Autoimmune Diseases of the Eyelid Skin: Molecular Pathways, Clinical Manifestations, and Therapeutic Insights
Abstract
1. Introduction
2. Molecular Pathways of Eyelid Skin Inflammation
2.1. Cytokine and T-Cell Pathways
2.2. Autoantibody-Mediated Complement Activation
2.3. Fibroblast and Adipocyte Signaling in Thyroid Eye Disease
2.4. Role of Microbiome and Innate Immunity
2.5. Oxidative Stress and Epithelial Barrier Dysfunction
2.6. Summary
3. Autoimmune Diseases Involving Eyelid Skin and Ocular Adnexa
3.1. Ocular Cicatricial Pemphigoid (OCP)
3.2. Pemphigus Vulgaris and Bullous Pemphigoid
3.3. Thyroid-Associated Orbitopathy (TAO)
3.4. Systemic Lupus Erythematosus (SLE)
3.5. Sjögren’s Syndrome
3.6. Sarcoidosis and Granulomatous Disorders
3.7. Other Rare Autoimmune and Autoinflammatory Syndromes
3.8. Dermatomyositis
3.9. Summary
4. Clinical Implications and Diagnostics
4.1. Clinical Examination and Differential Diagnosis
4.2. Histopathology and Direct Immunofluorescence
4.3. Eyelid Biopsy: Indications, Risks, and Contraindications
4.4. Advanced Imaging Modalities
4.5. Molecular Biomarkers in Tears and Serum
4.6. Integration of Diagnostics into Personalized Medicine
4.7. Summary
5. Therapeutic Strategies
- Cleanse eyelid margins twice daily using sterile wipes or diluted, non-irritant cleansing solutions.
- Apply warm compresses for 5–10 min to soften meibomian gland secretions and improve lipid flow.
- Gently massage the eyelid margin to promote gland clearance.
- Avoid harsh soaps, alcohol-based solutions, or cosmetic products near the eyelid margin.
- Maintain consistent daily hygiene even during asymptomatic periods to prevent recurrence.
5.1. Conventional Immunosuppressive Therapy
5.2. Biologic Agents
5.3. Small Molecules and Targeted Oral Therapies
5.4. Local Adjunctive Therapies
5.5. Lifestyle and Supportive Interventions
5.6. Toward Personalized Immunotherapy
5.7. Summary
6. Future Directions
6.1. Biomarker Development and Multi-Omics Approaches
6.2. Microbiome and Immune Modulation
6.3. Novel Targeted and Localized Therapies
6.4. Artificial Intelligence and Digital Health
6.5. Patient-Centered and Preventive Strategies
6.6. Summary
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| AS-OCT | Anterior Segment Optical Coherence Tomography |
| AMG | Amniotic Membrane Grafts |
| BP | Bullous Pemphigoid |
| CAS | Clinical Activity Score |
| DIF | Direct Immunofluorescence |
| EAACI | European Academy of Allergy and Clinical Immunology |
| EADV | European Academy of Dermatology and Venereology |
| ECM | Extracellular Matrix |
| EDV | European Dermatology Forum |
| EUGOGO | European Group on Graves’ Orbitopathy |
| FDA | Food and Drug Administration |
| GO-QOL | Graves’ Orbitopathy Quality of Life |
| IFN-γ | Interferon Gamma |
| IgG/IgA | Immunoglobulin G/A |
| IGF-1R | Insulin-Like Growth Factor-1 Receptor |
| IL | Interleukin |
| ILC | Innate Lymphoid Cells |
| IVCM | In Vivo Confocal Microscopy |
| JAK | Janus Kinase |
| LLLT | Low-Level Light Therapy |
| MAPK | Mitogen-Activated Protein Kinase |
| MMP-9 | Matrix Metalloproteinase-9 |
| OCP | Ocular Cicatricial Pemphigoid |
| OCT | Optical Coherence Tomography |
| OSDI | Ocular Surface Disease Index |
| PDE-4 | Phosphodiesterase-4 |
| ROS | Reactive Oxygen Species |
| SLE | Systemic Lupus Erythematosus |
| TAO | Thyroid-Associated Orbitopathy |
| Th | T Helper Cell |
| TLR | Toll-Like Receptor |
| TNF-α | Tumor Necrosis Factor Alpha |
| TSHR | Thyroid-Stimulating Hormone Receptor |
| TSI | Thyroid-Stimulating Immunoglobulin |
| VEGF | Vascular Endothelial Growth Factor |
