The Role of Gut Microbiota in Colorectal Cancer Pathogenesis: A Comprehensive Literature Review
Abstract
1. Introduction
2. Gut Microbiota Composition and Dysbiosis in CRC
2.1. Normal Gut Microbiota Architecture
2.2. Dysbiotic Signatures in CRC
2.2.1. Phylum- and Genus-Level Microbiota Alterations in CRC
2.2.2. Co-Abundance Groups and Microbial Interactions
3. Key Bacterial Species Implicated in CRC Pathogenesis
3.1. Fusobacterium nucleatum
3.1.1. Mechanisms of F. nucleatum-Mediated Carcinogenesis
Adhesion and Invasion
Inflammatory Response Induction
Immune Evasion
Chemoresistance Promotion
| Mechanism | Description | Molecular/Cellular Effects | Consequences in Carcinogenesis |
|---|---|---|---|
| 1. Adhesion and Invasion | F. nucleatum expresses surface adhesins (notably FadA) that bind to E-cadherin on intestinal epithelial cells. | Activates intracellular signaling pathways that promote cell proliferation and inhibit apoptosis. | Leads to uncontrolled epithelial cell growth and initiation of neoplastic transformation. |
| 2. Induction of Inflammatory Response | Activates innate immune signaling pathways, including Toll-like receptors (TLRs). | Upregulates pro-inflammatory cytokines: IL-6, IL-8, TNF-α. | Creates a chronic inflammatory microenvironment conducive to tumor initiation and progression. |
| 3. Immune Evasion | Suppresses anti-tumor immune surveillance through the surface protein Fap2. | Fap2 binds to the inhibitory receptor TIGIT on NK cells and T cells, inhibiting their cytotoxic activity. | Impairs immune-mediated tumor cell elimination, allowing tumor progression. |
| 4. Promotion of Chemoresistance and Metastasis | Modulates cellular pathways involved in therapy response and tumor dissemination. | Induces autophagy, alters microRNA expression profiles; can translocate with tumor cells to distant sites. | Contributes to chemotherapy resistance and metastatic spread, maintaining pro-tumorigenic activity in secondary sites. |
3.2. Bacteroides fragilis
3.2.1. BFT-Mediated Pathogenic Mechanisms
Epithelial Barrier Disruption and β-Catenin Pathway Activation
Induction of Chronic Inflammation and Th17-Mediated Immune Responses
Experimental Evidence and Tumorigenic Potential
Integrated Pathophysiological Perspective
3.3. Escherichia coli
3.3.1. Colibactin Biosynthesis and Mechanism of Action
3.3.2. Impact on Host Cellular Pathways and Genomic Instability
3.3.3. Epidemiological and Experimental Evidence
3.3.4. Synergistic Interactions Within the Tumor Microbiome
3.3.5. Pathophysiological Implications
4. Molecular Mechanisms Linking Gut Microbiota to CRC
4.1. Chronic Inflammation
4.2. Immune System Modulation
4.3. Metabolic Reprogramming
4.3.1. Harmful Microbial Metabolites
4.3.2. Protective Microbial Metabolites
4.4. Direct Genotoxic Effects
4.5. Synergistic Interactions Among CRC-Associated Bacteria
4.5.1. Evidence for Polymicrobial Cooperation
4.5.2. Mechanistic Basis for Synergistic Pathogenesis
Sequential and Complementary Genotoxicity
Immune Evasion Networks
Metabolic Cooperation
Biofilm Formation and Spatial Organization
4.5.3. Clinical and Translational Implications
5. Gut Microbiota as Diagnostic Biomarkers
Methods for Bacterial Detection and Characterization
6. Therapeutic Implications
6.1. Microbiota-Targeted Interventions
6.1.1. Selective Antimicrobial Strategies Targeting CRC-Associated Bacteria
Targeted Antibiotic Approaches for F. nucleatum
Targeting ETBF
Strategies Against pks+ E. coli
Bacteriophage Therapy
Antimicrobial Peptides and Bacteriocins
Challenges and Future Directions
6.2. Enhancement of Cancer Therapy Efficacy
7. Future Directions and Challenges
8. Integrating Microbiota into the Framework of CRC Heterogeneity
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, T.; Guo, Y.; Qiu, B.; Dai, X.; Wang, Y.; Cao, X. Global, regional, and national trends in colorectal cancer burden from 1990 to 2021 and projections to 2040. Front. Oncol. 2025, 14, 1466159. [Google Scholar] [CrossRef]
- Murphy, N.; Moreno, V.; Hughes, D.J.; Vodicka, L.; Vodicka, P.; Aglago, E.K.; Gunter, M.J.; Jenab, M. Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol. Aspects Med. 2019, 69, 2–9. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Goel, A.; Chung, D.C. Pathways of Colorectal Carcinogenesis. Gastroenterology 2020, 158, 291–302. [Google Scholar] [CrossRef]
- Li, J.; Pan, J.; Wang, L.; Ji, G.; Dang, Y. Colorectal Cancer: Pathogenesis and Targeted Therapy. MedComm 2025, 6, e70127. [Google Scholar] [CrossRef]
- John, H.T.; Thomas, T.C.; Chukwuebuka, E.C.; Ali, A.B.; Anass, R.; Tefera, Y.Y.; Babu, B.; Negrut, N.; Ferician, A.; Marian, P. The Microbiota–Human Health Axis. Microorganisms 2025, 13, 948. [Google Scholar] [CrossRef]
