Creation of New Antimicrobial Peptides 3: Research Promises and Shortcomings
Conflicts of Interest
References
- El Shazely, B.; Yu, G.; Johnston, P.R.; Rolff, J. Resistance Evolution Against Antimicrobial Peptides in Staphylococcus Aureus Alters Pharmacodynamics Beyond the MIC. Front. Microbiol. 2020, 11, 103. [Google Scholar] [CrossRef]
- Maron, B.; Rolff, J.; Friedman, J.; Hayouka, Z. Antimicrobial Peptide Combination Can Hinder Resistance Evolution. Microbiol. Spectr. 2022, 10, e00973-22. [Google Scholar] [CrossRef] [PubMed]
- Okeke, I.N.; de Kraker, M.E.A.; Van Boeckel, T.P.; Kumar, C.K.; Schmitt, H.; Gales, A.C.; Bertagnolio, S.; Sharland, M.; Laxminarayan, R. The Scope of the Antimicrobial Resistance Challenge. Lancet 2024, 403, 2426–2438, Erratum in Lancet 2024, 404, 1018. [Google Scholar] [CrossRef]
- Rončević, T.; Gerdol, M.; Pacor, S.; Cvitanović, A.; Begić, A.; Weber, I.; Krce, L.; Caporale, A.; Mardirossian, M.; Tossi, A.; et al. Antimicrobial Peptide with a Bent Helix Motif Identified in Parasitic Flatworm Mesocestoides Corti. Int. J. Mol. Sci. 2024, 25, 11690. [Google Scholar] [CrossRef]
- Ruczyński, J.; Parfianowicz, B.; Mucha, P.; Wiśniewska, K.; Piechowicz, L.; Rekowski, P. Structure–Activity Relationship of New Chimeric Analogs of Mastoparan from the Wasp Venom Paravespula Lewisii. Int. J. Mol. Sci. 2022, 23, 8269. [Google Scholar] [CrossRef]
- Zhu, A.; Chen, B.; Ma, J.; Wang, J.; Tang, R.; Liu, L.; Sun, W.; Zheng, X.; Pan, G. Application of Antimicrobial Peptides in Wound Dressings. Drug Des. Dev. Ther. 2025, 19, 8523–8539. [Google Scholar] [CrossRef]
- Zhang, L.-M.; Zhou, S.-W.; Huang, X.-S.; Chen, Y.-F.; Mwangi, J.; Fang, Y.-Q.; Du, T.; Zhao, M.; Shi, L.; Lu, Q.-M. Blap-6, a Novel Antifungal Peptide from the Chinese Medicinal Beetle Blaps Rhynchopetera against Cryptococcus Neoformans. Int. J. Mol. Sci. 2024, 25, 5336. [Google Scholar] [CrossRef]
- Sinha, S.; Dhanabal, V.B.; Manivannen, V.L.; Cappiello, F.; Tan, S.-M.; Bhattacharjya, S. Ultra-Short Cyclized β-Boomerang Peptides: Structures, Interactions with Lipopolysaccharide, Antibiotic Potentiator and Wound Healing. Int. J. Mol. Sci. 2022, 24, 263. [Google Scholar] [CrossRef]
- Bhunia, A.; Mohanram, H.; Domadia, P.N.; Torres, J.; Bhattacharjya, S. Designed β-Boomerang Antiendotoxic and Antimicrobial Peptides. J. Biol. Chem. 2009, 284, 21991–22004. [Google Scholar] [CrossRef] [PubMed]
- Dvoretckaia, A.; Egorova, T.; Dzhuzha, A.; Levit, M.; Sivtsov, E.; Demyanova, E.; Korzhikova-Vlakh, E. Polymyxin B Conjugates with Bio-Inspired Synthetic Polymers of Different Nature. Int. J. Mol. Sci. 2023, 24, 1832. [Google Scholar] [CrossRef] [PubMed]
- Kravchenko, S.V.; Domnin, P.A.; Grishin, S.Y.; Panfilov, A.V.; Azev, V.N.; Mustaeva, L.G.; Gorbunova, E.Y.; Kobyakova, M.I.; Surin, A.K.; Glyakina, A.V.; et al. Multiple Antimicrobial Effects of Hybrid Peptides Synthesized Based on the Sequence of Ribosomal S1 Protein from Staphylococcus Aureus. Int. J. Mol. Sci. 2022, 23, 524. [Google Scholar] [CrossRef]
- Kumar, D.K.V.; Choi, S.H.; Washicosky, K.J.; Eimer, W.A.; Tucker, S.; Ghofrani, J.; Lefkowitz, A.; McColl, G.; Goldstein, L.E.; Tanzi, R.E.; et al. Amyloid-β Peptide Protects against Microbial Infection in Mouse and Worm Models of Alzheimer’s Disease. Sci. Transl. Med. 2016, 8. [Google Scholar] [CrossRef]