| VEXAS | Vacuoles, E1 enzyme, X-linked, Autoinflammatory, and Somatic mutation syndrome |
References
- Mansour, A.; Kerman, T.; Amitai, N.; Zunz, E.; Khalaila, S.; Hazan, I.; Tsumi, E. The relationship between involutional ectropion and inflammatory disorders of the eyelids and ocular surface: Insights from a large-scale national study. Sci. Rep. 2025, 15, 4059. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghanbari, H.; Rahimi, M.; Momeni, A.; Aminizade, M.; Nozarian, Z.; Moghtader, A.; Rubinstein, D.E.; Basu, S.; Sangwan, V.S.; Djalilian, A.R.; et al. Challenges and advances in ocular mucous membrane pemphigoid (OMMP); from pathogenesis to treatment strategies. Graefes Arch. Clin. Exp. Ophthalmol. 2025, 263, 1489–1502. [Google Scholar] [CrossRef] [PubMed]
- Borzova, E.; Snarskaya, E.; Bratkovskaya, A. Eyelid dermatitis in patch-tested adult patients: A systematic review with a meta-analysis. Sci. Rep. 2024, 14, 18791. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kemeny-Beke, A.; Szodoray, P. Ocular manifestations of rheumatic diseases. Int. Ophthalmol. 2020, 40, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Vitale, A.; Caggiano, V.; Martin-Nares, E.; Frassi, M.; Dagna, L.; Hissaria, P.; Sfriso, P.; Hernández-Rodríguez, J.; Ruiz-Irastorza, G.; Monti, S.; et al. Orbital/ocular inflammatory involvement in VEXAS syndrome: Data from the international AIDA network VEXAS registry. Semin. Arthritis Rheum. 2024, 66, 152430. [Google Scholar] [CrossRef] [PubMed]
- Scarabosio, A.; Surico, P.L.; Singh, R.B.; Tereshenko, V.; Musa, M.; D’Esposito, F.; Russo, A.; Longo, A.; Gagliano, C.; Agosti, E.; et al. Thyroid Eye Disease: Advancements in Orbital and Ocular Pathology Management. J. Pers. Med. 2024, 14, 776. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Razzak, A.; Ait Ammar, H.; Bouazza, M.; Elbelhadji, M. Accidental Discovery of Ocular Cicatricial Pemphigoid. Cureus 2025, 17, e77425. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Del Giudice, E.; Saturno, M.C.; Fiorino, M.G.; Iannetta, D.; Spadea, L.; Martucci, V.; Marcellino, A.; Sanseviero, M.; Mauro, A.; Carlesimo, S.C.; et al. Pediatric Sjögren’s Syndrome: Focus on Ocular Involvement and Diagnostic Challenges. Medicina 2025, 61, 1128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lai, K.K.H.; Aljufairi, F.M.A.A.; Sebastian, J.U.; Lai, K.H.; Chan, K.K.W.; Chin, J.K.Y.; Chan, R.Y.C.; Li, C.L.; Yip, W.W.K.; Young, A.L.; et al. Low clinical activity score, ‘progressive’ thyroid eye disease: Presentations of 1439 patients from a tertiary centre in Hong Kong. Br. J. Ophthalmol. 2025, 109, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.H.; Sayegh, Y.; Fasih-Ahmad, S.; Tse, D.T.; Karp, C.L.; Dubovy, S.R. Periocular granulomatous inflammatory lesions mimicking conjunctival melanoma recurrence in the setting of systemic nivolumab treatment. Am. J. Ophthalmol. Case Rep. 2024, 36, 102025. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Glover, K.; Mishra, D.; Singh, T.R.R. Epidemiology of Ocular Manifestations in Autoimmune Disease. Front. Immunol. 2021, 12, 744396. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, S.; Cao, F.; Yang, H.; Lei, F.; Hou, S. Ocular immune-related diseases: Molecular mechanisms and therapy. MedComm (2020) 2024, 5, e70021. [Google Scholar] [CrossRef] [PubMed]