- Fujisaka, S.; Watanabe, Y.; Tobe, K. The gut microbiome: A core regulator of metabolism. J. Endocrinol. 2023, 256, e220111. [Google Scholar] [CrossRef]
- Singh, G.; Chaudhry, Z.; Boyadzhyan, A.; Sasaninia, K.; Rai, V. Dysbiosis and colorectal cancer: Conducive factors, biological and molecular role, and therapeutic prospectives. Explor. Target. Antitumor Ther. 2025, 6, 1002329. [Google Scholar] [CrossRef] [PubMed]
- Cintoni, M.; Palombaro, M.; Zoli, E.; D’agostino, G.; Pulcini, G.; Leonardi, E.; Raoul, P.; Rinninella, E.; De Maio, F.; Capristo, E.; et al. The Interplay Between the Gut Microbiota and Colorectal Cancer: A Review of the Literature. Microorganisms 2025, 13, 1410. [Google Scholar] [CrossRef]
- Artemev, A.; Naik, S.; Pougno, A.; Honnavar, P.; Shanbhag, N.M. The Association of Microbiome Dysbiosis with Colorectal Cancer. Cureus 2022, 14, e22156. [Google Scholar] [CrossRef]
- Safarchi, A.; Al-Qadami, G.; Tran, C.D.; Conlon, M. Understanding dysbiosis and resilience in the human gut microbiome: Biomarkers, interventions, and challenges. Front. Microbiol. 2025, 16, 1559521. [Google Scholar] [CrossRef] [PubMed]
- Sreenikitha, K.; Das, S.; Andrighetti, T.; Sudhakar, P. Comparative study of the gut microbiomes between Western and Indigenous cultures—Implications for health and disease. Microbe 2025, 7, 100310. [Google Scholar] [CrossRef]
- Soldán, M.; Argalášová, Ľ.; Hadvinová, L.; Galileo, B.; Babjaková, J. The Effect of Dietary Types on Gut Microbiota Composition and Development of Non-Communicable Diseases: A Narrative Review. Nutrients 2024, 16, 3134. [Google Scholar] [CrossRef]
- Yuan, Q.; Liu, J.; Wang, X.; Du, C.; Zhang, Y.; Lin, L.; Wang, C.; Hong, Z. Deciphering the impact of dietary habits and behavioral patterns on colorectal cancer. Int. J. Surg. 2025, 111, 2603–2612. [Google Scholar] [CrossRef]
- Chu, A.H.; Lin, K.; Croker, H.; Kefyalew, S.; Becerra-Tomás, N.; Dossus, L.; González-Gil, E.M.; Ahmadi, N.; Park, Y.; Krebs, J.; et al. Dietary patterns and colorectal cancer risk: Global Cancer Update Programme (CUP Global) systematic literature review. Am. J. Clin. Nutr. 2025, 121, 999–1016. [Google Scholar] [CrossRef] [PubMed]
- Modeel, S.; Siwach, S.; Dolkar, P.; Chaurasia, M.; Yadav, P.; Atri, A.; Yadav, A.; Negi, T.; Negi, R.K. Emerging Risk Factors and the Role of Gut Microbiota in Immunomodulation and Therapeutic Implications in Colorectal Cancer. Cancer Pathog. Ther. 2025, 4, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Li, Y.; Güngör, C.; Ge, H. Gut microbiota influences colorectal cancer through immune cell interactions: A Mendelian randomization study. Discov. Oncol. 2025, 16, 747. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Li, G.; Li, Q.; Wang, W.; Zhao, X.; Shao, N.; Qiu, H.; Liu, J.; Xu, L.; Zhao, J. Distribution of gut microbiota across intestinal segments and their impact on human physiological and pathological processes. Cell Biosci. 2025, 15, 47. [Google Scholar] [CrossRef]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Shen, H. Microbes in Health and Disease: Human Gut Microbiota. Appl. Sci. 2024, 14, 11354. [Google Scholar] [CrossRef]
- Sánchez-Alcoholado, L.; Ramos-Molina, B.; Otero, A.; Laborda-Illanes, A.; Ordóñez, R.; Medina, J.A.; Gómez-Millán, J.; Queipo-Ortuño, M.I. The Role of the Gut Microbiome in Colorectal Cancer Development and Therapy Response. Cancers 2020, 12, 1406. [Google Scholar] [CrossRef]
- Xie, W.; Sharma, A.; Kaushik, H.; Sharma, L.; Nistha; Anwer, K.; Sachdeva, M.; Elossaily, G.M.; Zhang, Y.; Pillappan, R.; et al. Shaping the future of gastrointestinal cancers through metabolic interactions with host gut microbiota. Heliyon 2024, 10, e35336. [Google Scholar] [CrossRef] [PubMed]
- Torshizi Esfahani, A.; Zafarjafarzadeh, N.; Vakili, F.; Bizhanpour, A.; Mashaollahi, A.; Kordestani, B.K.; Baratinamin, M.; Mohammadpour, S. Gut microbiome in colorectal cancer: Metagenomics from bench to bedside. JNCI Cancer Spectr. 2025, 9, pkaf026. [Google Scholar] [CrossRef]
- Qian, L.M.; Wang, S.X.; Zhou, W.; Qin, Z.-X.; Wang, Y.-N.; Zhao, Q.; Xu, R.-H. Individualized metagenomic network model for colorectal cancer diagnosis: Insights into viral regulation of gut microecology. Brief. Bioinform. 2025, 26, bbaf208. [Google Scholar] [CrossRef]
- Hale, V.L.; Chen, J.; Johnson, S.; Harrington, S.C.; Yab, T.C.; Smyrk, T.C.; Nelson, H.; Boardman, L.A.; Druliner, B.R.; Levin, T.R.; et al. Shifts in the Fecal Microbiota Associated with Adenomatous Polyps. Cancer Epidemiol. Biomark. Prev. 2017, 26, 85–94. [Google Scholar] [CrossRef]
- Tse, B.C.Y.; Welham, Z.; Engel, A.F.; Molloy, M.P. Genomic, Microbial and Immunological Microenvironment of Colorectal Polyps. Cancers 2021, 13, 3382. [Google Scholar] [CrossRef]
