A Single Amino Acid in Cucumber Mosaic Virus Determines Systemic Infection in Legumes: Species-Specific Differences in Key Residue Locations
Abstract
1. Introduction
2. Results
2.1. Genetic Characterization of CMV-Pa3
2.2. CMV-Pa3 Infects Systemically in Various Leguminous Plants
2.3. Comparison of Key Amino Acids in the CMV 2a Protein Related to Systemic Infection in Cowpea
2.4. A Chimeric Virus Containing Partial 2a Protein of CMV-Pa3 Induces Systemic Infection in Cowpea
2.5. Point Mutants at Amino Acid Positions 631 and 641 Induce Systemic Infection in Various Leguminous Plants
3. Discussion
4. Materials and Methods
4.1. Virus Source and Host Reaction Tests
4.2. Total RNA Extraction and RT-PCR
4.3. Phylogenetic Analysis
4.4. Construction of Infectious cDNA Clones
4.5. CMV Chimera and Point Mutagenesis
4.6. In Vitro Transcription
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pandiyan, M.; Sivakumar, P.; Krishnaveni, A.; Sivakumar, C.; Radhakrishnan, V.; Vaithiyalingam, M.; Tomooka, N. Chapter 5—Adzuki bean. In The Beans and the Peas; Pratap, A., Gupta, S., Eds.; Woodhead Publishing: Sawston, UK, 2021; pp. 89–103. [Google Scholar]
- Tomooka, N.; Vaughan, D.; Moss, H.; Maxted, N. The Asian Vigna: Genus Vigna subgenus Ceratotropis Genetic Resources; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Sun, S.; Wang, X.; Zhu, Z.; Wang, B.; Wang, M. Occurrence of Charcoal Rot Caused by Macrophomina phaseolina, an Emerging Disease of Adzuki Bean in China. J. Phytopathol. 2016, 164, 212–216. [Google Scholar] [CrossRef]
- Ha, M.S.; Ryu, H.; Hong, S.K.; Ju, H.J.; Choi, H.-W. Occurrence of Root Rot caused by Fusarium fujikuroi on Adzuki Bean in Korea. Korean Soc. Mycol. 2022, 50, 319–329. [Google Scholar]
- Iizuka, N. Studies on virus diseases of adzuki bean (Vigna angularis Wight) in Japan. Bull. Tohoku Natl. Agric. Exp. Stn. 1990, 77–113. [Google Scholar]
- Godwin, P.; Shoba, D.; Arumugam, P.M.; Saravanan, S.; Sheela, J.; Kavitha, P.A.; Arumugachamy, S.; Hepziba, J. Viral diseases in Vigna species—Impacts, management opportunities and future perspectives: A review. Plant Sci. Today 2025, 12, 2348-1900. [Google Scholar] [CrossRef]
- Heo, N.; Kang, M.; Ha, K.; Kim, H.; Choi, J. Identification of virus from azuki bean plant. Korean J. Crop Sci. 1997, 42, 160–165. [Google Scholar]
- Jung, H.-W.; Jung, H.-J.; Yun, W.-S.; Kim, H.-J.; Hahm, Y.-I.; Kim, K.-H.; Choi, J.-K. Characterization and partial nucleotide sequence analysis of Alfalfa mosaic Alfamoviruses isolated from potato and azuki bean in Korea. Plant Pathol. J. 2000, 16, 269–279. [Google Scholar]
- Tsuchizaki, T.; Omura, T. Relationships among bean common mosaic virus, blackeye cowpea mosaic virus, azuki bean mosaic virus, and soybean mosaic virus. Jpn. J. Phytopathol. 1987, 53, 478–488. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, S. Identification of azuki bean mosaic virus on Phaseolus angularis. Korean J. Plant Pathol. 1989, 5, 49–53. [Google Scholar]
- Li, Y.; Liu, Z.; Yang, K.; Li, Y.; Zhao, B.; Fan, Z.; Wan, P. First report of Bean common mosaic virus infecting Azuki bean (Vigna angularis) in China. Plant Dis. 2014, 98, 1017. [Google Scholar] [CrossRef]
