Molecular Epidemiology, Clinical Manifestations, Decolonization Strategies, and Treatment Options of Methicillin-Susceptible Staphylococcus Aureus Infection in Neonates
Abstract
1. Introduction
2. Molecular Epidemiology of MSSA
2.1. Molecular Characteristics of MSSA
2.2. Antimicrobial Resistance
3. Epidemiology of MSSA Burden
4. MSSA Colonization in Neonates, Clinical Manifestations, and Approaches to Decolonization
4.1. MSSA Colonization
4.2. Clinical Manifestations
4.3. Risk Factors for MSSA Colonization in Neonates
4.3.1. Host-Related Risk Factors
4.3.2. Hospital and Environmental Risk Factors
4.4. Precautions Against MSSA Colonization
4.5. Decolonization Strategies for MSSA in Neonates
5. Antibiotic Treatment of MSSA Infections in Neonates
6. Discussion
7. Limitations
8. Future Perspectives
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| aac(6′)-aph(2″), ant, aph | Aminoglycoside-modifying enzyme genes |
| agrI | Quorum-sensing gene regulating biofilm formation and virulence |
| blaI/blaR/blaZ | Genes encoding β-lactamase |
| CC | Clonal Complex |
| chp | Chemotaxis inhibitory protein |
| EF-G | Elongation Factor G |
| erm(A), erm(C), erm(T) | Genes encoding 23S rRNA methylation |
| ERY | Erythromycin |
| fusA, fusB, fusC | Genes/mutations conferring fusidic acid resistance |
| GEN | Gentamicin |
| H/R variant | PVL haplotypes |
| IEC | Immune Evasion Cluster |
| MLSB | Macrolides, Lincosamides, Streptogramin B |
| mupA, mupB, ileS | Genes/mutations conferring mupirocin resistance |
| MSSA | Methicillin-Susceptible Staphylococcus aureus |
| MRSA | Methicillin-Resistant Staphylococcus aureus |
| NICU | Neonatal Intensive Care Unit |
| OX | Oxacillin |
| OR | Odds Ratio |
| pvl/PVL | Panton–Valentine Leukocidin |
| S. aureus | Staphylococcus aureus |
| sak | Staphylokinase |
| scn | Staphylococcal complement inhibitor |
| SCCmec | Staphylococcal Cassette Chromosome mec |
| SpA | Staphylococcal Protein A |
| SSTIs | Skin and Soft Tissue Infections |
| ST | Sequence Type |
| tet(K), tet(M) | Genes encoding tetracycline resistance |
| TMP | Trimethoprim |
| VLBW | Very Low Birth Weight |
| β-lactam | Beta-lactam |
References
- Myles, I.A.; Datta, S.K. Staphylococcus aureus: An introduction. Semin. Immunopathol. 2012, 34, 181–184. [Google Scholar] [CrossRef]
- Enright, M.C.; Robinson, D.A.; Randle, G.; Feil, E.J.; Grundmann, H.; Spratt, B.G. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl. Acad. Sci. USA 2002, 99, 7687–7692. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef]
- Ericson, J.E.; Popoola, V.O.; Smith, P.B.; Benjamin, D.K.; Fowler, V.G.; Clark, R.H.; Milstone, A.M. Burden of invasive Staphylococcus aureus infections in hospitalized infants. JAMA Pediatr. 2015, 169, 1105–1111. [Google Scholar] [CrossRef]
- Chuang, Y.-Y.; Huang, Y.-C. Molecular epidemiology of community-associated methicillin-resistant Staphylococcus aureus in Asia. Lancet Infect. Dis. 2013, 13, 698–708. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, J.; Zhan, Y.; Wang, L.; Jiang, Y.; Zhang, Y.; Sun, N.; Hou, N. Molecular typing revealed the emergence of pvl-positive sequence type 22 methicillin-susceptible Staphylococcus aureus in Urumqi, Northwestern China. Infect. Drug Resist. 2019, 12, 1719–1728. [Google Scholar] [CrossRef]
- Salazar-Ospina, L.; Jiménez, J.N. High frequency of methicillin-susceptible and methicillin-resistant Staphylococcus aureus in children under 1 year old with skin and soft tissue infections. J. Pediatr. 2018, 94, 380–389. [Google Scholar] [CrossRef]
- Chen, F.-J.; Siu, L.K.; Lin, J.-C.; Wang, C.-H.; Lu, P.-L. Molecular typing and characterization of nasal carriage and community-onset infection methicillin-susceptible Staphylococcus aureus isolates in two Taiwan medical centers. BMC Infect. Dis. 2012, 12, 343. [Google Scholar] [CrossRef]