- Zhou, C.; Ye, X.; Liu, Z.; Liu, T.; Li, S.; Yang, J.; Wei, J.; Yu, P.; Jia, R.; Zhao, W. Dissecting the causal links between gut microbiome, immune traits and polyp using genetic evidence. Front. Immunol. 2024, 15, 1431990. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, Y.; Xu, J.; Cao, H.; Zhang, F.; Wang, X. Gut microbiota signatures in tissues of the colorectal polyp and normal colorectal mucosa, and faeces. Front. Cell. Infect. Microbiol. 2023, 12, 1054808. [Google Scholar] [CrossRef] [PubMed]
- Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients 2020, 12, 1474. [Google Scholar] [CrossRef]
- Pandey, H.; Tang, D.W.T.; Wong, S.H.; Lal, D. Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers 2023, 15, 866. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Lee, G.; Son, H.; Koh, H.; Kim, E.S.; Unno, T.; Shin, J.-H. Butyrate producers, “The Sentinel of Gut”: Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front. Microbiol. 2023, 13, 1103836. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, J.; Ma, Y.; Liu, J.; Cui, Y.; Yuan, Y.; Xiang, C.; Ma, D.; Liu, H. The microbiome types of colorectal tissue are potentially associated with the prognosis of patients with colorectal cancer. Front. Microbiol. 2023, 14, 1100873. [Google Scholar] [CrossRef]
- Garvey, M. Intestinal Dysbiosis: Microbial Imbalance Impacts on Colorectal Cancer Initiation, Progression and Disease Mitigation. Biomedicines 2024, 12, 740. [Google Scholar] [CrossRef]
- Dewan, A.; Tattoli, I.; Mascellino, M.T. The Impact of Fusobacterium nucleatum and the Genotypic Biomarker KRAS on Colorectal Cancer Pathogenesis. Int. J. Mol. Sci. 2025, 26, 6958. [Google Scholar] [CrossRef]
- Galasso, L.; Termite, F.; Mignini, I.; Esposto, G.; Borriello, R.; Vitale, F.; Nicoletti, A.; Paratore, M.; Ainora, M.E.; Gasbarrini, A.; et al. Unraveling the Role of Fusobacterium nucleatum in Colorectal Cancer: Molecular Mechanisms and Pathogenic Insights. Cancers 2025, 17, 368. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, Z.; Tang, Z.; Huang, Y.; Huang, M.; Liu, H.; Ziebolz, D.; Schmalz, G.; Jia, B.; Zhao, J. More Than Just a Periodontal Pathogen -the Research Progress on Fusobacterium nucleatum. Front. Cell. Infect. Microbiol. 2022, 12, 815318. [Google Scholar] [CrossRef]
- Greabu, M.; Giampieri, F.; Imre, M.M.; Mohora, M.; Totan, A.; Pituru, S.M.; Ionescu, E. Autophagy, One of the Main Steps in Periodontitis Pathogenesis and Evolution. Molecules 2020, 25, 4338. [Google Scholar] [CrossRef]
- Brennan, C.A.; Garrett, W.S. Fusobacterium nucleatum—Symbiont, opportunist and oncobacterium. Nat. Rev. Microbiol. 2019, 17, 156–166. [Google Scholar] [CrossRef]
- Wolf, M.; Steinberg, T.; Scholz, K.J.; Kruse, A.; Rezasoltani, S.; Conrads, G.; Al-Ahmad, A.; Cieplik, F. The rise and evolving role of Fusobacterium nucleatum subspecies. Curr. Res. Microb. Sci. 2025, 9, 100414. [Google Scholar] [CrossRef] [PubMed]
- Zepeda-Rivera, M.; Minot, S.S.; Bouzek, H.; Wu, H.; Blanco-Míguez, A.; Manghi, P.; Jones, D.S.; LaCourse, K.D.; Wu, Y.; McMahon, E.F.; et al. A distinct Fusobacterium nucleatum clade dominates the colorectal cancer niche. Nature 2024, 628, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, Y.; Li, J.; Zhao, L.; Yan, W.; Lin, B.; Guo, X.; Wei, Y. Fusobacterium nucleatum Acts as a Pro-carcinogenic Bacterium in Colorectal Cancer: From Association to Causality. Front. Cell Dev. Biol. 2021, 9, 710165. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Wang, Y.; Sun, H.; Bao, S.; Ge, S.; Quan, C. The role of Fusobacterium nucleatum in macrophage M2 polarization and NF-κB pathway activation in colorectal cancer. Front. Immunol. 2025, 16, 1549564. [Google Scholar] [CrossRef]
- Sherry, C.; Dadgar, N.; Park, H.; Knotts, C.; Grayhack, E.; Blodgett, R.; Xiao, K.; Omstead, A.N.; Donnenberg, A.D.; Bartlett, D.L.; et al. Fusobacterium nucleatum Is Associated with Tumor Characteristics, Immune Microenvironment, and Survival in Appendiceal Cancer. Microorganisms 2025, 13, 1644. [Google Scholar] [CrossRef]
- Gur, C.; Ibrahim, Y.; Isaacson, B.; Yamin, R.; Abed, J.; Gamliel, M.; Enk, J.; Bar-On, Y.; Stanietsky-Kaynan, N.; Coppenhagen-Glazer, S.; et al. Binding of the Fap2 Protein of Fusobacterium nucleatum to Human Inhibitory Receptor TIGIT Protects Tumors from Immune Cell Attack. Immunity 2015, 42, 344–355. [Google Scholar] [CrossRef]
- Schöpf, F.; Marongiu, G.L.; Milaj, K.; Sprink, T.; Kikhney, J.; Moter, A.; Roderer, D. Structural basis of Fusobacterium nucleatum adhesin Fap2 interaction with receptors on cancer and immune cells. Nat. Commun. 2025, 16, 8104. [Google Scholar] [CrossRef]