- Spitzer, P.; Condic, M.; Herrmann, M.; Oberstein, T.J.; Scharin-Mehlmann, M.; Gilbert, D.F.; Friedrich, O.; Grömer, T.; Kornhuber, J.; Lang, R.; et al. Amyloidogenic Amyloid-β-Peptide Variants Induce Microbial Agglutination and Exert Antimicrobial Activity. Sci. Rep. 2016, 6, 32228. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, Y.; Zhang, D.; Liu, Y.; Nussinov, R.; Zheng, J. Exploring Pathological Link between Antimicrobial and Amyloid Peptides. Chem. Soc. Rev. 2024, 53, 8713–8763. [Google Scholar] [CrossRef] [PubMed]
- Wani, N.A.; Gazit, E.; Ramamoorthy, A. Interplay between Antimicrobial Peptides and Amyloid Proteins in Host Defense and Disease Modulation. Langmuir 2024, 40, 25355–25366. [Google Scholar] [CrossRef]
- Likhachev, I.V.; Balabaev, N.K.; Galzitskaya, O.V. Is It Possible to Find an Antimicrobial Peptide That Passes the Membrane Bilayer with Minimal Force Resistance? An Attempt at a Predictive Approach by Molecular Dynamics Simulation. Int. J. Mol. Sci. 2022, 23, 5997. [Google Scholar] [CrossRef] [PubMed]
- Guruprasad, K.; Reddy, B.V.B.; Pandit, M.W. Correlation between Stability of a Protein and Its Dipeptide Composition: A Novel Approach for Predicting in Vivo Stability of a Protein from Its Primary Sequence. Protein Eng. Des. Sel. 1990, 4, 155–161. [Google Scholar] [CrossRef]
- Silva, J.D.M.E.; Bezerra, F.W.F.; Martins, I.R.; Fontanari, G.G.; Oliveira, J.A.R.D.; Martins, L.H.D.S. Propolis and Geopropolis from Stingless Bees as a Source of Bioactive Compounds with Antioxidant and Antimicrobial Action: A Review. Food Res. Int. 2025, 214, 116674. [Google Scholar] [CrossRef]
- Woods, D.C.; Olsson, M.A.; Heard, T.A.; Wallace, H.M.; Tran, T.D. Quality Assessment and Chemical Diversity of Australian Propolis from Tetragonula Carbonaria and Tetragonula Hockingsi Stingless Bees. Sci. Rep. 2025, 15, 17928. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, M.; Tao, J.; Liu, M.; Xiong, J.; Jiang, T.; Wang, Y.; Li, X.; Li, Y.; Yin, C.; et al. Structural Characterization, Derivatization, and Bioactivities of Secondary Metabolites Produced by Termite-Associated Streptomyces Lannensis BYF-106. Microbiol. Spectr. 2025, 13, e0181824. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, B.; Bhattacharya, S.; Khatun, S.; Bhaktham, N.A.; Maneesha, M.; Subathra Devi, C. Wasp Venom: Future Breakthrough in Production of Antimicrobial Peptides. Protein J. 2025, 44, 35–47. [Google Scholar] [CrossRef]
- Liu, Q.; Tao, J.; Kan, L.; Zhang, Y.; Zhang, S. Diversity, Antibacterial and Phytotoxic Activities of Actinomycetes Associated with Periplaneta Fuliginosa. PeerJ 2024, 12, e18575. [Google Scholar] [CrossRef]
- Mendonça, R.Z.; Nascimento, R.M.; Fernandes, A.C.O.; Silva, P.I. Antiviral Action of Aqueous Extracts of Propolis from Scaptotrigona Aff. Postica (Hymenoptera; Apidae) against Zica, Chikungunya, and Mayaro Virus. Sci. Rep. 2024, 14, 15289. [Google Scholar] [CrossRef] [PubMed]
- Ndungu, N.N.; Kegode, T.M.; Kurgat, J.K.; Baleba, S.B.S.; Cheseto, X.; Turner, S.; Tasse Taboue, G.C.; Kasina, J.M.; Subramanian, S.; Nganso, B.T. Bio-Functional Properties and Phytochemical Composition of Selected Apis Mellifera Honey from Africa. Heliyon 2024, 10, e30839. [Google Scholar] [CrossRef] [PubMed]
- Chavarría-Pizarro, L.; Núñez-Montero, K.; Gutiérrez-Araya, M.; Watson-Guido, W.; Rivera-Méndez, W.; Pizarro-Cerdá, J. Novel Strains of Actinobacteria Associated with Neotropical Social Wasps (Vespidae; Polistinae, Epiponini) with Antimicrobial Potential for Natural Product Discovery. FEMS Microbes 2024, 5, xtae005. [Google Scholar] [CrossRef]