- Baranovich, T.; Zaraket, H.; Shabana, I.; Nevzorova, V.; Turcutyuicov, V.; Suzuki, H. Molecular characterization and susceptibility of methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolates from hospitals and the community in Vladivostok, Russia. Clin. Microbiol. Infect. 2010, 16, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Prochaska, E.C.; Xiao, S.; Tamma, P.D.; Samuels, A.S.; Schumacher, C.; Gadala, A.; Carroll, K.C.; Milstone, A.M. Trends in pediatric community onset Staphylococcus aureus antibiotic susceptibilities over a five year period in a multihospital health system. Antimicrob. Steward. Healthc. Epidemiol. 2023, 3, e12. [Google Scholar] [CrossRef] [PubMed]
- La Vecchia, A.; Ippolito, G.; Taccani, V.; Gatti, E.; Bono, P.; Bettocchi, S.; Pinzani, R.; Tagliabue, C.; Bosis, S.; Marchisio, P.; et al. Epidemiology and antimicrobial susceptibility of Staphylococcus aureus in children in a tertiary care pediatric hospital in Milan, Italy, 2017–2021. Ital. J. Pediatr. 2022, 48, 67, Correction in Ital. J. Pediatr. 2022, 48, 134. [Google Scholar]
- Qiao, Y.; Ning, X.; Chen, Q.; Zhao, R.; Song, W.; Zheng, Y.; Dong, F.; Li, S.; Li, J.; Wang, L.; et al. Clinical and molecular characteristics of invasive community-acquired Staphylococcus aureus infections in Chinese children. BMC Infect. Dis. 2014, 14, 582. [Google Scholar] [CrossRef] [PubMed]
- Akers, S.M.; Kinney, K.; Butcher, M.I.; Moïse, A. Clearance of persistent Staphylococcus aureus bacteremia in a preterm neonate with the use of combination cefazolin and ertapenem. J. Pediatr. Pharmacol. Ther. 2020, 25, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Mahieu, L.; Engelen, A.; Hensels, E.; Van Damme, K.; Matheeussen, V. Surveillance on meticillin-sensitive Staphylococcus aureus colonization and infection in a neonatal intensive care unit. J. Hosp. Infect. 2024, 143, 195–202. [Google Scholar] [CrossRef]
- Abernethy, J.; Sharland, M.; Johnson, A.; Hope, R. How do the epidemiology of paediatric methicillin-resistant Staphylococcus aureus and methicillin-susceptible Staphylococcus aureus bacteraemia differ? J. Med. Microbiol. 2017, 66, 723–732. [Google Scholar] [CrossRef]
- Nurjadi, D.; Eichel, V.M.; Tabatabai, P.; Klein, S.; Last, K.; Mutters, N.T.; Pöschl, J.; Zanger, P.; Heeg, K.; Boutin, S. Surveillance for colonization, transmission, and infection with methicillin-susceptible Staphylococcus aureus in a neonatal intensive care unit. JAMA Netw. Open 2021, 4, e2124938. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, S.; Marini, B.; Stroffolini, G.; Geremia, N.; Giacobbe, D.R.; Campanile, F.; Bartoletti, M.; Alloisio, G.; Di Risio, L.; Viglietti, G.; et al. The virulence toolkit of Staphylococcus aureus: A comprehensive review of toxin diversity, molecular mechanisms, and clinical implications. Eur. J. Clin. Microbiol. Infect. Dis. 2025, 44, 1797–1816. [Google Scholar] [CrossRef]
- Hetsa, B.A.; Asante, J.; Mbanga, J.; Ismail, A.; Abia, A.L.K.; Amoako, D.G.; Essack, S.Y. Genomic characterization of methicillin-resistant and methicillin-susceptible Staphylococcus aureus implicated in bloodstream infections, KwaZulu Natal, South Africa: A pilot study. Antibiotics 2024, 13, 796. [Google Scholar] [CrossRef]
- Benito, D.; Lozano, C.; Jiménez, E.; Albújar, M.; Gómez, A.; Rodríguez, J.M.; Torres, C. Characterization of Staphylococcus aureus strains isolated from faeces of healthy neonates and potential mother-to-infant microbial transmission through breastfeeding. FEMS Microbiol. Ecol. 2015, 91, fiv007. [Google Scholar] [CrossRef]
- Patel, J.B.; Gorwitz, R.J.; Jernigan, J.A. Mupirocin Resistance. Clin. Infect. Dis. 2009, 49, 935–941. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention; National Center for Emerging and Zoonotic Infectious Diseases; Division of Healthcare Quality Promotion; Milstone, A.M.; Elward, A.; Brady, M.T.; Cox, K.; Fauerbach, L.L.; Guzman-Cottrill, J.A.; Hogges, J.; et al. Recommendations for Prevention and Control of Staphylococcus aureus Infections in Neonatal Intensive Care Unit Patients; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020. Available online: https://www.cdc.gov/infectioncontrol/guidelines/NICU-saureus (accessed on 10 August 2025).
