) | 0.18 | 0.82 | 0.49 | 34.03 * |
| B | 0.41 | AB (59) | 0.82 | ||||
| BB (0) | 0 | ||||||
| IGF-1R | C | 0.76 | CC (40) | 0.55 | 0.48 | 0.37 | 5.06 * |
| D | 0.24 | CD (32) | 0.45 | ||||
| DD (0) | 0 | ||||||
| VIP12 | T | 0.75 | TT (40) | 0.55 | 0.42 | 0.37 | 1.08 |
| C | 0.25 | CT (30) | 0.41 | ||||
| CC (2) | 0.04 | ||||||
| NPY | I | 0.49 | II (10) | 0.14 | 0.69 | 0.50 | 7.00 * |
| D | 0.51 | ID (50) | 0.69 | ||||
| DD (12) | 0.17 | ||||||
| Mean | Std Dev | Min | Max | CV | |
|---|---|---|---|---|---|
| Egg weight (g) | 61.78 | 3.53 | 52.06 | 69.75 | 5.71 |
| Egg mass (g/hen per day) | 56.24 | 5.86 | 32.10 | 69.29 | 10.61 |
| Egg Production (%) | 91.39 | 8.45 | 60 | 100 | 9.34 |
| Feed Intake (g/hen per day) | 133.31 | 12.02 | 104.93 | 159.9 | 9.09 |
| Feed conversion ratio (g feed/g egg) | 2.11 | 0.26 | 1.61 | 3.07 | 12.2 |
| Eggshell breaking strength (kg) | 3.121 | 0.006 | 1.601 | 4.610 | 19.03 |
| Egg Shape index (%) | 74.84 | 2.72 | 67.22 | 84.18 | 3.68 |
| Albumen index (%) | 6.99 | 1.49 | 4.32 | 11.14 | 21.32 |
| Yolk index (%) | 41.55 | 1.98 | 37.11 | 46.57 | 4.77 |
| Haugh Unit | 87.48 | 5.46 | 69.65 | 98.9 | 6.24 |
| Eggshell weight (g) | 5.19 | 0.52 | 3.7 | 6.6 | 10.04 |
| Eggshell thickness (mm) | 0.41 | 0.04 | 0.3 | 0.51 | 9.88 |
| EW | EM | EP | FI | |
|---|---|---|---|---|
| EM | 0.484 ** (0.000) | |||
| EP | −0.038 (0.749) | 0.849 ** (0.000) | ||
| FI | 0.341 ** (0.003) | 0.350 ** (0.003) | 0.212 (0.074) | |
| FCR | −0.224 (0.059) | −0.798 ** (0.000) | −0.772 ** (0.000) | 0.238 * (0.044) |
| EBS | ESI | AI | YI | HU | ESW | |
|---|---|---|---|---|---|---|
| ESI | 0.236 * (0.046) | |||||
| AI | 0.172 (0.167) | 0.046 (0.713) | ||||
| YI | 0.138 (0.250) | 0.304 * (0.010) | 0.515 ** (0.000) | |||
| HU | 0.189 (0.115) | 0.118 (0.328) | 0.843 ** (0.000) | 0.430 ** (0.000) | ||
| ESW | 0.511 ** (0.000) | 0.222 (0.103) | −0.095 (0.510) | −0.009 (0.951) | −0.009 (0.947) | |
| EST | 0.492 ** (0.000) | 0.235 (0.055) | 0.089 (0.494) | 0.098 (0.432) | 0.099 (0.431) | 0.370 ** (0.007) |
| Genotypes | Egg Weight (g) | Egg Mass (g/Hen per Day) | Egg Production (%) | Feed Intake (g/Hen per Day) | Feed Conversion Ratio (g Feed/g Egg) | |
|---|---|---|---|---|---|---|
| GH | AA | 61.67 ± 1.10 | 57.53 ± 1.90 | 93.15 ± 1.72 | 133.7 ± 2.42 | 2.04 ± 0.065 |
| AB | 61.04 ± 0.65 | 55.02 ± 0.94 | 90.20 ± 1.45 | 132.5 ± 1.20 | 2.13 ± 0.042 | |
| IGF-1R | CC | 62.58 ± 0.60 a | 56.64 ± 0.84 | 91.51 ± 1.33 | 132.9 ± 1.87 | 2.06 ± 0.035 |
| CD | 60.75 ± 0.65 b | 54.09 ± 1.40 | 89.80 ± 1.90 | 132.3 ± 1.62 | 2.18 ± 0.061 | |
| VIP12 | TT | 61.69 ± 0.78 | 56.25 ± 0.91 | 92.50 ± 1.52 a | 133.6 ± 1.94 | 2.09 ± 0.041 |
| CT | 61.61 ± 0.65 | 54.46 ± 1.34 | 89.06 ± 1.78 b | 132.2 ± 1.81 | 2.16 ± 0.049 | |
| CC | 62.96 ± 0.52 | 55.30 ± 1.13 | 88.33 ± 1.26 b | 132.8 ± 1.24 | 2.15 ± 0.044 | |
| NPY | II | 60.82 ± 0.83 | 56.57 ± 1.13 | 94.05 ± 2.13 | 128.1 ± 1.76 | 1.97 ± 0.029 |
| ID | 61.59 ± 0.50 | 55.29 ± 1.03 | 93.78 ± 1.45 | 133.0 ± 1.49 | 2.13 ± 0.045 | |
| DD | 60.36 ± 1.41 | 57.12 ± 1.89 | 95.48 ± 1.72 | 136.1 ± 1.95 | 2.09 ± 0.067 |
