Characterization of Differential GPX4 Essentiality Between Intrahepatic and Extrahepatic Cholangiocarcinoma via Leveraging of a Large-Scale Functional Genomic Screen
Abstract
1. Introduction
2. Results
2.1. Prioritization of Essential FSGs in iCCA and eCCA and Selective GPX4 Vulnerability
2.2. iCCA-Specific Vulnerability to GPX4 Inhibition
2.3. Differential Transcriptomic Analyses and Combined Inhibition of WNT Signaling and GPX4 in eCCA
3. Discussion
4. Materials and Methods
4.1. Curation of the DepMap Dataset and Prioritization of Essential FSGs
4.2. Statistical Analysis of Subtype-Selective Essential FSGs
4.3. Cell Culture and Cell Viability Measurement
4.4. Monitoring of Lipid Peroxidation
4.5. Protein Sampling and Immunoblotting
4.6. Identification of DEGs and Pathway Enrichment Analysis
4.7. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACSL4 | Acyl-CoA Synthetase Long-chain Family Member 4 |
| AIFM2 | Apoptosis-Inducing Factor Mitochondria-Associated 2 (also FSP1) |
| ALOX5 | Arachidonate 5-Lipoxygenase |
| ALOX15 | Arachidonate 15-Lipoxygenase |
| ARID1A | AT-rich Interaction Domain-containing Protein 1A |
| BAP1 | BRCA1-Associated Protein 1 |
| BME | β-mercaptoethanol |
| BH2 | Dihydrobiopterin |
| BH4 | Tetrahydrobiopterin |
| C11-BODIPY | Boron-Dipyrromethene 581/591 C11 (lipid peroxidation probe) |
| CCA | Cholangiocarcinoma |
| CERES | Copy-number corrected CRISPR essentiality score |
| CHMP5 | Charged Multivesicular Body Protein 5 |
| CHP | Cumene Hydroperoxide |
| CoQ10 | Coenzyme Q10 (ubiquinone-10) |
| CoQ10H2 | Ubiquinol |
| DEG | Differentially Expressed Gene |
| DepMap | Cancer Dependency Map |
| DFO | Deferoxamine |
| DHFR | Dihydrofolate Reductase |
| DHODH | Dihydroorotate Dehydrogenase |
| dCCA | Distal Cholangiocarcinoma |
| eCCA | Extrahepatic Cholangiocarcinoma |
| ELF3 | E74-Like ETS Transcription Factor 3 |
| ERBB2 | Erb-B2 Receptor Tyrosine Kinase 2 |
| ERBB3 | Erb-B2 Receptor Tyrosine Kinase 3 |
| ESCRT | Endosomal Sorting Complex Required for Transport |
| FECH | Ferrochelatase |
| FGFR2 | Fibroblast Growth Factor Receptor 2 |
| FRG | Ferroptosis-Related Gene |
| FSG | Ferroptosis Suppressor Gene |
| FSP1 | Ferroptosis Suppressor Protein 1 (also AIFM2) |
| GPX4 | Glutathione Peroxidase 4 |
| GSEA | Gene Set Enrichment Analysis |
| GSH | Glutathione |
| IDH1/2 | Isocitrate Dehydrogenase 1/2 |
| iCCA | Intrahepatic Cholangiocarcinoma |
| IGF1R | Insulin-like Growth Factor 1 Receptor |
| JNK | c-Jun N-terminal Kinase |
| KEGG | Kyoto Encyclopedia of Genes and Genomes |
| KRAS | Kristen Rat Sarcoma Viral Oncogene Homolog |
| LOX | Lipoxygenase |
| LPCAT3 | Lysophosphatidylcholine Acyltransferase 3 |
| MGST1 | Microsomal Glutathione S-Transferase 1 |
| MMR | Mismatch Repair |
| MSI | Microsatellite Instability |
| MUFA | Monounsaturated Fatty Acid |
| NCOA4 | Nuclear Receptor Coactivator 4 |
| NRF2 | Nuclear Factor Erythroid 2-Related Factor 2 |
| ORA | Over-Representation Analysis |
| pCCA | Perihilar Cholangiocarcinoma |
| PRKACA | Protein Kinase cAMP-Activated Catalytic Subunit Alpha |