- Yu, T.; Guo, F.; Yu, Y.; Sun, T.; Ma, D.; Han, J.; Qian, Y.; Kryczek, I.; Sun, D.; Nagarsheth, N.; et al. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell 2017, 170, 548–563.e16. [Google Scholar] [CrossRef] [PubMed]
- Consolo, P.; Giorgi, C.; Crisafulli, C.; Fiorica, F.; Pinton, P.; Maurea, N.; Missiroli, S.; Quagliariello, V.; Mantoan, B.; Ottaiano, A.; et al. Investigating the Impact of Fusobacterium nucleatum on Oxidative Stress, Chemoresistance, and Inflammation in Inflammatory Bowel Disease and Colorectal Cancer: Rationale and Design of a Clinical Trial. Int. J. Mol. Sci. 2025, 26, 7823. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, P.; Liu, D.; Liu, Y.; Ran, Z.; Yang, L.; Xu, L.; Yin, W.; Chen, F.; Li, L.; et al. Gram-negative intratumoral bacteria mediate lymph node metastasis through LPS-TLR4/MAPK signaling pathway in cervical cancer. J. Infect. 2025, 91, 106532. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Liu, X.; Liu, Z.; Pan, C.; Zhang, X.; Zhao, Z.; Sun, H. Fusobacterium nucleatum in tumors: From tumorigenesis to tumor metastasis and tumor resistance. Cancer Biol. Ther. 2024, 25, 2306676. [Google Scholar] [CrossRef]
- Lee, C.-G.; Hwang, S.; Gwon, S.-Y.; Park, C.; Jo, M.; Hong, J.-E.; Rhee, K.-J. Bacteroides fragilis Toxin Induces Intestinal Epithelial Cell Secretion of Interleukin-8 by the E-Cadherin/β-Catenin/NF-κB Dependent Pathway. Biomedicines 2022, 10, 827. [Google Scholar] [CrossRef]
- Lialios, P.; Alimperti, S. Role of E-cadherin in epithelial barrier dysfunction: Implications for bacterial infection, inflammation, and disease pathogenesis. Front. Cell. Infect. Microbiol. 2025, 15, 1506636. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 2022, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Powell, J.; Mathioudakis, N.; Kane, S.; Fernandez, E.; Sears, C.L. Bacteroides fragilis Enterotoxin Induces Intestinal Epithelial Cell Secretion of Interleukin-8 through Mitogen-Activated Protein Kinases and a Tyrosine Kinase-Regulated Nuclear Factor-κB Pathway. Infect. Immun. 2004, 72, 5832–5839. [Google Scholar] [CrossRef]
- Purcell, R.V.; Permain, J.; Keenan, J.I. Enterotoxigenic Bacteroides fragilis activates IL-8 expression through Stat3 in colorectal cancer cells. Gut Pathog. 2022, 14, 16. [Google Scholar] [CrossRef]
- Rhee, K.-J.; Wu, S.; Wu, X.; Huso, D.L.; Karim, B.; Franco, A.A.; Rabizadeh, S.; Golub, J.E.; Mathews, L.E.; Shin, J.; et al. Induction of Persistent Colitis by a Human Commensal, Enterotoxigenic Bacteroides fragilis, in Wild-Type C57BL/6 Mice. Infect. Immun. 2009, 77, 1708–1718. [Google Scholar] [CrossRef]
- Chan, J.L.; Wu, S.; Geis, A.L.; Chan, G.V.; Gomes, T.A.M.; Beck, S.E.; Wu, X.; Fan, H.; Tam, A.J.; Chung, L.; et al. Non-toxigenic Bacteroides fragilis (NTBF) administration reduces bacteria-driven chronic colitis and tumor development independent of polysaccharide A. Mucosal Immunol. 2019, 12, 164–177. [Google Scholar] [CrossRef]
- Kang, Z.; Jiang, S.; Fang, J.Y.; Chen, H. Intestinal dysbiosis and colorectal cancer. Chin. Med. J. 2025, 138, 1266–1287. [Google Scholar] [CrossRef]
- Weaver, C.T.; Elson, C.O.; Fouser, L.A.; Kolls, J.K. The Th17 Pathway and Inflammatory Diseases of the Intestines, Lungs, and Skin. Annu. Rev. Pathol. Mech. Dis. 2013, 8, 477–512. [Google Scholar] [CrossRef]
- Lv, C.; Abdullah, M.; Chen, W.; Zhou, N.; Cheng, Z.; Chen, Y.; Li, M.; Simpson, K.W.; Elsaadi, A.; Zhu, Y.; et al. Genomic characterization of Escherichia coli harbor a polyketide synthase (pks) island associated with colorectal cancer (CRC) development. bioRxiv 2024. [Google Scholar] [CrossRef]
- Chagneau, C.V.; Payros, D.; Tang-Fichaux, M.; Auvray, F.; Nougayrède, J.P.; Oswald, E. The pks island: A bacterial Swiss army knife? Colibactin: Beyond DNA damage and cancer. Trends Microbiol. 2022, 30, 1146–1159. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, M.W.; Valdés-Mas, R.; Wernke, K.M.; Gharaibeh, R.Z.; Yang, Y.; Brant, J.O.; Riva, A.; Muehlbauer, M.; Elinav, E.; Puschhof, J.; et al. The microbial genotoxin colibactin exacerbates mismatch repair mutations in colorectal tumors. Neoplasia 2023, 43, 100918. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, D. The synthesis of the novel Escherichia coli toxin—Colibactin and its mechanisms of tumorigenesis of colorectal cancer. Front. Microbiol. 2024, 15, 1501973. [Google Scholar] [CrossRef]
- Dziubańska-Kusibab, P.J.; Berger, H.; Battistini, F.; Bouwman, B.A.M.; Iftekhar, A.; Katainen, R.; Cajuso, T.; Crosetto, N.; Orozco, M.; Aaltonen, L.A.; et al. Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nat. Med. 2020, 26, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Gay, M.; dos Santos, W.; Moody, S.; Kazachkova, M.; Abbasi, A.; Steele, C.D.; Vangara, R.; Senkin, S.; Wang, J.; Fitzgerald, S.; et al. Geographic and age variations in mutational processes in colorectal cancer. Nature 2025, 643, 230–240. [Google Scholar] [CrossRef]
