Next Article in Journal
Role of ChREBP–PPARα–FGF21 Axis in Metabolic Dysfunction of MASLD
Previous Article in Journal
Chronic Overexpression of Neuronal NRG1-III in Mice Causes Long-Term Detrimental Changes in Lower Motor Neurons, Neuromuscular Synapses and Motor Behaviour
Previous Article in Special Issue
Treatment of Dyslipidemia in Patients with Type 1 Diabetes Mellitus: A Review of Current Evidence and Knowledge Gaps
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Diabetes Mellitus and Lipoprotein(a): A Determinant Interaction in Micro- and Macrovascular Damage

by
Alberto Polo-Barranco
1,2,3,
Carlos Rebolledo-Maldonado
4,5,6,
Valeria Esquiaqui-Rangel
5,
Andrea Nuñez-Mejia
5,
Jeisón Rambal-Torres
2,
Valentina Barraza-Ahumada
3,
Shivleivy Vargas-Cantillo
4,5,
Wylman Benavides-De la Cruz
3,
Valentina Liñán-Martínez
2,3,
Valentina Rada-Obeso
2,3,
Muna Isaac-Escorcia
1,3,
Neil Martínez-Fontalvo
3,
José Correa-Guerrero
3,7,
Dairo Rodelo-Barrios
3,5 and
Elber Osorio-Rodríguez
3,4,6,*
1
Department of Internal Medicine, Clínica Iberoamérica, Barranquilla 080002, Colombia
2
Department of Internal Medicine, Faculty of Medicine, Metropolitana University, Barranquilla 080002, Colombia
3
Critical and Internal Medicine Research Group (CRITIMED), Cartagena de Indias 130005, Colombia
4
Department of Intensive Medicine, Clínica Iberoamérica, Barranquilla 080002, Colombia
5
Department of Critical Medicine and Intensive Care, Faculty of Medicine, Simón Bolívar University, Barranquilla 080002, Colombia
6
Group Care Medicine, Clínica Colsanitas, Bogotá D.C. 110931, Colombia
7
Department of Internal Medicine, University of Cartagena, Cartagena de Indias 130005, Colombia
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2025, 26(23), 11427; https://doi.org/10.3390/ijms262311427
Submission received: 30 October 2025 / Revised: 16 November 2025 / Accepted: 24 November 2025 / Published: 26 November 2025

Abstract

Even when people with diabetes mellitus (DM) meet their cholesterol goals, they still face a higher risk of heart and blood vessel problems. One major reason is a particle called lipoprotein(a), or Lp(a), which is similar to LDL cholesterol. Raised levels of Lp(a) are inherited rather than caused by lifestyle. Lp(a) can build up in the body and make it easier for blood clots to form because it closely resembles a protein called plasminogen, reducing its ability to form plasmin that dissolves blood clots. At the same time, chemical changes like oxidation and glycation can make blood vessels more inflamed, adding to the risk. Elevated concentrations of Lp(a) (>30 mg/dL; 75 nmol/L), and particularly >50 mg/dL (125 nmol/L), are independently associated with coronary artery disease, ischemic stroke, diabetic nephropathy, retinopathy, and neuropathy. Conventional lipid-lowering therapies exert neutral or modest effects on Lp(a), in contrast to RNA-based targeted agents (antisense oligonucleotides and siRNA [Small Interfering RNA]), which achieve reductions of 70–95% and show consistent results in Phase 2 clinical trials. In this review, we bring together findings from laboratory research and clinical studies, and highlight why it is important to measure Lp(a) levels—at least once in a person’s life, and especially in those with diabetes—to help doctors better assess risk and plan more effective treatments. In diabetic populations, the adaptation of Lp(a)-targeted therapies could redefine the management of residual risk and improve both cardiovascular and microvascular outcomes.

1. Introduction

Dyslipidemia is a well-known risk factor for atherosclerotic cardiovascular disease (ASCVD) in people with diabetes mellitus (DM) [1,2]. About 800 million people worldwide have diabetes, which greatly raises the risk of major adverse cardiovascular events (MACE) [3]. Individuals with DM are two to four times more likely to develop ASCVD than those without diabetes [4,5]. About 35–50% of subjects with type 2 diabetes (T2DM) have dyslipidemia, making early diagnosis and timely treatment important [6,7]. Even when lipid targets are met, some risk remains, so improved risk assessment is needed to further reduce MACE [8,9].
Dyslipidemia is a disorder of lipoprotein metabolism, caused by either too much production or poor removal of lipoproteins [10]. In DM, the most common type of atherogenic dyslipidemia involves lower high-density lipoprotein cholesterol (HDL-C), higher triglycerides, and more small dense low-density lipoprotein (sdLDL) particles [1,11]. Glycemic control alone does not prevent ASCVD, since insulin resistance leads to more production of triglyceride-rich very-low-density lipoprotein (VLDL) particles, greater cholesteryl ester transfer protein (CETP) activity, and higher hepatic lipase activity [12,13,14]. As a result, early diagnosis and prevention of MACE depend on measuring these harmful lipid levels [15].
Lipoprotein(a) [Lp(a)] is an LDL-like particle that is especially important in DM because it is strongly linked to atherogenesis and cardiovascular events [16]. Its structure contains apolipoprotein(a) [apo(a)], which is 75–94% similar to plasminogen and gives Lp(a) its proatherothrombotic properties [17,18,19,20]. In DM, these features are linked to a higher risk of coronary heart disease and ischemic stroke [21,22,23,24]. High levels of Lp(a), especially above 50 mg/dL (125 nmol/L), are associated with faster atherosclerosis and greater ASCVD risk [20].
Recent studies show that LDL and other lipoproteins, including Lp(a), can be changed by glycation and oxidation, which speeds up atherogenesis and diabetic vasculopathy [25,26,27]. Long-term high blood sugar causes non-enzymatic glycation of proteins and lipids, leading to advanced glycation end-products (AGEs) [28]. For lipoproteins, this process affects apolipoprotein B [apoB] and surface phospholipids, both key parts of Lp(a) [29]. This harmful process is made worse by oxidative stress, chronic inflammation, cell death, and the growth of vascular smooth muscle cells [30,31,32].
Despite progress, there are still major gaps in our understanding of Lp(a) biology in DM [33]. In this review, we bring together molecular and clinical insights on Lp(a) in DM and discuss its role in both microvascular and macrovascular complications.