| PRKACB | Protein Kinase cAMP-Activated Catalytic Subunit Beta |
| PTPMT1 | Protein Tyrosine Phosphatase Mitochondrial 1 |
| PUFA | Polyunsaturated Fatty Acid |
| ROCK1 | Rho-associated Protein Kinase 1 |
| ROS | Reactive Oxygen Species |
| SCD1 | Stearoyl-CoA Desaturase 1 |
| SDHD | Succinate Dehydrogenase Complex Subunit D |
| SLC3A2 | Solute Carrier Family 3 Member 2 |
| SREBF1 | Sterol Regulatory Element-Binding Transcription Factor 1 |
| SKP2 | S-phase Kinase-Associated Protein 2 |
| System xc− | Cystine/Glutamate Antiporter (SLC7A11/SLC3A2) |
| SMAD4 | SMAD Family Member 4 |
| TNKS | Tankyrase |
| TP53 | Tumor Protein 53 |
| TPM | Transcripts Per Million |
| VKH2 | Vitamin K Hydroquinone |
| WNT | Wingless/ Integrated |
| ZC3H13 | Zinc Finger CCCH-Type Containing 13 |
| ZMYND8 | Zinc Finger MYND-Type Containing 8 |
References
- Stockwell, B.R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell 2022, 185, 2401–2421. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yu, Y.; Pan, Z.; Glandorff, C.; Sun, M. Ferroptosis: A new hunter of hepatocellular carcinoma. Cell Death Discov. 2024, 10, 136. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; Zhong, W.; Wu, K.; Zhong, T.; Jiang, T. Targeting ferroptosis: A promising approach for treating lung carcinoma. Cell Death Discov. 2025, 11, 33. [Google Scholar] [CrossRef]
- Liang, D.; Feng, Y.; Zandkarimi, F.; Wang, H.; Zhang, Z.; Kim, J.; Cai, Y.; Gu, W.; Stockwell, B.R.; Jiang, X. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell 2023, 186, 2748–2764.e22. [Google Scholar] [CrossRef]
- Kuang, F.; Liu, J.; Xie, Y.; Tang, D.; Kang, R. MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells. Cell Chem. Biol. 2021, 28, 765–775.e5. [Google Scholar] [CrossRef] [PubMed]
- Banales, J.M.; Marin, J.J.G.; Lamarca, A.; Rodrigues, P.M.; Khan, S.A.; Roberts, L.R.; Cardinale, V.; Carpino, G.; Andersen, J.B.; Braconi, C.; et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 557–588. [Google Scholar] [CrossRef]
- Wilbur, H.C.; Soares, H.P.; Azad, N.S. Neoadjuvant and adjuvant therapy for biliary tract cancer: Advances and limitations. Hepatology 2025, 82, 1287–1302. [Google Scholar] [CrossRef]
- Ward, P.S.; Patel, J.; Wise, D.R.; Abdel-Wahab, O.; Bennett, B.D.; Coller, H.A.; Cross, J.R.; Fantin, V.R.; Hedvat, C.V.; Perl, A.E.; et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 2010, 17, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Jenke, R.; Heinrich, T.; Lordick, F.; Aigner, A. ERBB3 influences the ferroptosis pathway via modulation of lipid peroxidation and GSH synthesis in gastric cancer. Cell Death Discov. 2025, 11, 398. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Han, X.; Xiao, M.; Zhu, T.; Xu, Y.; Tang, Q.; Lian, C.; Wang, Z.; Li, J.; Wang, B.; et al. Overexpression of ELF3 in the PTEN-deficient lung epithelium promotes lung cancer development by inhibiting ferroptosis. Cell Death Dis. 2024, 15, 897. [Google Scholar] [CrossRef] [PubMed]