- Dho, M.; Candian, V.; Tedeschi, R. Insect Antimicrobial Peptides: Advancements, Enhancements and New Challenges. Antibiotics 2023, 12, 952. [Google Scholar] [CrossRef]
- Niode, N.J.; Mahono, C.K.; Lolong, F.M.; Matheos, M.P.; Kepel, B.J.; Tallei, T.E. A Review of the Antimicrobial Potential of Musca Domestica as a Natural Approach with Promising Prospects to Countermeasure Antibiotic Resistance. Vet. Med. Int. 2022, 2022, 1–8. [Google Scholar] [CrossRef]
- Ye, Z.; Fu, L.; Li, S.; Chen, Z.; Ouyang, J.; Shang, X.; Liu, Y.; Gao, L.; Wang, Y. Synergistic Collaboration between AMPs and Non-Direct Antimicrobial Cationic Peptides. Nat. Commun. 2024, 15, 7319. [Google Scholar] [CrossRef]
- Eyni, A.; Goudarzi, M.; Ghadikolaii, F.P.; Dehpori, A.; Soltani, S. Synergistic Effect of a Novel Antimicrobial Peptide and Silver Nanoparticles against Drug-Resistant P. Aeruginosa. AMB Express 2025, 15, 171. [Google Scholar] [CrossRef]
- de Albernaz, D.T.F.; Allend, S.O.; Neto, A.C.P.S.; Senta, D.d.O.D.; Pinto, L.d.S.; Kremer, F.S.; Hartwig, D.D. Novel Antimicrobial Peptides Against Pseudomonas Aeruginosa: In Silico Design and Experimental Validation. J. Appl. Microbiol. 2025, 136, lxaf287. [Google Scholar] [CrossRef]
- Santos, M.H.d.M.; Endo, T.H.; Scandorieiro, S.; Pavanelli, W.R.; Kobayashi, R.K.T.; Nakazato, G. Silver Nanoparticle-Antibiotic Combinations: A Strategy to Overcome Bacterial Resistance in Escherichia Coli, Salmonella Enteritidis and Staphylococcus Aureus. Antibiotics 2025, 14, 960. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Mondal, K.; Mitchell, M.E.; Padi, S.; Klauda, J.B.; Cardone, A.; Heinrich, F.; Harris, C.R.; Giles, D.K.; Rooney, M.T.; et al. Poly-Arginine Tails and Helical Segments of Natural Antimicrobial Peptides Display Concerted Action at Membranes for Enhanced Antimicrobial Effects. ACS Bio. Med. Chem. Au 2025, 5, 706–725. [Google Scholar] [CrossRef]
- Ma, W.-Y.; Shen, K.-S.; Wang, Z.; Liu, Q.; Diao, X.-J.; Liu, G.-R. Synergistic Antimicrobial Effect and Mechanism of Enterocin Gr17 and Cinnamaldehyde against Escherichia Coli and Candida Albicans. Arch. Microbiol. 2025, 207, 195. [Google Scholar] [CrossRef]
- Ciobanasu, C. Bacterial Extracellular Vesicles and Antimicrobial Peptides: A Synergistic Approach to Overcome Antimicrobial Resistance. Antibiotics 2025, 14, 414. [Google Scholar] [CrossRef]
- Schouten, G.; Paulussen, F.; Grossmann, T.N.; Bitter, W.; van Ulsen, P. Membrane Modification and Adaptation of Metabolism by Acinetobacter Baumannii Prompts Resistance to Antimicrobial Activity of Outer Membrane Perturbing Peptide L8. J. Mol. Biol. 2025, 437, 169135. [Google Scholar] [CrossRef]
- Samgina, T.Y.; Vasileva, I.D.; Trebše, P.; Torkar, G.; Surin, A.K.; Meng, Z.; Zubarev, R.A.; Lebedev, A.T. Tandem Mass Spectrometry de Novo Sequencing of the Skin Defense Peptides of the Central Slovenian Agile Frog Rana Dalmatina. Molecules 2023, 28, 7118. [Google Scholar] [CrossRef]
- Baumann, T.; Nickling, J.H.; Bartholomae, M.; Buivydas, A.; Kuipers, O.P.; Budisa, N. Prospects of In Vivo Incorporation of Non-Canonical Amino Acids for the Chemical Diversification of Antimicrobial Peptides. Front. Microbiol. 2017, 8, 124. [Google Scholar] [CrossRef] [PubMed]