- Geng, W.; Qi, Y.; Li, W.; McConville, T.H.; Hill-Ricciuti, A.; Grohs, E.C.; Saiman, L.; Uhlemann, A.C. Epidemiology of Staphylococcus aureus in neonates on admission to a Chinese neonatal intensive care unit. PLoS ONE 2020, 15, e0211845. [Google Scholar] [CrossRef] [PubMed]
- Jennings, M.R.; Elhaissouni, N.; Colantuoni, E.; Prochaska, E.C.; Johnson, J.; Xiao, S.; Clark, R.H.; Greenberg, R.G.; Benjamin, D.K.; Milstone, A.M. Epidemiology and Mortality of Invasive Staphylococcus aureus Infections in Hospitalized Infants. JAMA Pediatr. 2025, 179, 747–755. [Google Scholar] [CrossRef]
- O’Reilly, D.; O’Connor, C.; McCallion, N.; Drew, R.J. A retrospective study (2001–2017) of acute and chronic morbidity and mortality associated with Staphylococcus aureus bacteraemia in a tertiary neonatal intensive care unit. Ir. J. Med. Sci. 2019, 188, 1297–1301. [Google Scholar] [CrossRef]
- Vergnano, S.; Menson, E.; Kennea, N.; Embleton, N.; Russell, A.B.; Watts, T.; Robinson, M.J.; Collinson, A.; Heath, P.T. Neonatal infections in England: The NeonIN surveillance network. Arch. Dis. Child. Fetal Neonatal Ed. 2011, 96, F9–F14. [Google Scholar] [CrossRef]
- Benjamin, D.K.; DeLong, E.; Cotten, C.M.; Garges, H.P.; Steinbach, W.J.; Clark, R.H. Mortality following blood culture in premature infants: Increased with Gram-negative bacteremia and candidemia, but not Gram-positive bacteremia. J. Perinatol. 2004, 24, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Slingerland, B.C.G.C.; Vos, M.C.; Bras, W.; Kornelisse, R.F.; De Coninck, D.; van Belkum, A.; Reiss, I.K.M.; Goessens, W.H.F.; Klaassen, C.H.W.; Verkaik, N.J. Whole genome sequencing to explore nosocomial transmission and virulence in neonatal methicillin-susceptible Staphylococcus aureus bacteremia. Antimicrob. Resist. Infect. Control 2020, 9, 39. [Google Scholar] [CrossRef] [PubMed]
- Toyama, Y.; Hisata, K.; Kasai, Y.; Nakano, S.; Komatsu, M.; Shimizu, T. Molecular epidemiology of methicillin-susceptible Staphylococcus aureus in the neonatal intensive care unit. J. Hosp. Infect. 2022, 129, 75–81. [Google Scholar] [CrossRef]
- Stoll, B.J.; Hansen, N.I.; Bell, E.F.; Walsh, M.C.; Carlo, W.A.; Shankaran, S.; Laptook, A.R.; Sánchez, P.J.; Van Meurs, K.P.; Wyckoff, M.; et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. J. Am. Med. Assoc. 2015, 314, 1039–1051. [Google Scholar] [CrossRef]
- Jimenez-Truque, N.; Tedeschi, S.; Saye, E.J.; McKenna, B.D.; Langdon, W.; Wright, J.P.; Arnold, S.; Edwards, K.M. Relationship between maternal and infant Staphylococcus aureus colonization. J. Pediatr. 2012, 161, 312–318. [Google Scholar] [CrossRef]
- Kosmeri, C.; Giapros, V.; Serbis, A.; Balomenou, F.; Baltogianni, M. Antibiofilm strategies in neonatal and pediatric infections. Antibiotics 2024, 13, 509. [Google Scholar] [CrossRef]
- Baltogianni, M.; Giapros, V.; Kosmeri, C. Antibiotic resistance and biofilm infections in the NICUs and methods to combat it. Antibiotics 2023, 12, 352. [Google Scholar] [CrossRef] [PubMed]
- Milstone, A.M.; Elward, A.; Song, X.; Zerr, D.M.; Orscheln, R.; Speck, K.; Obeng, D.; Reich, N.G.; Coffin, S.E.; Perl, T.M.; et al. Daily chlorhexidine bathing to reduce bacteraemia in critically ill children: A multicentre, cluster-randomised, crossover trial. Lancet 2013, 381, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Rallis, D.; Giapros, V.; Serbis, A.; Kosmeri, C.; Baltogianni, M. Fighting antimicrobial resistance in neonatal intensive care units: Rational use of antibiotics in neonatal sepsis. Antibiotics 2023, 12, 508. [Google Scholar] [CrossRef]
- Patel, R.M.; Denning, P.W. Intestinal microbiota and its relationship with necrotizing enterocolitis. Pediatr. Res. 2015, 78, 232–238. [Google Scholar] [CrossRef]
- Balamohan, A.; Beachy, J.; Khare, R.; Kohn, N.; Butala, S.; Rubin, L. Decreased incidence of methicillin-susceptible Staphylococcus aureus (MSSA) infections after implementation of routine surveillance and decolonization in a Level IV neonatal intensive care unit (NICU). Open Forum Infect. Dis. 2018, 5, S683–S684. [Google Scholar] [CrossRef]
- Leibovitz, E. Neonatal sepsis and meningitis—Treatment and prophylaxis. Infection 2009, 37, 126–128. [Google Scholar]