- Hori, Y.; Yoh, T.; Nishino, H.; Okura, K.; Kurimoto, M.; Takamatsu, Y.; Satoh, M.; Nishio, T.; Koyama, Y.; Ishii, T.; et al. Ferroptosis-related gene glutathione peroxidase 4 promotes reprogramming of glucose metabolism via Akt-mTOR axis in intrahepatic cholangiocarcinoma. Carcinogenesis 2024, 45, 119–130. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Shen, Y.; Zhu, C.; Qin, X.; Gao, Y. Liquidambaric acid inhibits cholangiocarcinoma progression by disrupting the STAMBPL1/NRF2 positive feedback loop. Phytomedicine 2025, 136, 156303. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.W.; Shan, J.J.; Chen, M.; Wu, Z.; Zhao, Y.M.; Zhu, H.X.; Jin, X.; Wang, Y.X.; Wu, Y.B.; Xiang, Z.; et al. Targeting GPX4 to induce ferroptosis overcomes chemoresistance mediated by the PAX8-AS1/GPX4 axis in intrahepatic cholangiocarcinoma. Adv. Sci. 2025, 12, e01042. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Li, H.; Lin, J.; Li, P.; Yang, X.; Luo, Z.; Jin, L. METTL3-mediated m6A modification promotes chemoresistance of intrahepatic cholangiocarcinoma by up-regulating NRF2 to inhibit ferroptosis in cisplatin-resistant cells. J. Chemother. 2025, 37, 596–606. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Lin, J.; Zhang, K.; Ou, H.; Shen, K.; Liu, Q.; Wei, Z.; Dong, X.; Zeng, X.; Zeng, L.; et al. SHARPIN promotes cell proliferation of cholangiocarcinoma and inhibits ferroptosis via p53/SLC7A11/GPX4 signaling. Cancer Sci. 2022, 113, 3766–3775. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.; Cao, W.; Zeng, Z.; Zhang, Z.; Jin, B.; Tian, Q.; Wu, Y.; Zhang, T.; Li, D.; Hu, C.; et al. JUND/linc00976 promotes cholangiocarcinoma progression and metastasis, inhibits ferroptosis by regulating the miR-3202/GPX4 axis. Cell Death Dis. 2022, 13, 967. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, S.; Huang, L.; Liu, X.; Han, Q.; Niu, Q.; Li, S.; Zhou, C.; Sun, B.; Yang, Y.; et al. MUC1 drives ferroptosis resistance in ICC via Src-mediated FSP1 deubiquitination and myristoylation. Clin. Transl. Med. 2025, 15, e70495. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Liu, Y.; Dai, B.; Qin, C.; Fu, Y.; Li, X.; Liu, C. Downregulation of NCOA4 expression indicates poor prognosis and promotes the progression of cholangiocarcinoma. PLoS ONE 2025, 20, e0327722. [Google Scholar] [CrossRef]
- Wang, X.; Duan, W.; Ma, Z.; Wen, H.; Mao, X.; Liu, C. ETV4/ALYREF-mediated glycolytic metabolism through PKM2 enhances resistance to ferroptosis and promotes the development of intrahepatic cholangiocarcinoma. Cancer Metab. 2025, 13, 19. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, C.; Wu, H.; Zhao, Z.; Wang, Z.; Zhang, X.; Yang, J.; Yu, W.; Lian, Z.; Gao, M.; et al. The AKR1C1–CYP1B1–cAMP signaling axis controls tumorigenicity and ferroptosis susceptibility of extrahepatic cholangiocarcinoma. Cell Death Differ. 2025, 32, 506–520. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Fan, S.; Wang, Y.; Chen, R.; Wang, Z.; Zhang, Y.; Jiang, W.; Chen, Y.; Xu, X.; Yu, Y.; et al. ACSL4 serves as a novel prognostic biomarker correlated with immune infiltration in cholangiocarcinoma. BMC Cancer 2023, 23, 444. [Google Scholar] [CrossRef] [PubMed]