- Georgeson, P.; Steinfelder, R.S.; Harrison, T.A.; Pope, B.J.; Zaidi, S.H.; Qu, C.; Lin, Y.; Joo, J.E.; Mahmood, K.; Clendenning, M.; et al. Genotoxic colibactin mutational signature in colorectal cancer is associated with clinicopathological features, specific genomic alterations and better survival. MedRxiv 2023. [Google Scholar] [CrossRef]
- Dougherty, M.W.; Jobin, C. Shining a Light on Colibactin Biology. Toxins 2021, 13, 346. [Google Scholar] [CrossRef] [PubMed]
- Faïs, T.; Delmas, J.; Barnich, N.; Bonnet, R.; Dalmasso, G. Colibactin: More Than a New Bacterial Toxin. Toxins 2018, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Iyadorai, T.; Mariappan, V.; Vellasamy, K.M.; Wanyiri, J.W.; Roslani, A.C.; Lee, G.K.; Sears, C.; Vadivelu, J. Prevalence and association of pks+ Escherichia coli with colorectal cancer in patients at the University Malaya Medical Centre, Malaysia. PLoS ONE 2020, 15, e0228217. [Google Scholar] [CrossRef]
- Shimpoh, T.; Hirata, Y.; Ihara, S.; Suzuki, N.; Kinoshita, H.; Hayakawa, Y.; Ota, Y.; Narita, A.; Yoshida, S.; Yamada, A.; et al. Prevalence of pks-positive Escherichia coli in Japanese patients with or without colorectal cancer. Gut Pathog. 2017, 9, 35. [Google Scholar] [CrossRef]
- Gaab, M.E.; Lozano, P.O.; Ibañez, D.; Manese, K.D.; Riego, F.M.; Tiongco, R.E.; Albano, P.M. A Meta-Analysis on the Association of Colibactin-Producing pks + Escherichia coli with the Development of Colorectal Cancer. Lab. Med. 2023, 54, 75–82. [Google Scholar] [CrossRef]
- Arthur, J.C. Microbiota and colorectal cancer: Colibactin makes its mark. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 317–318. [Google Scholar] [CrossRef]
- Gong, D.; Adomako-Bonsu, A.G.; Wang, M.; Li, J. Three specific gut bacteria in the occurrence and development of colorectal cancer: A concerted effort. PeerJ 2023, 11, e15777. [Google Scholar] [CrossRef]
- Chen, B.; Ramazzotti, D.; Heide, T.; Spiteri, I.; Fernandez-Mateos, J.; James, C.; Magnani, L.; Graham, T.A.; Sottoriva, A. Contribution of pks+ E. coli mutations to colorectal carcinogenesis. Nat. Commun. 2023, 14, 7827. [Google Scholar] [CrossRef]
- Grellier, N.; Severino, A.; Archilei, S.; Kim, J.; Gasbarrini, A.; Cammarota, G.; Porcari, S.; Benech, N. Gut microbiota in inflammation and colorectal cancer: A potential Toolbox for Clinicians. Best Pract. Res. Clin. Gastroenterol. 2024, 72, 101942. [Google Scholar] [CrossRef]
- Peng, C.; Ouyang, Y.; Lu, N.; Li, N. The NF-κB Signaling Pathway, the Microbiota, and Gastrointestinal Tumorigenesis: Recent Advances. Front. Immunol. 2020, 11, 1387. [Google Scholar] [CrossRef]
- Zou, S.; Fang, L.; Lee, M.H. Dysbiosis of gut microbiota in promoting the development of colorectal cancer. Gastroenterol. Rep. 2018, 6, 1–12. [Google Scholar] [CrossRef]
- Lu, R.; Zhang Yguo Sun, J. STAT3 activation in infection and infection-associated cancer. Mol. Cell. Endocrinol. 2017, 451, 80–87. [Google Scholar] [CrossRef]
- Basak, D.; Uddin, M.N.; Hancock, J. The Role of Oxidative Stress and Its Counteractive Utility in Colorectal Cancer (CRC). Cancers 2020, 12, 3336. [Google Scholar] [CrossRef]
- Sorolla, M.A.; Hidalgo, I.; Sorolla, A.; Montal, R.; Pallisé, O.; Salud, A.; Parisi, E. Microenvironmental Reactive Oxygen Species in Colorectal Cancer: Involved Processes and Therapeutic Opportunities. Cancers 2021, 13, 5037. [Google Scholar] [CrossRef]
- Lugano, R.; Ramachandran, M.; Dimberg, A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell. Mol. Life Sci. 2020, 77, 1745–1770. [Google Scholar] [CrossRef] [PubMed]
- Nie, F.; Sun, X.; Sun, J.; Zhang, J.; Wang, Y. Epithelial-mesenchymal transition in colorectal cancer metastasis and progression: Molecular mechanisms and therapeutic strategies. Cell Death Discov. 2025, 11, 336. [Google Scholar] [CrossRef] [PubMed]
- Neagu, A.I.; Bostan, M.; Ionescu, V.A.; Gheorghe, G.; Hotnog, C.M.; Roman, V.; Mihaila, M.; Stoica, S.I.; Diaconu, C.C.; Diaconu, C.C.; et al. The Impact of the Microbiota on the Immune Response Modulation in Colorectal Cancer. Biomolecules 2025, 15, 1005. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Lv, Y.; Zuo, A.; Zhu, X.; Xu, Y.; Zuo, L.; Xu, H.; Liu, S.; Zhang, Y.; Weng, S.; et al. Interactions between microbiota and innate immunity in tumor microenvironment: Novel insights into cancer progression and immunotherapy. hLife 2025, 3, 462–493. [Google Scholar] [CrossRef]