- Hong, X.; Zhou, S.; Dai, X.; Xie, D.; Cai, Y.; Zhao, G.; Li, B. Molecular typing and characterization of Staphylococcus aureus isolates from burn wound infections in Fujian, China. Front. Microbiol. 2023, 14, 1236497. [Google Scholar] [CrossRef]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef]
- Boswihi, S.S.; Alfouzan, W.A.; Udo, E.E. Genomic profiling of methicillin-sensitive Staphylococcus aureus (MSSA) isolates in Kuwait hospitals. Front. Microbiol. 2024, 15, 1361217. [Google Scholar] [CrossRef]
- Guay, G.G.; Rothstein, D.M. Expression of the tetK gene from Staphylococcus aureus in Escherichia coli: Comparison of substrate specificities of TetA(B), TetA(C), and TetK efflux proteins. Antimicrob. Agents Chemother. 1993, 37, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Bien, J.; Sokolova, O.; Bozko, P. Characterization of virulence factors of Staphylococcus aureus: Novel function of known virulence factors that are implicated in activation of airway epithelial proinflammatory response. J. Pathog. 2011, 2011, 601905. [Google Scholar] [CrossRef]
- Shallcross, L.J.; Fragaszy, E.; Johnson, A.M.; Hayward, A.C. The role of the Panton-Valentine leucocidin toxin in staphylococcal disease: A systematic review and meta-analysis. Lancet Infect. Dis. 2013, 13, 43–54. [Google Scholar] [CrossRef]
- van Wamel, W.J.; Rooijakkers, S.H.; Ruyken, M.; van Kessel, K.P.; van Strijp, J.A. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J. Bacteriol. 2006, 188, 1310–1315. [Google Scholar] [CrossRef]
- Flannagan, R.S.; Heit, B.; Heinrichs, D.E. Antimicrobial mechanisms of macrophages and the immune evasion strategies of Staphylococcus aureus. Pathogens 2015, 4, 826–868. [Google Scholar] [CrossRef]
- Lakhundi, S.; Zhang, K. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.T.; Cao, R.; Xiao, N.; Li, Z.S.; Wang, R.; Zou, J.M.; Pei, J. Molecular epidemiology and antimicrobial susceptibility of methicillin-resistant Staphylococcus aureus isolates in Xiangyang, China. J. Glob. Antimicrob. Resist. 2018, 12, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, R. Mechanisms of resistance to macrolides and lincosamides: Nature of the resistance elements and their clinical implications. Clin. Infect. Dis. 2002, 34, 482–492. [Google Scholar] [CrossRef] [PubMed]
- El Mammery, A.; de Arellano, E.R.; Cañada-García, J.E.; Cercenado, E.; Villar-Gómara, L.; Casquero-García, V.; García-Cobos, S.; Lepe, J.A.; Bordes, E.R.d.G.; Calvo-Montes, J.; et al. An increase in erythromycin resistance in methicillin-susceptible Staphylococcus aureus (MSSA) from blood correlates with the use of macrolide/lincosamide/streptogramin antibiotics in Spain (2004–2020). Front. Microbiol. 2023, 14, 1220286. [Google Scholar] [CrossRef]
- Roberts, M.C. Update on acquired tetracycline resistance genes. FEMS Microbiol. Lett. 2005, 245, 195–203. [Google Scholar] [CrossRef]
- O’Neill, A.J.; Chopra, I. Molecular basis of fusB-mediated resistance to fusidic acid in Staphylococcus aureus. Mol. Microbiol. 2006, 59, 664–676. [Google Scholar] [CrossRef]
- Chandrakanth, R.K.; Raju, S.; Patil, S.A. Aminoglycoside-resistance mechanisms in multidrug-resistant Staphylococcus aureus clinical isolates. Curr. Microbiol. 2008, 56, 558–562. [Google Scholar] [CrossRef]
- Juma, M.A.; Kumburu, H.; Wadugu, B.; Kuchaka, D.; Shayo, M.; Kimu, P.; Kanje, L.E.; Beti, M.; Van Zwetselaar, M.; Mmbaga, B.; et al. Whole genome sequencing based characterization and determination of quinolone resistance among MRSA and MSSA isolates from hospitals in Tanzania. BMC Genom. 2024, 25, 1130. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Liu, J.; Wang, Q.; Zhao, H.; Chen, L. The agr Type I System Mediates Virulence and Antibiotic Resistance in Staphylococcus aureus Clinical Isolates. Eur. J. Med. Res. 2024, 29, 1831. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Infection Control Guidance: Preventing Methicillin-Resistant Staphylococcus aureus (MRSA) in Healthcare Facilities; CDC Twenty Four Seven: Atlanta, GA, USA, 2025. Available online: https://www.cdc.gov/mrsa/hcp/infection-control/index.html (accessed on 12 November 2025).