- Lu, S.; Wang, X.; Zhao, B.; Yu, J.; Zhang, Y.; Li, Y.; Wan, P. First report of cowpea mild mottle virus infecting adzuki bean in China. J. Plant Pathol. 2023, 105, 1191. [Google Scholar] [CrossRef]
- Kim, M.-K.; Jeong, R.-D.; Kwak, H.-R.; Lee, S.-H.; Kim, J.-S.; Kim, K.-H.; Cha, B.; Choi, H.-S. First Report of Cucumber mosaic virus Isolated from Wild Vigna angularis var. nipponensis in Korea. Plant Pathol. J. 2014, 30, 200. [Google Scholar] [CrossRef]
- Yoon, Y.; Lim, S.; Jang, Y.W.; Kim, B.S.; Bae, D.H.; Maharjan, R.; Yi, H.; Bae, S.; Lee, Y.H.; Lee, B.C.; et al. First Report of Soybean mosaic virus and Soybean yellow mottle mosaic virus in Vigna angularis. Plant Dis. 2017, 102, 689. [Google Scholar] [CrossRef]
- Whitfield, A.E.; Falk, B.W.; Rotenberg, D. Insect vector-mediated transmission of plant viruses. Virology 2015, 479, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Stephanus, A.P.; Fowles, T.M.; Wintermantel, W.M.; Trumble, J.T.; Gilbertson, R.L.; Nansen, C. Insect vector manipulation by a plant virus and simulation modeling of its potential impact on crop infection. Sci. Rep. 2022, 12, 8429. [Google Scholar] [CrossRef] [PubMed]
- Yigezu Wendimu, G.; Kassaye Gurmu, A. Insect Vectors of Plant Viruses: Host Interactions, Their Effects, and Future Opportunities. Adv. Agric. 2024, 2024, 6006985. [Google Scholar] [CrossRef]
- King, A.M.; Lefkowitz, E.; Adams, M.J.; Carstens, E.B. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses; Elsevier: Amsterdam, The Netherlands, 2011; Volume 9. [Google Scholar]
- Palukaitis, P.; García-Arenal, F. Cucumoviruses. Adv. Virus Res. 2003, 62, 241–323. [Google Scholar]
- Garcıa-Arenal, F.; Palukaitis, P. Cucumber mosaic virus. In Desk Encyclopedia of Plant and Fungal Virology; Elsevier: Amsterdam, The Netherlands, 2008; pp. 171–176. [Google Scholar]
- Scholthof, K.B.G.; Adkins, S.; Czosnek, H.; Palukaitis, P.; Jacquot, E.; Hohn, T.; Hohn, B.; Saunders, K.; Candresse, T.; Ahlquist, P. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol. 2011, 12, 938–954. [Google Scholar] [CrossRef]
- Kumari, R.; Kumar, S.; Leibman, D.; Abebie, B.; Shnaider, Y.; Ding, S.-W.; Gal-On, A. Cucumber RDR1s and cucumber mosaic virus suppressor protein 2b association directs host defence in cucumber plants. Mol. Plant Pathol. 2021, 22, 1317–1331. [Google Scholar] [CrossRef]
- Crawshaw, S.; Murphy, A.M.; Rowling, P.J.E.; Nietlispach, D.; Itzhaki, L.S.; Carr, J.P. Investigating the Interactions of the Cucumber Mosaic Virus 2b Protein with the Viral 1a Replicase Component and the Cellular RNA Silencing Factor Argonaute 1. Viruses 2024, 16, 676. [Google Scholar] [CrossRef]
- Mochizuki, T.; Ohki, S.T. Cucumber mosaic virus: Viral genes as virulence determinants. Mol. Plant Pathol. 2012, 13, 217–225. [Google Scholar] [CrossRef]
- Owen, J.; Palukaitis, P. Characterization of cucumber mosaic virus I. Molecular heterogeneity mapping of RNA 3 in eight CMV strains. Virology 1988, 166, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Mavrodieva, V.A.; Barbara, D.J.; Spence, N.J. Subgroup Determination of Bulgarian Isolates of Cucumber Mosaic Virus and the Presence of Satellite RNAs. Plant Dis. 1998, 82, 960. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.K.; Choi, J.K.; Park, W.M.; Ryu, K.H. RT–PCR detection and identification of three species of cucumoviruses with a genus-specific single pair of primers. J. Virol. Methods 1999, 83, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.K.; Kwon, S.B.; Lee, S.Y.; Park, W.M. Some properties of two isolates of cucumber mosaic virus isolated from Aster yomena Makino and Commelina communis L. Korean J. Plant Pathol. 1990, 6, 138–143. [Google Scholar]