- Xiao, Z.; Wang, R.; Wang, X.; Yang, H.; Dong, J.; He, X.; Yang, Y.; Guo, J.; Cui, J.; Zhou, Z. Impaired function of dendritic cells within the tumor microenvironment. Front. Immunol. 2023, 14, 1213629. [Google Scholar] [CrossRef]
- Mohseni, A.H.; Taghinezhad, S.S.; Casolaro, V.; Lv, Z.; Li, D. Potential links between the microbiota and T cell immunity determine the tumor cell fate. Cell Death Dis. 2023, 14, 154. [Google Scholar] [CrossRef] [PubMed]
- Pang, B.; Wu, H. Metabolic reprogramming in colorectal cancer: A review of aerobic glycolysis and its therapeutic implications for targeted treatment strategies. Cell Death Discov. 2025, 11, 321. [Google Scholar] [CrossRef]
- Qin, R.; Fan, X.; Huang, Y.; Chen, S.; Ding, R.; Yao, Y.; Wu, R.; Duan, Y.; Li, X.; Khan, H.U.; et al. Role of glucose metabolic reprogramming in colorectal cancer progression and drug resistance. Transl. Oncol. 2024, 50, 102156. [Google Scholar] [CrossRef]
- Nenkov, M.; Ma, Y.; Gaßler, N.; Chen, Y. Metabolic Reprogramming of Colorectal Cancer Cells and the Microenvironment: Implication for Therapy. Int. J. Mol. Sci. 2021, 22, 6262. [Google Scholar] [CrossRef]
- Kiriyama, Y.; Nochi, H. The Role of Gut Microbiota-Derived Lithocholic Acid, Deoxycholic Acid and Their Derivatives on the Function and Differentiation of Immune Cells. Microorganisms 2023, 11, 2730. [Google Scholar] [CrossRef]
- Jang, J.Y.; Im, E.; Choi, Y.H.; Kim, N.D. Mechanism of Bile Acid-Induced Programmed Cell Death and Drug Discovery against Cancer: A Review. Int. J. Mol. Sci. 2022, 23, 7184. [Google Scholar] [CrossRef]
- Dordević, D.; Jančíková, S.; Vítězová, M.; Kushkevych, I. Hydrogen sulfide toxicity in the gut environment: Meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes. J. Adv. Res. 2021, 27, 55–69. [Google Scholar] [CrossRef] [PubMed]
- Stummer, N.; Feichtinger, R.G.; Weghuber, D.; Kofler, B.; Schneider, A.M. Role of Hydrogen Sulfide in Inflammatory Bowel Disease. Antioxidants 2023, 12, 1570. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, P.P.; Zhao, J.; Green, R.; Sun, Z.; Roebothan, B.; Squires, J.; Buehler, S.; Dicks, E.; Zhao, J.; et al. Dietary N -nitroso compounds and risk of colorectal cancer: A case–control study in Newfoundland and Labrador and Ontario, Canada. Br. J. Nutr. 2014, 111, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Deleu, S.; Machiels, K.; Raes, J.; Verbeke, K.; Vermeire, S. Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMedicine 2021, 66, 103293. [Google Scholar] [CrossRef]
- Salvi, P.S.; Cowles, R.A. Butyrate and the Intestinal Epithelium: Modulation of Proliferation and Inflammation in Homeostasis and Disease. Cells 2021, 10, 1775. [Google Scholar] [CrossRef]
- Mederle, A.L.; Semenescu, A.; Drăghici, G.A.; Dehelean, C.A.; Vlăduț, N.V.; Nica, D.V. Sodium Butyrate: A Multifaceted Modulator in Colorectal Cancer Therapy. Medicina 2025, 61, 136. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Li, J.; Ying, S. Tryptophan Metabolism and Gut Microbiota: A Novel Regulatory Axis Integrating the Microbiome, Immunity, and Cancer. Metabolites 2023, 13, 1166. [Google Scholar] [CrossRef]
- Jasemi, S.; Molicotti, P.; Fais, M.; Cossu, I.; Simula, E.R.; Sechi, L.A. Biological Mechanisms of Enterotoxigenic Bacteroides fragilis Toxin: Linking Inflammation, Colorectal Cancer, and Clinical Implications. Toxins 2025, 17, 305. [Google Scholar] [CrossRef]
- Sameni, F.; Elkhichi, P.A.; Dadashi, A.; Sadeghi, M.; Goudarzi, M.; Eshkalak, M.P.; Dadashi, M. Global prevalence of Fusobacterium nucleatum and Bacteroides fragilis in patients with colorectal cancer: An overview of case reports/case series and meta-analysis of prevalence studies. BMC Gastroenterol. 2025, 25, 71. [Google Scholar] [CrossRef]
- Conde-Pérez, K.; Aja-Macaya, P.; Buetas, E.; Trigo-Tasende, N.; Nasser-Ali, M.; Rumbo-Feal, S.; Nión, P.; Arribas, E.M.; Estévez, L.S.; Otero-Alén, B.; et al. The multispecies microbial cluster of Fusobacterium, Parvimonas, Bacteroides and Faecalibacterium as a precision biomarker for colorectal cancer diagnosis. Mol. Oncol. 2024, 18, 1093–1122. [Google Scholar] [CrossRef]
- Yu, M.R.; Kim, H.J.; Park, H.R. Fusobacterium nucleatum Accelerates the Progression of Colitis-Associated Colorectal Cancer by Promoting EMT. Cancers 2020, 12, 2728. [Google Scholar] [CrossRef]
- Chu, Y.L.; Georgeson, P.; Clendenning, M.; Mahmood, K.; Walker, R.; Como, J.; Joseland, S.; Preston, S.G.; Rice, T.; Lynch, B.M.; et al. Intratumoural pks Escherichia coli is associated with risk of metachronous colorectal cancer and adenoma development in people with Lynch syndrome. EBioMedicine 2025, 114, 105661. [Google Scholar] [CrossRef]