- Kuint, J.; Barzilai, A.; Regev-Yochay, G.; Rubinstein, E.; Keller, N.; Maayan-Metzger, A. Comparison of community-acquired methicillin-resistant Staphylococcus aureus bacteremia to other staphylococcal species in a neonatal intensive care unit. Eur. J. Pediatr. 2007, 166, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Stensen, D.B.; Nozal Cañadas, R.A.; Småbrekke, L.; Olsen, K.; Nielsen, C.S.; Svendsen, K.; Hanssen, A.M.; Ericson, J.U.; Simonsen, G.S.; Bongo, L.A.; et al. Social network analysis of Staphylococcus aureus carriage in a general youth population. Int. J. Infect. Dis. 2022, 123, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.Y.C.; Davies, R.M.; Collignon, P.J.; Howden, B.P.; Johnson, P.D.R.; Grayson, M.L.; McDonald, M.I. Nasal carriage of Staphylococcus aureus in the general adult population. J. Clin. Microbiol. 2009, 47, 3002–3006. [Google Scholar] [CrossRef]
- Munckhof, W.J.; Nimmo, G.R.; Schooneveldt, J.M.; Schlebusch, S.; Stephens, A.J.; Williams, G.; Huygens, F.; Giffard, P. Nasal carriage of Staphylococcus aureus, including community-associated methicillin-resistant strains, in Queensland adults. Clin. Microbiol. Infect. 2009, 15, 149–155. [Google Scholar] [CrossRef]
- Awulachew, E.W.; Diriba, K.; Anja, A.; Wudneh, F. Nasopharyngeal carriage of Staphylococcus aureus and its antimicrobial resistance pattern among healthy people: Systematic review and meta-analysis. Int. J. Med. Sci. 2020, 11, 383. [Google Scholar]
- Moura, J.P.; Pimenta, F.C.; Hayashida, M.; Cruz, E.D.A.; Canini, S.R.M.S.; Gir, E. Colonization of nursing professionals by Staphylococcus aureus. Rev. Lat. Am. Enferm. 2011, 19, 325–331. [Google Scholar] [CrossRef]
- Weiss, A.; Kramer, A.; Taube, R.; Mattner, F.; Premke, K. Prevalence of methicillin-sensitive and resistant Staphylococcus aureus carriage among German emergency medical providers. GMS Hyg. Infect. Control 2024, 19, Doc35. [Google Scholar] [CrossRef]
- Otokunefor, K.; Sloan, T.; Kearns, A.M.; James, R. Molecular characterization and Panton-Valentine leucocidin typing of community-acquired methicillin-sensitive Staphylococcus aureus clinical isolates. J. Clin. Microbiol. 2012, 50, 3069–3072. [Google Scholar] [CrossRef]
- Becker, K.; Roth, R.; Peters, G. Rapid and specific detection of toxigenic Staphylococcus aureus: Use of two multiplex PCR enzyme immunoassays for amplification and hybridization of staphylococcal enterotoxin genes, exfoliative toxin genes, and toxic shock syndrome toxin 1 gene. J. Clin. Microbiol. 1998, 36, 2548–2553. [Google Scholar] [CrossRef]
- Monday, S.R.; Bohach, G.A. Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in staphylococcal isolates. J. Clin. Microbiol. 1999, 37, 3411–3414. [Google Scholar] [CrossRef] [PubMed]
- Harmsen, D.; Claus, H.; Witte, W.; Rothgänger, J.; Turnwald, D.; Vogel, U. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J. Clin. Microbiol. 2003, 41, 5442–5448. [Google Scholar] [CrossRef] [PubMed]
- Enright, M.C.; Day, N.P.; Davies, C.E.; Peacock, S.J.; Spratt, B.G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 2000, 38, 1008–1015. [Google Scholar] [CrossRef]
- Boakes, E.; Kearns, A.M.; Ganner, M.; Perry, C.; Hill, R.L.; Ellington, M.J. Distinct bacteriophages encoding Panton-Valentine leukocidin (PVL) among international methicillin-resistant Staphylococcus aureus clones harboring PVL. J. Clin. Microbiol. 2011, 49, 684–692. [Google Scholar] [CrossRef]
- Wolter, D.J.; Tenover, F.C.; Goering, R.V. Allelic variation in genes encoding Panton-Valentine leukocidin from community-associated Staphylococcus aureus. Clin. Microbiol. Infect. 2007, 13, 827–830. [Google Scholar] [CrossRef]
- O’Hara, F.P.; Guex, N.; Word, J.M.; Miller, L.A.; Becker, J.A.; Walsh, S.L.; Scangarella, N.E.; West, J.M.; Shawar, R.M.; Amrine-Madsen, H. A geographic variant of the Staphylococcus aureus Panton-Valentine leukocidin toxin and the origin of community-associated methicillin-resistant S. aureus USA300. J. Infect. Dis. 2008, 197, 187–194. [Google Scholar] [CrossRef]
- Muttaiyah, S.; Coombs, G.; Pandey, S.; Reed, P.; Ritchie, S.; Lennon, D.; Roberts, S. Incidence, risk factors, and outcomes of Panton-Valentine leukocidin-positive methicillin-susceptible Staphylococcus aureus infections in Auckland, New Zealand. J. Clin. Microbiol. 2010, 48, 3470–3474. [Google Scholar] [CrossRef] [PubMed]