- Luboń, W.; Luboń, M.; Kotyla, P.; Mrukwa-Kominek, E. Understanding Ocular Findings and Manifestations of Systemic Lupus Erythematosus: Update Review of the Literature. Int. J. Mol. Sci. 2022, 23, 12264. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.P.; Shen, C.R.; Lin, W.T.; Chu, Y.C. Exploring the link between Co-stimulatory gene polymorphisms and clinical manifestations in Graves’ ophthalmopathy. Exp. Eye Res. 2025, 257, 110423. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.C.; Sy, A.; Cunningham, E.T., Jr. Rituximab for treatment of non-infectious and non-malignant orbital inflammatory disease. J. Ophthalmic Inflamm. Infect. 2021, 11, 24. [Google Scholar] [CrossRef]
- Chiang, M.C.; Chern, E. Ocular surface microbiota: Ophthalmic infectious disease and probiotics. Front. Microbiol. 2022, 13, 952473. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Delbeke, H.; Younas, S.; Casteels, I.; Joossens, M. Current knowledge on the human eye microbiome: A systematic review of available amplicon and metagenomic sequencing data. Acta Ophthalmol. 2021, 99, 16–25. [Google Scholar] [CrossRef]
- Shivaji, S.; Jayasudha, R.; Sai Prashanthi, G.; Kalyana Chakravarthy, S.; Sharma, S. The Human Ocular Surface Fungal Microbiome. Investg. Ophthalmol. Vis. Sci. 2019, 60, 451–459. [Google Scholar] [CrossRef]
- Hou, T.Y.; Wu, S.B.; Kau, H.C.; Tsai, C.C. The Role of Oxidative Stress and Therapeutic Potential of Antioxidants in Graves’ Ophthalmopathy. Biomedicines 2021, 9, 1871. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suelves, A.M.; Zhao, T.Z.; Siddique, S.S.; Foster, C.S. Profile of local interleukin expression in a cohort of ocular cicatricial pemphigoid patients. Investg. Ophthalmol. Vis. Sci. 2012, 53, 8112–8117. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Rao, S.; Shah, R.; Maheshwari, M.; Dhillon, A.; Gupta, S. Dacryoadenitis as a Rare Initial Presentation in a Patient with Suspected Crest Syndrome. Eur. J. Case Rep. Intern. Med. 2024, 11, 004801. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kate, A.; Shanbhag, S.; Donthineni, P.R.; Basu, S. A case series of ocular involvement in bullous pemphigoid: Clinical features, management, and outcomes. F1000Research 2021, 10, 1201. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Douglas, R.S.; Kahaly, G.J.; Patel, A.; Sile, S.; Thompson, E.H.; Perdok, R.; Fleming, J.C.; Fowler, B.T.; Marcocci, C.; Marinò, M.; et al. Teprotumumab for the Treatment of Active Thyroid Eye Disease. N. Engl. J. Med. 2020, 382, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Theisen, E.; Tiao, J.; Fedeles, F. Periorbital discoid lupus erythematosus: A retrospective study. JAAD Case Rep. 2022, 25, 78–82. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Luboń, W.; Agaś-Lange, A.; Mrukwa-Kominek, E.; Smędowski, A.; Wyględowska-Promieńska, D. Evaluation of Dry Eye Disease Signs, Symptoms, and Vision-Related Quality of Life in Patients with Systemic Lupus Erythematosus. Life 2025, 15, 1423. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Anuwa-Amarh, E.N.; Ziemanski, J.F. Meibomian gland dysfunction in Sjögren’s disease. Front. Med. 2025, 12, 1613263. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leonardi, A.; Bozkurt, B.; Silva, D.; Mortz, C.G.; Baudouin, C.; Atanaskovic-Markovic, M.; Sharma, V.; Doan, S.; Agarwal, S.; Pérez-Formigo, D.; et al. Drug-Induced Periocular and Ocular Surface Disorders: An EAACI Position Paper. Allergy 2025, 80, 2953–2972. [Google Scholar] [CrossRef]
- Dalakas, M.C. Inflammatory muscle diseases. N. Engl. J. Med. 2015, 372, 1734–1747. [Google Scholar] [CrossRef] [PubMed]
- Georgoudis, P.; Sabatino, F.; Szentmary, N.; Palioura, S.; Fodor, E.; Hamada, S.; Scholl, H.P.N.; Gatzioufas, Z. Ocular Mucous Membrane Pemphigoid: Current State of Pathophysiology, Diagnostics and Treatment. Ophthalmol. Ther. 2019, 8, 5–17. [Google Scholar] [CrossRef]