- Miyasaka, T.; Yamada, T.; Uehara, K.; Sonoda, H.; Matsuda, A.; Shinji, S.; Ohta, R.; Kuriyama, S.; Yokoyama, Y.; Takahashi, G.; et al. Pks-positive Escherichia coli in tumor tissue and surrounding normal mucosal tissue of colorectal cancer patients. Cancer Sci. 2024, 115, 1184–1195. [Google Scholar] [CrossRef]
- Zaher, K.; Basingab, F. Interaction between Gut Microbiota and Dendritic Cells in Colorectal Cancer. Biomedicines 2023, 11, 3196. [Google Scholar] [CrossRef]
- Sadeghi, M.; Mestivier, D.; Sobhani, I. Contribution of pks+ Escherichia coli (E. coli) to Colon Carcinogenesis. Microorganisms 2024, 12, 1111. [Google Scholar] [CrossRef]
- Jovel, J.; Patterson, J.; Wang, W.; Hotte, N.; O’Keefe, S.; Mitchel, T.; Perry, T.; Kao, D.; Mason, A.L.; Madsen, K.L.; et al. Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics. Front. Microbiol. 2016, 7, 459. [Google Scholar] [CrossRef]
- Bowler, P.; Murphy, C.; Wolcott, R. Biofilm exacerbates antibiotic resistance: Is this a current oversight in antimicrobial stewardship? Antimicrob. Resist. Infect. Control 2020, 9, 162. [Google Scholar] [CrossRef]
- Herlo, L.-F.; Salcudean, A.; Sirli, R.; Iurciuc, S.; Herlo, A.; Nelson-Twakor, A.; Alexandrescu, L.; Dumache, R. Gut Microbiota Signatures in Colorectal Cancer as a Potential Diagnostic Biomarker in the Future: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 7937. [Google Scholar] [CrossRef]
- Eslami, M.; Naderian, R.; Bahar, A.; Babaeizad, A.; Gheshlagh, S.R.; Oksenych, V.; Tahmasebi, H. Microbiota as diagnostic biomarkers: Advancing early cancer detection and personalized therapeutic approaches through microbiome profiling. Front. Immunol. 2025, 16, 1559480. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Han, S.M.; Lee, J.Y.; Kim, K.S.; Lee, J.E.; Lee, D.W. Advancing Gut Microbiome Research: The Shift from Metagenomics to Multi-Omics and Future Perspectives. J Microbiol. Biotechnol. 2025, 35, e2412001. [Google Scholar] [CrossRef]
- Li, R.; Hao, X.; Diao, Y.; Yang, L.; Liu, J. Explainable Machine Learning Models for Colorectal Cancer Prediction Using Clinical Laboratory Data. Cancer Control 2025, 32, 10732748251336417. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Wang, Y.; Qu, R.; Yang, Q.; Luo, R.; Jiang, Z.; Wang, H.; Fu, W. Comprehensive application of artificial intelligence in colorectal cancer: A review. iScience 2025, 28, 112980. [Google Scholar] [CrossRef]
- Tudorache, M.; Treteanu, A.R.; Gradisteanu Pircalabioru, G.; Lixandru-Petre, I.O.; Bolocan, A.; Andronic, O. Gut Microbiome Alterations in Colorectal Cancer: Mechanisms, Therapeutic Strategies, and Precision Oncology Perspectives. Cancers 2025, 17, 2294. [Google Scholar] [CrossRef]
- Cristofori, F.; Dargenio, V.N.; Dargenio, C.; Miniello, V.L.; Barone, M.; Francavilla, R. Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body. Front. Immunol. 2021, 12, 578386. [Google Scholar] [CrossRef] [PubMed]
- Makki, K.; Deehan, E.C.; Walter, J.; Bäckhed, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Fong, W.; Li, Q.; Yu, J. Gut microbiota modulation: A novel strategy for prevention and treatment of colorectal cancer. Oncogene 2020, 39, 4925–4943. [Google Scholar] [CrossRef]
- Wekking, D.; Ende Tvan den Bijlsma, M.F.; Vidal-Itriago, A.; Nieuwdorp, M.; van Laarhoven, H.W.M. Fecal microbiota transplantation to enhance cancer treatment outcomes across different cancer types: A systematic literature review. Cancer Treat. Rev. 2025, 140, 103025. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, L. Fusobacterium nucleatum carcinogenesis and drug delivery interventions. Adv. Drug Deliv. Rev. 2024, 209, 115319. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Yang, X.; Liu, Z.; Wang, K.; Gong, D.; Li, J. Effects of metronidazole on colorectal cancer occurrence and colorectal cancer liver metastases by regulating Fusobacterium nucleatum in mice. Immun. Inflamm. Dis. 2023, 11, e1067. [Google Scholar] [CrossRef]
- Kowsarkhizi, A.S.; Yousefi, B.; Rahimi, A.; Aliramezani, A. Targeting Fusobacterium nucleatum in colorectal cancer: Therapeutic strategies and future directions. Infect. Agent Cancer 2025, 20, 70. [Google Scholar] [CrossRef]
- Arif, B.; Yasir, S.; Saeed, M.; Fatmi, M.Q. Natural products can be potential inhibitors of metalloproteinase II from Bacteroides fragilis to intervene colorectal cancer. Heliyon 2024, 10, e32838. [Google Scholar] [CrossRef]
- Cougnoux, A.; Delmas, J.; Gibold, L.; Faïs, T.; Romagnoli, C.; Robin, F.; Cuevas-Ramos, G.; Oswald, E.; Darfeuille-Michaud, A.; Prati, F.; et al. Small-molecule inhibitors prevent the genotoxic and protumoural effects induced by colibactin-producing bacteria. Gut 2016, 65, 278–285. [Google Scholar] [CrossRef]
- Emencheta, S.C.; Olovo, C.V.; Eze, O.C.; Kalu, C.F.; Berebon, D.P.; Onuigbo, E.B.; Vila, M.M.D.C.; Balcão, V.M.; Attama, A.A. The Role of Bacteriophages in the Gut Microbiota: Implications for Human Health. Pharmaceutics 2023, 15, 2416. [Google Scholar] [CrossRef]