- Sae-Fung, A.; Vinayavekhin, N.; Fadeel, B.; Jitkaew, S. ACSL3 is an unfavorable prognostic marker in cholangiocarcinoma patients and confers ferroptosis resistance in cholangiocarcinoma cells. NPJ Precis. Oncol. 2024, 8, 284. [Google Scholar] [CrossRef]
- Hasegawa, K.; Fujimori, H.; Nakatani, K.; Takahashi, M.; Izumi, Y.; Bamba, T.; Nakamura-Shima, M.; Shibuya-Takahashi, R.; Mochizuki, M.; Wakui, Y.; et al. Delta-6 desaturase FADS2 is a tumor-promoting factor in cholangiocarcinoma. Cancer Sci. 2024, 115, 3346–3357. [Google Scholar] [CrossRef]
- Mercado-Gómez, M.; Goikoetxea-Usandizaga, N.; Giné, A.E.; Merlos Rodrigo, M.A.; Afonso, M.B.; Azkargorta, M.; Zapata-Pavas, L.E.; Rejano-Gordillo, C.M.; Romero, M.R.; Mendizabal, I.; et al. Role of CNNM4 in the progression of cholangiocarcinoma: Implications for ferroptosis and therapeutic potential. Gut 2025. Ahead of Print. [Google Scholar] [CrossRef] [PubMed]
- Pacini, C.; Duncan, E.; Gonçalves, E.; Gilbert, J.; Bhosle, S.; Horswell, S.; Karakoc, E.; Lightfoot, H.; Curry, E.; Muyas, F.; et al. A comprehensive clinically informed map of dependencies in cancer cells and framework for target prioritization. Cancer Cell 2024, 42, 301–316.e9. [Google Scholar] [CrossRef] [PubMed]
- Arafeh, R.; Shibue, T.; Dempster, J.M.; Hahn, W.C.; Vazquez, F. The present and future of the Cancer Dependency Map. Nat. Rev. Cancer 2025, 25, 59–73. [Google Scholar] [CrossRef]
- Haider, S.; Brough, R.; Madera, S.; Iacovacci, J.; Gulati, A.; Wicks, A.; Alexander, J.; Pettitt, S.J.; Tutt, A.N.J.; Lord, C.J. The transcriptomic architecture of common cancers reflects synthetic lethal interactions. Nat. Genet. 2025, 57, 522–529. [Google Scholar] [CrossRef]
- Lin, H.K.; Dai, J.; Pusztai, L. Integrating Large-Scale In Vitro Functional Genomic Screen and Multi-Omics Data to Identify Novel Breast Cancer Targets. Breast Cancer Res. Treat. 2025, 214, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Chen, X.; Jiang, L.; Lu, B.; Yuan, M.; Zhu, D.; Zhu, H.; He, Q.; Yang, B.; Ying, M. DJ-1 suppresses ferroptosis through preserving the activity of S-adenosyl homocysteine hydrolase. Nat. Commun. 2020, 11, 1251. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Li, N.; Li, K.; Xu, Y.; Zhang, Y.; Cao, S.; Huang, B.; Liu, R.; Zhou, P.; Ding, Y.; et al. Phosphatase LHPP confers prostate cancer ferroptosis activation by modulating the AKT-SKP2-ACSL4 pathway. Cell Death Dis. 2024, 15, 665. [Google Scholar] [CrossRef] [PubMed]
- Tosi, G.; Paoli, A.; Zuccolotto, G.; Turco, E.; Simonato, M.; Tosoni, D.; Tucci, F.; Lugato, P.; Giomo, M.; Elvassore, N.; et al. Cancer Cell Stiffening via CoQ10 and UBIAD1 Regulates ECM Signaling and Ferroptosis in Breast Cancer. Nat. Commun. 2024, 15, 8214. [Google Scholar] [CrossRef]
- Dai, E.; Meng, L.; Kang, R.; Wang, X.; Tang, D. ESCRT-III-dependent membrane repair blocks ferroptosis. Biochem. Biophys. Res. Commun. 2020, 522, 415–421. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Li, X.; Xu, J.; Yan, L.; Tang, S.; Liu, C.; Shi, M.; Liu, R.; Zhao, Y.; et al. Pharmacological Targeting of the Mitochondrial Phosphatase PTPMT1 Sensitizes Hepatocellular Carcinoma to Ferroptosis. Cell Death Dis. 2025, 16, 257. [Google Scholar] [CrossRef]