- Borradori, L.; Van Beek, N.; Feliciani, C.; Tedbirt, B.; Antiga, E.; Bergman, R.; Böckle, B.C.; Caproni, M.; Caux, F.; Chandran, N.S.; et al. Updated S2 K guidelines for the management of bullous pemphigoid initiated by the European Academy of Dermatology and Venereology (EADV). J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1689–1704. [Google Scholar] [CrossRef]
- Bartalena, L.; Kahaly, G.J.; Baldeschi, L.; Dayan, C.M.; Eckstein, A.; Marcocci, C.; Marino, M.; Vaidya, B.; Wiersinga, W.M. The 2021 European Group on Graves’ orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy. Eur. J. Endocrinol. 2021, 185, G43–G67. [Google Scholar] [CrossRef]
- Mahmood, M.N. Direct Immunofluorescence of Skin and Oral Mucosa: Guidelines for Selecting the Optimum Biopsy Site. Dermatopathology 2024, 11, 52–61. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burgess, N.R.; Rathore, D.; Gao, A.; Johnson, A.; Ahluwalia, H.S. To Evaluate the Efficacy of Diagnostic Periocular Punch Biopsy: Using a 4-mm Dermatology Punch. Ophthalmic Plast. Reconstr. Surg. 2023, 39, 370–373. [Google Scholar] [CrossRef]
- Saschenbrecker, S.; Karl, I.; Komorowski, L.; Probst, C.; Dähnrich, C.; Fechner, K.; Stöcker, W.; Schlumberger, W. Serological Diagnosis of Autoimmune Bullous Skin Diseases. Front. Immunol. 2019, 10, 1974. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Winiarczyk, M.; Biela, K.; Michalak, K.; Winiarczyk, D.; Mackiewicz, J. Changes in Tear Proteomic Profile in Ocular Diseases. Int. J. Environ. Res. Public Health 2022, 19, 13341. [Google Scholar] [CrossRef] [PubMed]
- Baral, P.; Kumaran, S.E.; Stapleton, F.; Khong, J.J.; Carnt, N.; Wolffsohn, J.S.; Pesudovs, K. Understanding the quality-of-life impacts of ocular surface disease. Contact Lens Anterior Eye 2025, 102482. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.R.; Praveen, M.; Narasimhan, R.; Khamar, P.; D’Souza, S.; Sinha-Roy, A.; Sethu, S.; Shetty, R.; Ghosh, A. Tear biomarkers in dry eye disease: Progress in the last decade. Indian J. Ophthalmol. 2023, 71, 1190–1202. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- VanDerMeid, K.R.; Su, S.P.; Ward, K.W.; Zhang, J.Z. Correlation of tear inflammatory cytokines and matrix metalloproteinases with four dry eye diagnostic tests. Investg. Ophthalmol. Vis. Sci. 2012, 53, 1512–1518. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Zhao, H.; Lin, J.Y.; Wu, S.N.; Liu, X.W.; Zhang, H.D.; Shao, Y.; Yang, W.F. Artificial Intelligence to Detect Meibomian Gland Dysfunction From in-vivo Laser Confocal Microscopy. Front. Med. 2021, 8, 774344. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yeh, C.H.; Graham, A.D.; Yu, S.X.; Lin, M.C. Enhancing Meibography Image Analysis Through Artificial Intelligence-Driven Quantification and Standardization for Dry Eye Research. Transl. Vis. Sci. Technol. 2024, 13, 16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meer, E.; Kao, B.; Hekmatjah, N.; Lu, J.; Winn, B.; Grob, S.R. Artificial Intelligence in Oculoplastics: A Review. Ophthalmic Plast. Reconstr. Surg. 2025, 41, 372–387. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.; Khair, A.M.B.; Saeed, M.; Shetty, N. Artificial Intelligence in Histopathology. J. Pharm. Bioallied Sci. 2024, 16 (Suppl. S5), S4226–S4229. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maglionico, M.N.; Lanzolla, G.; Figus, M.; Cosentino, G.; Comi, S.; Marinò, M.; Santini, F.; Posarelli, C. Ocular surface disease index in Graves’ orbitopathy: A cross-sectional study. Front. Endocrinol. 2024, 15, 1428185. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.; Craig, J.P.; Markoulli, M.; Karpecki, P.; Akpek, E.K.; Basu, S.; Bitton, E.; Chen, W.; Dhaliwal, D.K.; Dogru, M.; et al. TFOS DEWS III: Management and Therapy. Am. J. Ophthalmol. 2025, 279, 289–386. [Google Scholar] [CrossRef]