- Ismael, M.; Huang, M.; Zhong, Q. The Bacteriocins Produced by Lactic Acid Bacteria and the Promising Applications in Promoting Gastrointestinal Health. Foods 2024, 13, 3887. [Google Scholar] [CrossRef]
- Han, J.; Zhang, B.; Zhang, Y.; Yin, T.; Cui, Y.; Liu, J.; Yang, Y.; Song, H.; Shang, D. Gut microbiome: Decision-makers in the microenvironment of colorectal cancer. Front. Cell. Infect. Microbiol. 2023, 13, 1299977. [Google Scholar] [CrossRef]
- Baas, F.S.; Brusselaers, N.; Nagtegaal, I.D.; Engstrand, L.; Boleij, A. Navigating beyond associations: Opportunities to establish causal relationships between the gut microbiome and colorectal carcinogenesis. Cell Host Microbe 2024, 32, 1235–1247. [Google Scholar] [CrossRef]
- Papadaki, E.; Kakkos, I.; Vlamos, P.; Petropoulou, O.; Miloulis, S.T.; Palamas, S.; Vrahatis, A.G. Recent Web Platforms for Multi-Omics Integration Unlocking Biological Complexity. Appl. Sci. 2024, 15, 329. [Google Scholar] [CrossRef]
- Theis, B.F.; Park, J.S.; Kim, J.S.A.; Zeydabadinejad, S.; Vijay-Kumar, M.; Yeoh, B.S.; Saha, P. Gut Feelings: How Microbes, Diet, and Host Immunity Shape Disease. Biomedicines 2025, 13, 1357. [Google Scholar] [CrossRef] [PubMed]
- Sicard, J.F.; Le Bihan, G.; Vogeleer, P.; Jacques, M.; Harel, J. Interactions of Intestinal Bacteria with Components of the Intestinal Mucus. Front. Cell. Infect. Microbiol. 2017, 7, 387. [Google Scholar] [CrossRef] [PubMed]
- Kaprio, T.; Hagström, J.; Kasurinen, J.; Gkekas, I.; Edin, S.; Beilmann-Lehtonen, I.; Strigård, K.; Palmqvist, R.; Gunnarson, U.; Böckelman, C.; et al. An immunohistochemistry-based classification of colorectal cancer resembling the consensus molecular subtypes using convolutional neural networks. Sci. Rep. 2025, 15, 19105. [Google Scholar] [CrossRef]
| Feature | Fusobacterium nucleatum | Bacteroides fragilis (ETBF) | Escherichia coli (pks+) |
|---|---|---|---|
| Primary Mechanism | Multi-factorial: adhesion, inflammation, immune suppression | Toxin-mediated inflammation and barrier disruption | Direct DNA damage via colibactin genotoxin |
| Key Virulence Factor | FadA adhesin, Fap2 protein | B. fragilis toxin (BFT) metalloprotease | Colibactin (polyketide genotoxin) |
| Target | E-cadherin, immune cells (NK, T cells) | E-cadherin, epithelial tight junctions | Host cell DNA |
| Inflammatory Response | Strong (IL-6, IL-8, TNF-α, NF-κB) | Moderate-Strong (Th17, IL-17, STAT3) | Mild-Moderate (IL-1β, IL-6) |
| Genotoxicity | Indirect (via ROS) | Minimal | Direct (DNA double-strand breaks) |
| Immune Evasion | High (inhibits NK and T cells via Fap2-TIGIT) | Moderate (modulates dendritic cells, Tregs) | Low |
| Role in CRC Stages | Adenoma through metastasis | Early inflammation and adenoma formation | Tumor initiation (DNA damage) |
| Chemoresistance | Yes (autophagy, microRNA modulation) | Possible (via chronic inflammation) | Limited evidence |
| Metastatic Potential | High (translocates with tumor cells) | Low | Minimal |
| Main Signaling Pathways | Wnt/β-catenin, NF-κB, TLR4 | Wnt/β-catenin, NF-κB, STAT3 | ATM/ATR, DNA damage response, p53 |
| Biomarker Utility | High (diagnostic and prognostic) | Moderate (risk stratification) | Moderate (requires pks detection) |
| Therapeutic Strategy | Antibiotics, adhesin inhibitors, immunotherapy | Toxin neutralization, antibiotics | Colibactin inhibitors, DNA repair enhancement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paduraru, D.N.; Palcau, A.C.; Dinca, V.G.; Ciuc, D.M.; Constantinescu, A. The Role of Gut Microbiota in Colorectal Cancer Pathogenesis: A Comprehensive Literature Review. Int. J. Mol. Sci. 2025, 26, 11870. https://doi.org/10.3390/ijms262411870
Paduraru DN, Palcau AC, Dinca VG, Ciuc DM, Constantinescu A. The Role of Gut Microbiota in Colorectal Cancer Pathogenesis: A Comprehensive Literature Review. International Journal of Molecular Sciences. 2025; 26(24):11870. https://doi.org/10.3390/ijms262411870
Chicago/Turabian StylePaduraru, Dan Nicolae, Alexandru Cosmin Palcau, Valeriu Gabi Dinca, Diana Mihaela Ciuc, and Alexandru Constantinescu. 2025. "The Role of Gut Microbiota in Colorectal Cancer Pathogenesis: A Comprehensive Literature Review" International Journal of Molecular Sciences 26, no. 24: 11870. https://doi.org/10.3390/ijms262411870
APA StylePaduraru, D. N., Palcau, A. C., Dinca, V. G., Ciuc, D. M., & Constantinescu, A. (2025). The Role of Gut Microbiota in Colorectal Cancer Pathogenesis: A Comprehensive Literature Review. International Journal of Molecular Sciences, 26(24), 11870. https://doi.org/10.3390/ijms262411870