- Nomura, K.; Uekusa, H.; Kita, N. Suppression of transgene RNA silencing in transgenic Arabidopsis thaliana by a mild strain of Cucumber mosaic virus. J. Gen. Plant Pathol. 2014, 80, 443–448. [Google Scholar] [CrossRef]
- Kim, C.H.; Palukaitis, P. The plant defense response to cucumber mosaic virus in cowpea is elicited by the viral polymerase gene and affects virus accumulation in single cells. EMBO J. 1997, 16, 4060–4068. [Google Scholar] [CrossRef]
- Karasawa, A.; Okada, I.; Akashi, K.; Chida, Y.; Hase, S.; Nakazawa-Nasu, Y.; Ito, A.; Ehara, Y. One amino acid change in cucumber mosaic virus RNA polymerase determines virulent/avirulent phenotypes on cowpea. Phytopathology 1999, 89, 1186–1192. [Google Scholar] [CrossRef]
- Tao, X.; Zhou, X.; Li, G.; Yu, J. Two amino acids on 2a polymerase ofCucumber mosaic virus co-determine hypersensitive response on legumes. Sci. China Ser. C Life Sci. 2003, 46, 40–48. [Google Scholar] [CrossRef]
- Gao, M.; Lozano-Durán, R. Symptom Development in Plant Viral Diseases: What, How, and Why? Annu. Rev. Phytopathol. 2025, 63, 431–450. [Google Scholar] [CrossRef]
- Kim, S.H.; Palukaitis, P.; Park, Y.I. Phosphorylation of cucumber mosaic virus RNA polymerase 2a protein inhibits formation of replicase complex. EMBO J. 2002, 21, 2292–2300. [Google Scholar] [CrossRef]
- Du, Z.; Chen, F.; Zhao, Z.; Liao, Q.; Palukaitis, P.; Chen, J. The 2b protein and the C-terminus of the 2a protein of cucumber mosaic virus subgroup I strains both play a role in viral RNA accumulation and induction of symptoms. Virology 2008, 380, 363–370. [Google Scholar] [CrossRef]
- Khaing, Y.Y.; Kobayashi, Y.; Takeshita, M. The 2b protein and C-terminal region of the 2a protein indispensably facilitate systemic movement of cucumber mosaic virus in radish with supplementary function by either the 3a or the coat protein. Virol. J. 2020, 17, 49. [Google Scholar] [CrossRef]
- Suzuki, M.; Kuwata, S.; Kataoka, J.; Masuta, C.; Nitta, N.; Takanami, Y. Functional analysis of deletion mutants of cucumber mosaic virus RNA3 using an in vitro transcription system. Virology 1991, 183, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, T.M.; Palukaitis, P. Construction of full-length cDNA clones of cucumber mosaic virus RNAs 1, 2 and 3: Generation of infectious RNA transcripts. Mol. Gen. Genet. MGG 1990, 222, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Kuwata, S.; Masuta, C.; Takanami, Y. Point mutations in the coat protein of cucumber mosaic virus affect symptom expression and virion accumulation in tobacco. J. Gen. Virol. 1995, 76, 1791–1799. [Google Scholar] [CrossRef] [PubMed]
- Phan, M.S.V.; Seo, J.-K.; Choi, H.-S.; Lee, S.-H.; Kim, K.-H. Molecular and Biological Characterization of an Isolate of Cucumber mosaic virus from Glycine soja by Generating its Infectious Full-genome cDNA Clones. Plant Pathol. J. 2014, 30, 159–167. [Google Scholar] [CrossRef]