- Li, H.; Lan, H.; Zhang, M.; Zhao, F.; An, N.; Yi, C. TEA Domain Transcription Factor 1 Inhibits Ferroptosis and Sorafenib Sensitivity of Hepatocellular Carcinoma Cells. Dig. Dis. Sci. 2023, 68, 3070–3082. [Google Scholar] [CrossRef]
- Hedges, L.V. Distribution theory for Glass’s estimator of effect size and related estimators. J. Educ. Stat. 1981, 6, 107–128. [Google Scholar] [CrossRef]
- Isidan, A.; Yenigun, A.; Soma, D.; Aksu, E.; Lopez, K.; Park, Y.; Cross-Najafi, A.; Li, P.; Kundu, D.; House, M.G.; et al. Development and Characterization of Human Primary Cholangiocarcinoma Cell Lines. Am. J. Pathol. 2022, 192, 1200–1217. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Zhang, M.M.; Wang, G.L.; Deng, X.Y.; Tu, Z.; Jiang, S.S.; Gao, Z.D.; Hao, M.; Chen, Y.; Li, Y.; et al. Loss of ADAR1 induces ferroptosis of breast cancer cells. Cell Signal. 2024, 121, 111258. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Liu, Z.; He, Y.; Li, H.; Wu, W. Methyltransferase ZC3H13 regulates ferroptosis of alveolar macrophages in sepsis-associated acute lung injury via PRDX6/p53/SLC7A11 axis. Funct. Integr. Genom. 2025, 25, 156. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, J.; Gao, S.; Jiang, Y.; Qu, M.; Gu, J.; Wu, H.; Nan, K.; Zhang, H.; Wang, J.; et al. Suppression of Skp2 contributes to sepsis-induced acute lung injury by enhancing ferroptosis through the ubiquitination of SLC3A2. Cell. Mol. Life Sci. 2024, 81, 325. [Google Scholar] [CrossRef]
- Du, J.; Zhou, Y.; Li, Y.; Xia, J.; Chen, Y.; Chen, S.; Wang, X.; Sun, W.; Wang, T.; Ren, X.; et al. Identification of Frataxin as a Regulator of Ferroptosis. Redox Biol. 2020, 32, 101483. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wu, Z.; Wang, Y.; Chen, C.; Li, Y.; Dong, H.; Yao, T.; Jin, G.; Wang, Z. TYMS Knockdown Suppresses Cells Proliferation and Promotes Ferroptosis via Inhibition of PI3K/Akt/mTOR Signaling in Triple-Negative Breast Cancer. Cell Biochem. Biophys. 2024, 82, 2717–2726. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Cao, J.; Liang, R.; Peng, T.; Wu, S.; Liu, Z.; Wu, Y.; Song, L.; Sun, C.; Liu, Y.; et al. METTL16 suppresses ferroptosis in cholangiocarcinoma by promoting ATF4 via m6A modification. Int. J. Biol. Sci. 2025, 21, 189–203. [Google Scholar] [CrossRef] [PubMed]
- Deshwal, S.; Onishi, M.; Tatsuta, T.; Bartsch, T.; Cors, E.; Ried, K.; Lemke, K.; Nolte, H.; Giavalisco, P.; Langer, T. Mitochondria regulate intracellular coenzyme Q transport and ferroptotic resistance via STARD7. Nat. Cell Biol. 2023, 25, 246–257. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Bao, L.; Xue, Y.; Zhu, M.; Kumar, A.; Xing, C.; Wang, J.E.; Wang, Y.; Luo, W. ZMYND8 protects breast cancer stem cells against oxidative stress and ferroptosis through activation of NRF2. J. Clin. Investig. 2024, 134, e171166. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, L.; Shang, W.; Yang, Z.; Li, T.; Liu, F.; Shao, W.; Lv, L.; Chai, L.; Qu, L.; et al. Wnt/β-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ. 2022, 29, 2190–2202. [Google Scholar] [CrossRef]