- Rasigade, J.P.; Laurent, F.; Lina, G.; Meugnier, H.; Bes, M.; Vandenesch, F.; Etienne, J.; Tristan, A. Global distribution and evolution of Panton-Valentine leukocidin-positive methicillin-susceptible Staphylococcus aureus, 1981–2007. J. Infect. Dis. 2010, 201, 1589–1597. [Google Scholar] [CrossRef]
- Tong, S.Y.; Lilliebridge, R.A.; Bishop, E.J.; Cheng, A.C.; Holt, D.C.; McDonald, M.I.; Giffard, P.M.; Currie, B.J.; Boutlis, C.S. Clinical correlates of Panton-Valentine leukocidin (PVL), PVL isoforms, and clonal complex in the Staphylococcus aureus population of Northern Australia. J. Infect. Dis. 2010, 202, 760–769. [Google Scholar] [CrossRef]
- Berglund, C.; Prevost, G.; Laventie, B.J.; Keller, D.; Soderquist, B. The genes for Panton-Valentine leukocidin (PVL) are conserved in diverse lines of methicillin-resistant and methicillin-susceptible Staphylococcus aureus. Microbes Infect. 2008, 10, 878–884. [Google Scholar] [CrossRef]
- Dumitrescu, O.; Tristan, A.; Meugnier, H.; Bes, M.; Gouy, M.; Etienne, J.; Lina, G.; Vandenesch, F. Polymorphism of the Staphylococcus aureus Panton-Valentine leukocidin genes and its possible link with the fitness of community-associated methicillin-resistant S. aureus. J. Infect. Dis. 2008, 198, 792–794. [Google Scholar] [CrossRef] [PubMed]
- Boakes, E.; Kearns, A.; Ganner, M.; Perry, C.; Warner, M.; Hill, R.; Ellington, M. Molecular diversity within clonal complex 22 methicillin-resistant Staphylococcus aureus encoding Panton-Valentine leukocidin in England and Wales. Clin. Microbiol. Infect. 2011, 17, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G., Jr. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Boyce, J.M.; Pittet, D.; Healthcare Infection Control Practices Advisory Committee; HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Guideline for hand hygiene in health-care settings. Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. MMWR Recomm. Rep. 2002, 51, S3–S40. [Google Scholar] [CrossRef]
- Otter, J.A.; Yezli, S.; Salkeld, J.A.; French, G.L. Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings. Am. J. Infect. Control 2013, 41, S6–S11. [Google Scholar] [CrossRef]
- Tacconelli, E.; Cataldo, M.A.; Dancer, S.J.; De Angelis, G.; Falcone, M.; Frank, U.; Kahlmeter, G.; Pan, A.; Petrosillo, N.; Rodríguez-Baño, J.; et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin. Microbiol. Infect. 2014, 20 (Suppl. 1), 1–55. [Google Scholar] [CrossRef]
- Huang, S.S.; Septimus, E.; Kleinman, K.; Moody, J.; Hickok, J.; Avery, T.R.; Lankiewicz, J.; Gombosev, A.; Terpstra, L.; Hartford, F.; et al. Targeted versus universal decolonization to prevent ICU infection. N. Engl. J. Med. 2013, 368, 2255–2265. [Google Scholar] [CrossRef]
- Septimus, E.J.; Schweizer, M.L. Decolonization in prevention of health care-associated infections. Clin. Microbiol. Rev. 2016, 29, 201–222. [Google Scholar] [CrossRef]
- Lee, S.; Song, K.H.; Jung, S.I.; Park, W.B.; Lee, S.H.; Kim, Y.S.; Kwak, Y.G.; Kim, Y.K.; Kiem, S.M.; Kim, H.I.; et al. Comparative outcomes of cefazolin versus nafcillin for methicillin-susceptible Staphylococcus aureus bacteraemia: A prospective multicentre cohort study in Korea. Clin. Microbiol. Infect. 2018, 24, 152–158. [Google Scholar] [CrossRef]
- Chang, F.Y.; MacDonald, B.B.; Peacock, J.E., Jr.; Musher, D.M.; Triplett, P.; Mylotte, J.M.; O’Donnell, A.; Wagener, M.M.; Yu, V.L. A prospective multicenter study of Staphylococcus aureus bacteremia: Incidence of endocarditis, risk factors for mortality, and clinical impact of methicillin resistance. Medicine 2003, 82, 322–332. [Google Scholar] [CrossRef]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis. 2011, 52, e18–e55. [Google Scholar] [CrossRef] [PubMed]
- Otto, M. Staphylococcus aureus toxins. Curr. Opin. Microbiol. 2014, 17, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Wertheim, H.F.; Melles, D.C.; Vos, M.C.; van Leeuwen, W.; van Belkum, A.; Verbrugh, H.A.; Nouwen, J.L. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 2005, 5, 751–762. [Google Scholar] [CrossRef] [PubMed]

| Reference | Authors & Year | Age Group/Population | Study Type | NICU Focus | Pathogen | Key Findings/Notes |
|---|---|---|---|---|---|---|