- Enninful, G.N.; Kuppusamy, R.; Tiburu, E.K.; Kumar, N.; Willcox, M.D.P. Non-canonical Amino Acid Bioincorporation into Antimicrobial Peptides and Its Challenges. J. Pept. Sci. 2024, 30, e3560. [Google Scholar] [CrossRef] [PubMed]
- Groover, K.E.; Randall, J.R.; Davies, B.W. Development of a Selective and Stable Antimicrobial Peptide. ACS Infect. Dis. 2024, 10, 2151–2160. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.H.; Richardson, J.D.; Lee, M.-R.; Lynn, D.M.; Palecek, S.P.; Van Lehn, R.C. Machine Learning-Driven Discovery of Highly Selective Antifungal Peptides Containing Non-Canonical β-Amino Acids. Chem. Sci. 2025, 16, 5579–5594. [Google Scholar] [CrossRef]
- He, Y.; Song, X.; Wan, H.; Zhao, X. AmpHGT: Expanding Prediction of Antimicrobial Activity in Peptides Containing Non-Canonical Amino Acids Using Multi-View Constrained Heterogeneous Graph Transformer. BMC Biol. 2025, 23, 184. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, S. Cyclic Peptide Drugs Approved in the Last Two Decades (2001–2021). RSC Chem. Biol. 2022, 3, 18–31. [Google Scholar] [CrossRef]
- Wessolowski, A.; Bienert, M.; Dathe, M. Antimicrobial Activity of Arginine- and Tryptophan-Rich Hexapeptides: The Effects of Aromatic Clusters, D-Amino Acid Substitution and Cyclization. J. Pept. Res. 2004, 64, 159–169. [Google Scholar] [CrossRef]
- Mitra, S.; Chen, M.-T.; Stedman, F.; Hernandez, J.; Kumble, G.; Kang, X.; Zhang, C.; Tang, G.; Daugherty, I.; Liu, W.; et al. How Unnatural Amino Acids in Antimicrobial Peptides Change Interactions with Lipid Model Membranes. J. Phys. Chem. B 2024, 128, 9772–9784. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chen, M.; Zhang, Z.; Li, Y.; Wang, P.; Luo, X.; Lv, S. Alpha-Aminoisobutyric Acid Incorporated Peptides for the Construction of Electrochemical Biosensors with High Stability and Low Fouling in Serum. Anal. Chim. Acta 2023, 1238, 340646. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Ting, J.P.; Liu, J.; Al-Azzam, S.; Pandya, P.; Afshar, S. Impact of Non-Proteinogenic Amino Acids in the Discovery and Development of Peptide Therapeutics. Amino Acids 2020, 52, 1207–1226. [Google Scholar] [CrossRef]
- Verma, D.P.; Tripathi, A.K.; Thakur, A.K. Innovative Strategies and Methodologies in Antimicrobial Peptide Design. J. Funct. Biomater. 2024, 15, 320. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Deng, H.; Ding, L.; Ye, X.; Sun, F.; Qin, C.; Chen, Z. Cationicity Enhancement on the Hydrophilic Face of Ctriporin Significantly Reduces Its Hemolytic Activity and Improves the Antimicrobial Activity against Antibiotic-Resistant ESKAPE Pathogens. Toxins 2024, 16, 156. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galzitskaya, O.V. Creation of New Antimicrobial Peptides 3: Research Promises and Shortcomings. Int. J. Mol. Sci. 2025, 26, 11992. https://doi.org/10.3390/ijms262411992
Galzitskaya OV. Creation of New Antimicrobial Peptides 3: Research Promises and Shortcomings. International Journal of Molecular Sciences. 2025; 26(24):11992. https://doi.org/10.3390/ijms262411992
Chicago/Turabian StyleGalzitskaya, Oxana V. 2025. "Creation of New Antimicrobial Peptides 3: Research Promises and Shortcomings" International Journal of Molecular Sciences 26, no. 24: 11992. https://doi.org/10.3390/ijms262411992
APA StyleGalzitskaya, O. V. (2025). Creation of New Antimicrobial Peptides 3: Research Promises and Shortcomings. International Journal of Molecular Sciences, 26(24), 11992. https://doi.org/10.3390/ijms262411992