- Park, T.-S.; Min, D.-J.; Park, J.-S.; Hong, J.-S. The N-Terminal Region of Cucumber Mosaic Virus 2a Protein Is Involved in the Systemic Infection in Brassica juncea. Plants 2024, 13, 1001. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, T.; Yao, M.; Feng, Z.; Miriam, K.; Wu, J.; Zhou, X.; Tao, X. The 2a protein of Cucumber mosaic virus induces a hypersensitive response in cowpea independently of its replicase activity. Virus Res. 2012, 170, 169–173. [Google Scholar] [CrossRef]
- Wu, B.; Zwart, M.P.; Sánchez-Navarro, J.A.; Elena, S.F. Within-host Evolution of Segments Ratio for the Tripartite Genome of Alfalfa Mosaic Virus. Sci. Rep. 2017, 7, 5004. [Google Scholar] [CrossRef]





| Plants | Systemic Infection 1 | |||||
|---|---|---|---|---|---|---|
| Pa3 | Pa 2 | CM-19 3 | Va 4 | RB 5 | Rs1 6 | |
| Azuki bean (Vigna angularis) | + | + | + | + | + | − |
| Broad bean (Vicia faba) | nt | nt | − | − | − | nt |
| Common bean (Phaseolus vulgaris) | + | nt | − | − | − | − |
| Cowpea (V. unguiculata) | + | − | − | − | − | − |
| Mung bean (V. radiate) | nt | nt | − | + | nt | nt |
| Pea (Pisum sativum) | + | nt | + | − | − | − |
| Origin Host | CMV Isolate | Systemic Infection on Cowpea | Nucleotide (Amino Acid) at Position Number | |
|---|---|---|---|---|
| 1978 (631) | 2007 (641) | |||
| Leguminous plant | ||||
| Azuki bean | Pa3 | + | UAC (Tyr) | UCU (Ser) |
| Va | − | UUC (Phe) | GCA (Ala) | |
| RB | − | UUC (Phe) | GCA (Ala) | |
| Cowpea | Leg | + | UAC (Tyr) | UCA (Ser) |
| Common bean | B | + | UAC (Tyr) | UCA (Ser) |
| Pea | P1 | + | UAC (Tyr) | UCA (Ser) |
| Non-leguminous plant | ||||
| Zucchini | Fny | − | UUC (Phe) | GCC (Ala) |
| Tobacco | Y | − | UUC (Phe) | GCA (Ala) |
| Radish | Rs1 | − | UUC (Phe) | GCA (Ala) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Min, D.; Min, G.G.; Kim, H.; Yoon, J.-Y.; Jeong, R.-D.; Hong, J.-S. A Single Amino Acid in Cucumber Mosaic Virus Determines Systemic Infection in Legumes: Species-Specific Differences in Key Residue Locations. Int. J. Mol. Sci. 2025, 26, 11755. https://doi.org/10.3390/ijms262311755
Park J, Min D, Min GG, Kim H, Yoon J-Y, Jeong R-D, Hong J-S. A Single Amino Acid in Cucumber Mosaic Virus Determines Systemic Infection in Legumes: Species-Specific Differences in Key Residue Locations. International Journal of Molecular Sciences. 2025; 26(23):11755. https://doi.org/10.3390/ijms262311755
Chicago/Turabian StylePark, Jisoo, Dongjoo Min, Gyeong Geun Min, Hangil Kim, Ju-Yeon Yoon, Rae-Dong Jeong, and Jin-Sung Hong. 2025. "A Single Amino Acid in Cucumber Mosaic Virus Determines Systemic Infection in Legumes: Species-Specific Differences in Key Residue Locations" International Journal of Molecular Sciences 26, no. 23: 11755. https://doi.org/10.3390/ijms262311755
APA StylePark, J., Min, D., Min, G. G., Kim, H., Yoon, J.-Y., Jeong, R.-D., & Hong, J.-S. (2025). A Single Amino Acid in Cucumber Mosaic Virus Determines Systemic Infection in Legumes: Species-Specific Differences in Key Residue Locations. International Journal of Molecular Sciences, 26(23), 11755. https://doi.org/10.3390/ijms262311755