- Yuk, H.; Abdullah, M.; Kim, D.H.; Lee, H.; Lee, S.J. Necrostatin-1 Prevents Ferroptosis in a RIPK1- and IDO-Independent Manner in Hepatocellular Carcinoma. Antioxidants 2021, 10, 1347. [Google Scholar] [CrossRef] [PubMed]




| Essential in Subtype | FSGs | iCCA | eCCA | |||
|---|---|---|---|---|---|---|
| Median Dependency 1 | Fraction Essential 2 | Median Dependency 1 | Fraction Essential 2 | |||
| iCCA & eCCA | 1 | MED1 | 0.9 | 0.73 | 0.73 | 0.67 |
| 2 | SLC3A2 | 0.8 | 0.82 | 0.68 | 0.67 | |
| 3 | FXN | 0.75 | 0.82 | 0.87 | 0.83 | |
| 4 | SKP2 | 0.71 | 0.72 | 0.77 | 0.67 | |
| 5 | TYMS | 0.71 | 0.55 | 0.86 | 0.67 | |
| 6 | RICTOR | 0.63 | 0.64 | 0.56 | 0.67 | |
| 7 | ADAR | 0.6 | 0.59 | 0.58 | 0.67 | |
| 8 | ZC3H13 | 0.58 | 0.64 | 0.61 | 0.5 | |
| 9 | AHCY | 0.54 | 0.5 | 0.64 | 0.67 | |
| iCCA | 1 | GPX4 | 0.77 | 0.64 | 0.32 | 0.16 |
| 2 | CHMP5 | 0.76 | 0.73 | 0.11 | 0.33 | |
| 3 | UBIAD1 | 0.73 | 0.68 | 0.38 | 0.5 | |
| 4 | PTPMT1 | 0.65 | 0.68 | 0.49 | 0.5 | |
| 5 | SETD2 | 0.59 | 0.68 | 0.46 | 0.33 | |
| 6 | SDHD | 0.59 | 0.5 | 0.17 | 0.16 | |
| 7 | UBR5 | 0.55 | 0.5 | 0.14 | 0.16 | |
| 8 | METTL17 | 0.52 | 0.5 | 0.4 | 0.33 | |
| 9 | FECH | 0.52 | 0.55 | 0.4 | 0.33 | |
| 10 | ARF6 | 0.5 | 0.5 | 0.25 | 0.16 | |
| eCCA | 1 | KLF5 | 0.47 | 0.45 | 0.8 | 0.67 |
| 2 | FOXM1 | 0.36 | 0.18 | 0.74 | 0.67 | |
| 3 | IGF1R | 0.22 | 0.31 | 0.71 | 0.67 | |
| 4 | TEAD1 | 0.39 | 0.45 | 0.67 | 0.67 | |
| 5 | PARL | 0.26 | 0.09 | 0.64 | 0.67 | |
| 6 | ZMYND8 | 0.1 | 0.18 | 0.61 | 0.67 | |
| 7 | SREBF1 | 0.16 | 0.31 | 0.52 | 0.5 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.R.; Seo, C.; Abdullah, M.; Baek, S.H.; Lee, S.J. Characterization of Differential GPX4 Essentiality Between Intrahepatic and Extrahepatic Cholangiocarcinoma via Leveraging of a Large-Scale Functional Genomic Screen. Int. J. Mol. Sci. 2025, 26, 11990. https://doi.org/10.3390/ijms262411990
Lee YR, Seo C, Abdullah M, Baek SH, Lee SJ. Characterization of Differential GPX4 Essentiality Between Intrahepatic and Extrahepatic Cholangiocarcinoma via Leveraging of a Large-Scale Functional Genomic Screen. International Journal of Molecular Sciences. 2025; 26(24):11990. https://doi.org/10.3390/ijms262411990
Chicago/Turabian StyleLee, Ye Rim, Chaeyoung Seo, Md Abdullah, Su Hyun Baek, and Seung Jin Lee. 2025. "Characterization of Differential GPX4 Essentiality Between Intrahepatic and Extrahepatic Cholangiocarcinoma via Leveraging of a Large-Scale Functional Genomic Screen" International Journal of Molecular Sciences 26, no. 24: 11990. https://doi.org/10.3390/ijms262411990
APA StyleLee, Y. R., Seo, C., Abdullah, M., Baek, S. H., & Lee, S. J. (2025). Characterization of Differential GPX4 Essentiality Between Intrahepatic and Extrahepatic Cholangiocarcinoma via Leveraging of a Large-Scale Functional Genomic Screen. International Journal of Molecular Sciences, 26(24), 11990. https://doi.org/10.3390/ijms262411990