- Fung, A.T.; Tran, T.; Lim, L.L.; Samarawickrama, C.; Arnold, J.; Gillies, M.; Catt, C.; Mitchell, L.; Symons, A.; Buttery, R.; et al. Local delivery of corticosteroids in clinical ophthalmology: A review. Clin. Exp. Ophthalmol. 2020, 48, 366–401. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, C.; Wang, J.; Pan, D.; Wang, X.; Xu, Y.; Yan, J.; Wang, L.; Yang, X.; Yang, M.; Liu, G.P. Applications of multi-omics analysis in human diseases. MedComm (2020) 2023, 4, e315. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abbott, K.S.; Palestine, A.G.; Hauswirth, S.G.; Gregory, D.G.; Patnaik, J.L.; Reddy, A.K. Treatment of Ocular Surface Disease in Ocular Cicatricial Pemphigoid. Ocul. Immunol. Inflamm. 2024, 32, 2479–2485. [Google Scholar] [CrossRef] [PubMed]
- Elder, M.J.; Lightman, S.; Dart, J.K. Role of cyclophosphamide and high dose steroid in ocular cicatricial pemphigoid. Br. J. Ophthalmol. 1995, 79, 264–266. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pauk, S.V.; Geber, A.; Bešlić, I.; Lakoš-Jukić, I.; Kuzman, T. Rituximab Therapy in Refractory Ocular Cicatricial Pemphigoid: A Case Report. Reports 2025, 8, 115. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al-Sharif, E.M.; Zhou, J.; Shoji, M.K.; Acuff, K.; Liu, C.Y.; Korn, B.S.; Kikkawa, D.O. Effects of Teprotumumab on Eyelid Retraction in Thyroid Eye Disease. Ophthalmic Plast. Reconstr. Surg. 2025, 41, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Zhang, Y.; Kong, L.; Lu, J.; Shi, Y. Janus kinase inhibitors in autoimmune bullous diseases. Front. Immunol. 2023, 14, 1220887. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, X.; Zhang, L.; Gu, H.; He, W.; Zhai, Z.; Zhang, M. Treatment and molecular analysis of bullous pemphigoid with tofacitinib: A case report and review of current literature. Front. Immunol. 2024, 15, 1464474. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Solimani, F.; Meier, K.; Ghoreschi, K. Emerging Topical and Systemic JAK Inhibitors in Dermatology. Front. Immunol. 2019, 10, 2847. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alhasawi, R.H.; Shaheen, E.A.; Alshabanat, N.M.; Brashi, R.; Ahmed, W.A.; Alqahtani, S.H.; Alharbi, E.; Aljabri, M. The efficacy of apremilast in pemphigus: A systematic review of case reports. Dermatol. Rep. 2025. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Zhang-Nunes, S.; Guo, S.; Lee, D.; Chang, J.; Nguyen, A. Safety and Efficacy of an Augmented Intense Pulse Light Protocol for Dry Eye Syndrome and Blepharitis. Photobiomodulation Photomed. Laser Surg. 2021, 39, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.; Chen, J.; Li, L.; Zhang, Q.; Xu, L.; Yu, S.; He, W.; He, X.; Pazo, E.E. Efficacy of intense pulsed light therapy on signs and symptoms of dry eye disease: A meta-analysis and systematic review. Indian J. Ophthalmol. 2023, 71, 1316–1325. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peng, J.; Feinstein, D.; DeSimone, S.; Gentile, P. A Review of the Tear Film Biomarkers Used to Diagnose Sjogren’s Syndrome. Int. J. Mol. Sci. 2024, 25, 10380. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Olbrich, M.; Künstner, A.; Witte, M.; Busch, H.; Fähnrich, A. Genetics and Omics Analysis of Autoimmune Skin Blistering Diseases. Front. Immunol. 2019, 10, 2327. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wekesa, J.S.; Kimwele, M. A review of multi-omics data integration through deep learning approaches for disease diagnosis, prognosis, and treatment. Front. Genet. 2023, 14, 1199087. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rosa, J.; Suzuki, I.; Kravicz, M.; Caron, A.; Pupo, A.V.; Praça, F.G.; Bentley, M.V.L.B. Current Non-viral siRNA Delivery Systems as a Promising Treatment of Skin Diseases. Curr. Pharm. Des. 2018, 24, 2644–2663. [Google Scholar] [CrossRef] [PubMed]