| Gene | Genotypes | Eggshell Breaking Strength (kg) | Egg Shape Index (%) | Albumen Index (%) | Yolk Index (%) | Haugh Unit | Eggshell Weight (g) | Eggshell Thickness (mm) |
|---|---|---|---|---|---|---|---|---|
| GH | AA | 3.36 ± 0.162 a | 77.7 ± 1.31 a | 7.20 ± 0.612 | 41.71 ± 0.70 | 89.1 ± 1.90 | 5.47 ± 0.140 a | 0.352 ± 0.021 a |
| AB | 2.99 ± 0.086 b | 73.6 ± 0.33 b | 7.06 ± 0.231 | 41.67 ± 0.28 | 87.8 ± 0.81 | 5.11 ± 0.088 b | 0.323 ± 0.008 b | |
| IGF-1R | CC | 2.96 ± 0.096 | 73.6 ± 0.47 b | 7.01 ± 0.294 | 41.47 ± 0.32 | 87.4 ± 1.02 | 5.26 ± 0.091 | 0.315 ± 0.022 |
| CD | 3.08 ± 0.116 | 76.8 ± 0.46 a | 7.11 ± 0.302 | 41.64 ± 0.38 | 88.3 ± 1.05 | 5.18 ± 0.903 | 0.318 ± 0.010 | |
| VIP12 | TT | 3.20 ± 0.124 | 73.6 ± 0.46 | 6.97 ± 0.330 | 41.25 ± 0.60 | 86.9 ± 1.31 | 5.02 ± 0.121 | 0.324 ± 0.012 |
| CT | 3.15 ± 0.136 | 73.7 ± 0.41 | 7.19 ± 0.301 | 41.90 ± 0.31 | 88.3 ± 0.92 | 5.32 ± 0.113 | 0.334 ± 0.009 | |
| CC | 3.80 ± 0.120 | 76.9 ± 0.50 | 5.94 ± 0.326 | 40.31 ± 0.42 | 85.6 ± 0.95 | 5.16 ± 0.092 | 0.342 ± 0.002 | |
| NPY | II | 3.20 ± 0.283 | 73.1 ± 0.82 | 7.03 ± 0.682 | 40.88 ± 0.724 | 88.2 ± 2.24 | 5.02 ± 0.320 | 0.333 ± 0.028 |
| ID | 3.02 ± 0.104 | 74.4 ± 0.51 | 6.92 ± 0.244 | 42.10 ± 0.310 | 87.6 ± 0.94 | 5.25 ± 0.092 | 0.334 ± 0.010 | |
| DD | 2.91 ± 0.233 | 73.2 ± 0.93 | 8.11 ± 0.982 | 41.14 ± 0.753 | 88.5 ± 2.76 | 4.98 ± 0.212 | 0.309 ± 0.023 |
| Locus | Primer Sequence | Length | Annealing Temp (°C) | References |
|---|---|---|---|---|
| GH | F5′-ATCCCCAGGCAAACATCCTC-3′ R5′-CCTCGACATCCAGCTCACAT-3′ | 770 | 62 | [44] |
| GHR | F5′-GGCTCTCCATGGGTATTAGGA-3′ R5′-GCTGGTGAACCAATCTCGGTT-3′ | 718 | 59 | [45] |
| IGF-1R | F5′-GAGCCTGCACAGACCAGAAT-3′ R5′-CAGGGACTTTGGAGCAGAAC-3′ | 195 | 58 | [46] |
| VIP12 | F5′-GCTTGGACTGATGCGTACTT-3′ R5′-GTATCACTGCAAATGCTCTG-3′ | 520 | 58 | [31] |
| NPY | F5′-TCTCAGAGCTCCAACGTATGA-3′ R5′-ATATTTCTGTGCCTGAACAACA-3′ | 252 | 57 | [7] |
| Gene | Genotype | Eggs Used for Egg Weight | Eggs Used for Egg Quality Analysis |
|---|---|---|---|
| GH | AA | 519 | 78 |
| AB | 2328 | 354 | |
| IGF | CC | 1527 | 240 |
| CD | 1280 | 192 | |
| VIP | TT | 1512 | 240 |
| CT | 1342 | 180 | |
| CC | 87 | 12 | |
| NPY | II | 432 | 60 |
| ID | 2124 | 300 | |
| DD | 483 | 72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilhan, F.; Aygun, A. Associations of Candidate Gene Polymorphisms with Egg Production and Egg Quality Traits in Atak-S Laying Hens. Int. J. Mol. Sci. 2025, 26, 12156. https://doi.org/10.3390/ijms262412156
Ilhan F, Aygun A. Associations of Candidate Gene Polymorphisms with Egg Production and Egg Quality Traits in Atak-S Laying Hens. International Journal of Molecular Sciences. 2025; 26(24):12156. https://doi.org/10.3390/ijms262412156
Chicago/Turabian StyleIlhan, Fatma, and Ali Aygun. 2025. "Associations of Candidate Gene Polymorphisms with Egg Production and Egg Quality Traits in Atak-S Laying Hens" International Journal of Molecular Sciences 26, no. 24: 12156. https://doi.org/10.3390/ijms262412156
APA StyleIlhan, F., & Aygun, A. (2025). Associations of Candidate Gene Polymorphisms with Egg Production and Egg Quality Traits in Atak-S Laying Hens. International Journal of Molecular Sciences, 26(24), 12156. https://doi.org/10.3390/ijms262412156