| [4] | Ericson et al., 2015 | Hospitalized infants | Clinical/Burden study | Yes | MSSA & MRSA | High incidence in VLBW infants; NICU burden |
| [13] | Akers et al., 2020 | Preterm neonate | Case study | Yes | MSSA | Persistent MSSA bacteremia cleared with cefazolin + ertapenem |
| [14] | Mahieu et al., 2024 | Neonates | Surveillance | Yes | MSSA | MSSA colonization and infection in NICU |
| [16] | Nurjadi et al., 2021 | Neonates | Surveillance | Yes | MSSA | MSSA colonization, transmission, and infection in NICU |
| [19] | Benito et al., 2015 | Healthy neonates | Microbial study | Possible | S. aureus | Characterization of S. aureus from neonatal feces; potential mother-to-infant transmission through breastfeeding |
| [20] | Patel et al., 2009 | Neonates | Surveillance | Yes | MRSA | Mupirocin resistance among MRSA in NICU |
| [21] | CDC | Neonates | Guidelines | Yes | MSSA & MRSA | Prevention & control of S. aureus infections in NICU |
| [22] | Geng et al., 2020 | Neonates | Epidemiology | Yes | MSSA | MSSA prevalence on NICU admission in China |
| [23] | Jennings et al., 2025 | Hospitalized infants | Clinical/Mortality | Yes | MSSA | Invasive MSSA infection epidemiology and mortality |
| [24] | O’Reilly et al., 2019 | NICU | Retrospective study | Yes | MSSA | Morbidity & mortality of S. aureus bacteremia in NICU |
| [25] | Vergnano et al., 2011 | NICU, England | Epidemiology | Yes | MSSA & MRSA | Neonatal infections surveillance |
| [26] | Benjamin et al., 2004 | Neonates, Preterm | Epidemiology | Yes | MSSA & MRSA | Mortality following blood culture in preterm infants |
| [27] | Slingerland et al., 2020 | Neonates | Whole genome sequencing | Yes | MSSA | Explored nosocomial transmission and virulence of MSSA bacteremia in NICU; WGS revealed potential transmission pathways and virulence factors |
| [28] | Toyama et al., 2022 | NICU | Molecular epidemiology | Yes | MSSA | MSSA molecular epidemiology in NICU |
| [29] | Stoll et al., 2015 | Extremely preterm | Observational study | Yes | MSSA & MRSA | Trends in care, morbidity, and mortality in NICU (1993–2012) |
| [30] | Jimenez-Truque et al., 2012 | Mother-infant pairs | Epidemiology | Yes | MSSA & MRSA | Maternal-infant S. aureus colonization relationship |
| [31] | Kosmeri et al., 2024 | Neonates & Pediatrics | Review | Yes | MSSA & MRSA | Antibiofilm strategies in neonatal/pediatric infections |
| [32] | Baltogianni et al., 2023 | NICU | Review | Yes | MSSA & MRSA | Antibiotic resistance & biofilm management strategies |
| [33] | Milstone et al., 2013 | Critically ill children | Clinical trial | Yes | MRSA | Daily chlorhexidine bathing reduces bacteremia |
| [34] | Rallis et al., 2023 | NICU | Review | Yes | MSSA & MRSA | Antimicrobial resistance and rational antibiotic use in neonatal sepsis |
| [35] | Patel & Denning, 2015 | Neonates | Review | Yes | MSSA & MRSA | Intestinal microbiota and necrotizing enterocolitis |
| [36] | Balamohan et al., 2018 | Neonates | Clinical/Surveillance | Yes | MSSA | Decreased MSSA incidence after implementation of routine surveillance and decolonization; highlights importance of decolonization measures in NICU |
| [37] | Leibovitz, 2009 | Neonates | Review | Yes | MSSA & MRSA | Neonatal sepsis and meningitis: treatment & prophylaxis |
| Gene | Mechanism/Function | Clinical Relevance | Frequency/% Isolates | Reference |
|---|---|---|---|---|
| blaZ/blaI/blaR | Encodes β-lactamase → hydrolyzes penicillin G and other natural β-lactams | Widespread resistance to penicillin; limits β-lactam use | >80–90% | Becker et al., 2014; Boswihi et al., 2024 [39,40] |
| erm(A), erm(C) | 23S rRNA methylation → MLSB phenotype (resistance to macrolides, lincosamides, streptogramin B) | Reduced efficacy of clindamycin and erythromycin in neonatal isolates | 25–45% (varies by region) | Boswihi et al., 2024; Leclercq et al., 2002 [40,48] |
| erm(T) | 23S rRNA methylation → MLSB phenotype | Increased erythromycin/clindamycin resistance in MSSA, including CC398 | 37–78% | El Mammery et al., 2023 [49] |
| tet(K), tet(M) | Efflux pump (tetK) or ribosomal protection protein (tetM) → tetracycline resistance | Limits the use of tetracyclines in SSTIs | 10–25% | Roberts et al., 2005 [50] |
| fusB, fusC, fusA mutations | Protection/modification of EF-G → fusidic acid resistance | Clinically relevant resistance in areas with extensive topical fusidic acid use | 5–15% | Boswihi et al., 2024; O’Neill & Chopra, 2006 [40,51] |