- Oshika, T. Artificial Intelligence Applications in Ophthalmology. JMA J. 2025, 8, 66–75. [Google Scholar] [CrossRef]
- Kang, H.; Wu, M.; Feng, J.; Ren, Y.; Liu, Y.; Shi, W.; Peng, Y.; Tan, Y.; Wu, R.; Zhang, G.; et al. Ocular surface disorders affect quality of life in patients with autoimmune blistering skin diseases: A cross-sectional study. BMC Ophthalmol. 2022, 22, 437. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
| Disease | Key Molecular Mechanisms | Clinical Characteristics/Eyelid and Periocular Features | Current Therapies | Emerging/Targeted Therapies |
|---|---|---|---|---|
| Ocular cicatricial pemphigoid (OCP) | Autoantibodies against BP180, BP230, laminin-332; complement activation; fibrosis | Conjunctival scarring, symblepharon, entropion, trichiasis, eyelid erythema/keratinization, teleangiectasia | Systemic corticosteroids, antimetabolites, cyclophosphamide | Rituximab, JAK inhibitors, topical tacrolimus, siRNA-based therapies |
| Pemphigus vulgaris/Bullous pemphigoid | IgG autoantibodies against desmogleins/hemidesmosomal proteins → acantholysis and blistering | Eyelid erosions, erythematous plaques, crusting, secondary infection | Corticosteroids, immunosuppressants | Rituximab, TNF-α inhibitors, JAK inhibitors |
| Thyroid-associated orbitopathy (TAO) | TSHR and IGF-1R activation in fibroblasts; oxidative stress; NF-κB signaling | Eyelid retraction (hallmark), edema, dermopathy | Corticosteroids, orbital decompression surgery | Teprotumumab (IGF-1R inhibitor), tocilizumab, selenium supplementation |
| Systemic lupus erythematosus (SLE) | Immune complex deposition, complement activation, IFN-α pathways | Discoid lesions, erythema, scaling, dyspigmentation in periocular skin, teleangiectasia | Corticosteroids, antimalarials, immunosuppressants | Biologics targeting IFN pathways (e.g., anifrolumab) |
| Sjögren’s syndrome | Th17 cytokines, B-cell hyperactivity, glandular infiltration | Meibomian gland dysfunction, blepharitis, keratoconjunctivitis sicca | Topical cyclosporine, systemic immunosuppressants | JAK inhibitors, biologics (anti-BAFF) |
| Sarcoidosis | Th1 cytokines (TNF-α, IL-2, IFN-γ) → granuloma formation | Eyelid nodules, erythema, edema | Corticosteroids, immunosuppressants | Anti-TNF agents (infliximab, adalimumab) |
| Dermatomyositis | Complement-mediated microangiopathy, anti-Mi-2 autoantibodies | Violaceous periorbital (heliotrope) rash with edema | Corticosteroids, methotrexate | Biologic and JAK-targeted agents |
| Drug-induced eyelid dermatitis (immune-mediated hypersensitivity) | Drug-induced hypersensitivity; activation of T-cell-mediated and cytokine-driven inflammatory pathways following topical or systemic drug exposure | Erythema, edema, desquamation, and pruritus of the eyelids; may mimic chronic blepharitis; typically resolves after withdrawal of the offending agent | Drug discontinuation, topical corticosteroids, calcineurin inhibitors; avoidance of re-exposure | Identification of culprit allergens; ongoing EAACI-guided protocols for hypersensitivity management |
| VEXAS syndrome (autoinflammatory) | Somatic mutations in UBA1 leading to autoinflammatory activation of myeloid lineage and cytokine overproduction (IL-6, TNF-α) | Recurrent eyelid and facial swelling, erythema, cartilage inflammation, systemic symptoms (fever, anemia, cytopenia) | Systemic corticosteroids, immunosuppressants, anti-IL-6 therapy | JAK inhibitors, targeted cytokine blockade, hematopoietic stem-cell therapy under investigation |
| Diagnostic Modality | Clinical Role | Key Molecular/ Pathophysiological Insights | Limitations | Translational/Future Applications |
|---|---|---|---|---|
| Slit-lamp biomicroscopy | First-line evaluation of eyelid margin and ocular surface | Detects telangiectasia, scarring, trichiasis, keratinization; useful in grading systems (e.g., Foster, CAS) | Operator-dependent; limited for subclinical changes | Standardized digital documentation for AI analysis |
| Histopathology (biopsy) | Established diagnostic method for OCP, pemphigus, BP | Subepithelial fibrosis, acantholysis, granulomas | Invasive, risk of scarring | Correlation with molecular biomarkers; digital pathology |
| Direct immunofluorescence (DIF) | Differentiates autoimmune blistering diseases | Linear IgG, IgA, C3 deposition (OCP); intercellular IgG (pemphigus) | Requires fresh tissue; false negatives possible | Multiplex immunoassays; integration with autoantibody panels |
| In vivo confocal microscopy (IVCM) | Non-invasive imaging of conjunctiva and eyelid | Visualizes epithelial changes, inflammatory infiltrates, subclinical fibrosis | Limited penetration depth; requires expertise | Monitoring therapy response; AI-assisted image recognition |
| Anterior segment OCT (AS-OCT) | Imaging of eyelid margin and conjunctiva | Detects conjunctival scarring, eyelid margin thickening | Lower resolution than IVCM | Quantitative endpoint in clinical trials; machine learning analysis |
| Tear proteomics | Detects biomarkers correlating with disease activity | Elevated IL-6, IL-17, TNF-α, MMP-9 in OCP, TAO, Sjögren’s | Standardization lacking; sample variability | Biomarker-guided therapy selection; integration with omics |
| Serum biomarkers | Systemic disease monitoring | Anti-BP180, anti-laminin-332 (OCP); TSI (TAO) | Not always disease-specific | Genetic risk stratification; personalized treatment algorithms |
| Artificial intelligence (AI) tools | Automated detection, remote monitoring | Integrates imaging + clinical + biomarker data | Still experimental; requires large datasets | Prediction of flares; personalized treatment algorithms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luboń, W.; Luboń, M.; Sarnat-Kucharczyk, M.; Dorecka, M.; Wyględowska-Promieńska, D. Autoimmune Diseases of the Eyelid Skin: Molecular Pathways, Clinical Manifestations, and Therapeutic Insights. Int. J. Mol. Sci. 2025, 26, 11730. https://doi.org/10.3390/ijms262311730
Luboń W, Luboń M, Sarnat-Kucharczyk M, Dorecka M, Wyględowska-Promieńska D. Autoimmune Diseases of the Eyelid Skin: Molecular Pathways, Clinical Manifestations, and Therapeutic Insights. International Journal of Molecular Sciences. 2025; 26(23):11730. https://doi.org/10.3390/ijms262311730
Chicago/Turabian StyleLuboń, Wojciech, Małgorzata Luboń, Monika Sarnat-Kucharczyk, Mariola Dorecka, and Dorota Wyględowska-Promieńska. 2025. "Autoimmune Diseases of the Eyelid Skin: Molecular Pathways, Clinical Manifestations, and Therapeutic Insights" International Journal of Molecular Sciences 26, no. 23: 11730. https://doi.org/10.3390/ijms262311730
APA StyleLuboń, W., Luboń, M., Sarnat-Kucharczyk, M., Dorecka, M., & Wyględowska-Promieńska, D. (2025). Autoimmune Diseases of the Eyelid Skin: Molecular Pathways, Clinical Manifestations, and Therapeutic Insights. International Journal of Molecular Sciences, 26(23), 11730. https://doi.org/10.3390/ijms262311730