| mupA, mupB, ileS mutations | Modification of isoleucyl-tRNA synthetase → mupirocin resistance | Reduces effectiveness of mupirocin-based decolonization strategies, esp. NICU clones (ST1898) | 2–10% | Patel et al., 2009 [20] |
| aac(6′)-aph(2″), ant, aph | Aminoglycoside-modifying enzymes → resistance to gentamicin and other aminoglycosides | Limits the synergistic use with β-lactams | 5–20% | Chandrakanth et al., 2008; Mahoro et al., 2024 [52,53] |
| agrI | Quorum-sensing gene affecting virulence and biofilm regulation | Correlates with β-lactam resistance and persistence in healthcare environments | ~20% | Li et al., 2024 [54] |
| Isolate | Patient/Clinical Context | ST | CC | PVL Haplotype | PVL Phage Type | Antibiotic Resistance | Key Notes |
|---|---|---|---|---|---|---|---|
| TS6 | Neonate, hospital ward cluster | ST22 | CC22 | H2 | ΦPVL | TMP, GEN | Epidemiologically linked to TS9 |
| TS9 | Neonate, same ward as TS6 | ST22 | CC22 | H2 | ΦPVL | TMP, GEN | Linked cluster |
| TS12 | Neonate, skin infection | ST30 | CC30 | H1 | ΦPVL/Φ108PVL | TMP, GEN, OX, ERY | Outlier H1 PVL SNP, 4-drug resistance |
| TS17 | Relative of TS18/24 patient | ST1 | CC1 | H2 | ΦSa2USA | TMP | Differs at spa locus from TS18/24 |
| TS18 | Neonate, patient A | ST30 | CC30 | H2 | ΦPVL/Φ108PVL | TMP, GEN | Similar to TS24 |
| TS24 | Neonate, same patient as TS18 | ST30 | CC30 | H2 | ΦPVL/Φ108PVL | TMP, GEN | Congruent with TS18 |
| TS21 | Neonate, unknown epidemiology | ST88 | CC88 | H2 | Undetermined (morphology only) | TMP | Phage only morphologically identified |
| TS25 | Neonate, skin/soft tissue infection | ST22 | CC22 | H2 | Multiple phages | TMP, GEN | Contains multiple distinct PVL phages |
| Bacterial presence in the throat and nasal passages | Positioning the newborn on the mother's breast immediately after birth. Precolonization of the typical α- and/or Á-Streptococcus by applying the mother’s breast milk over and inside the mouths of extremely-low-birth-weight infants immediately upon their admission to the NICU. |
| Skin microbial flora | Immediate skin-to-skin contact between the mother and newborn should occur in the delivery room right after birth, irrespective of how the delivery took place. |
| Hand hygiene | Rigorous hand cleanliness before and after caring for newborns. |
| Gloves | The rate of MSSA isolation decreases when gloves are used for infection control. |
| Prevent overcrowding | Prevent overcrowding by cohorting and isolating MSSA-positive neonates, implementing barrier precautions, training healthcare staff, and steering clear of congested wards. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolaou, A.; Baltogianni, M.; Dermitzaki, N.; Tsiogka, C.M.; Chatzigiannis, N.; Balomenou, F.; Giapros, V. Molecular Epidemiology, Clinical Manifestations, Decolonization Strategies, and Treatment Options of Methicillin-Susceptible Staphylococcus Aureus Infection in Neonates. Int. J. Mol. Sci. 2025, 26, 11430. https://doi.org/10.3390/ijms262311430
Nikolaou A, Baltogianni M, Dermitzaki N, Tsiogka CM, Chatzigiannis N, Balomenou F, Giapros V. Molecular Epidemiology, Clinical Manifestations, Decolonization Strategies, and Treatment Options of Methicillin-Susceptible Staphylococcus Aureus Infection in Neonates. International Journal of Molecular Sciences. 2025; 26(23):11430. https://doi.org/10.3390/ijms262311430
Chicago/Turabian StyleNikolaou, Aikaterini, Maria Baltogianni, Niki Dermitzaki, Chrysanthi Maria Tsiogka, Nikitas Chatzigiannis, Foteini Balomenou, and Vasileios Giapros. 2025. "Molecular Epidemiology, Clinical Manifestations, Decolonization Strategies, and Treatment Options of Methicillin-Susceptible Staphylococcus Aureus Infection in Neonates" International Journal of Molecular Sciences 26, no. 23: 11430. https://doi.org/10.3390/ijms262311430
APA StyleNikolaou, A., Baltogianni, M., Dermitzaki, N., Tsiogka, C. M., Chatzigiannis, N., Balomenou, F., & Giapros, V. (2025). Molecular Epidemiology, Clinical Manifestations, Decolonization Strategies, and Treatment Options of Methicillin-Susceptible Staphylococcus Aureus Infection in Neonates. International Journal of Molecular Sciences, 26(23), 11430. https://doi.org/10.3390/ijms262311430