2. Chemical Structure of Lipoprotein(a)

Lp(a) is a complex plasma lipoprotein particle composed of two major components covalently linked to each other [34]. The first is an LDL-like particle, with a cholesterol ester- and triglyceride-rich core surrounded by a phospholipid monolayer, whose structural protein is apolipoprotein B100 (apoB100) [35]. The second is apolipoprotein(a) [apo(a)], a large glycoprotein covalently bound to apoB100 via a disulfide bond [36]. Apo(a), which shares high sequence homology with plasminogen, is composed of multiple kringle-type domains—Kringle IV (KIV) [subtypes (1–10)] and Kringle V(KV)—along with a catalytically inactive protease-like domain [37]. This unique architecture underlies the distinctive biochemical properties of Lp(a), as illustrated in Figure 1.
Apo(a) exhibits marked size variability determined by the number of Kringle IV type 2 (KIV-2) repeats [38,39]. The isoform size of apo(a) is the principal determinant of circulating Lp(a) concentrations [37]. Large isoforms, which contain more KIV-2 repeats, fold and mature more slowly within the endoplasmic reticulum (ER); consequently, they are retained for longer periods, and a proportion undergoes degradation before secretion [40]. This reduces the effective production rate of Lp(a) and translates into lower plasma levels [41]. In contrast, small isoforms are more efficiently synthesized and secreted, resulting in higher circulating concentrations [42]. This variability is primarily explained by genetic determinants at the LPA locus, located on the long arm of chromosome 6 (6q27) [43]. Moreover, multiple single-nucleotide polymorphisms (SNPs) within the LPA locus modulate plasma Lp(a) levels, while other genes, such as APOE and APOH, contribute to interindividual variability to a lesser extent [43,44].
Sex-related differences have also been described: women generally exhibit slightly higher Lp(a) levels compared with men (~5–10%) [39,45]. This difference becomes more pronounced after menopause (up to ~17%), likely mediated by hormonal factors [46,47]. Nonetheless, the genetic determinants of Lp(a)—including codominant inheritance of LPA alleles, SNPs, and the number of KIV-2 repeats—operate similarly in both sexes, although their phenotypic expression may be modulated by age and hormonal environment [48].

3. Metabolism of Lipoprotein(a)

3.1. Biosynthesis

Apo(a) is synthesized mainly in the liver; the site of Lp(a) assembly has been proposed to be within hepatocytes, in the space of Disse, or even in the plasma compartment [33]. Following translation, the precursor protein undergoes maturation in the ER, where it experiences N-glycosylation, folding, and proteasomal degradation [37]. In the Golgi apparatus, apo(a) acquires additional carbohydrate chains through both N- and O-glycosylation, ultimately reaching a molecular mass of 300–800 kDa [37,49]. Since plasma Lp(a) concentrations are largely determined by the rate of apo(a) synthesis, transcriptional regulation of the LPA gene plays a central role in its control [50]. In hepatocytes, transcription is influenced by hepatocyte nuclear factor 4 alpha (HNF4α) and modulated by nuclear receptors, particularly the farnesoid X receptor (FXR), which responds to bile acids such as chenodeoxycholic acid (CDCA) [51]. FXR activation represses apo(a) expression through two mechanisms: (i) directly displacing HNF4α from the Downregulator of Transcription 1 (DR-1) element (–826/–814) within the LPA promoter and (ii) indirectly inducing intestinal fibroblast growth factor 19 (FGF19), which activates hepatic FGFR4 signaling. This triggers the RAS–RAF–MEK1/2 cascade, leading to ELK-1 phosphorylation and binding to an ETS site (–1630/–1615) in the LPA promoter, thereby suppressing apo(a) transcription [50,52,53]; see Figure 2.

3.2. Assembly

Under physiological conditions, more than 95% of circulating apo(a) is covalently bound to LDL particles, which predominantly arise from the intravascular lipolysis of VLDL [54]. In vitro, Lp(a) can be reconstituted by mixing recombinant apo(a) with LDL in the absence of enzymatic cofactors, supporting the extracellular assembly model [50]. In this process, an initial non-covalent interaction occurs: the apo(a) region spanning Kringle IV-7 to IV-8 binds to a charged site at the C-terminal region of apoB100 [37]. Subsequently, a covalent disulfide bond forms between cysteine 4328 in apo(a) (KIV-9) and cysteine 4057 in apoB100 [55,56]. Alternatively, intracellular assembly has been documented in HepG2 cells expressing a minigene of apo(a) [57]. Thus, both extracellular and intracellular mechanisms are considered plausible [37].

3.3. Catabolism

Most Lp(a) breakdown happens in the liver [34]. Possible receptors involved are the asialoglycoprotein receptor (ASGP-R) and plasminogen receptors [58]. Studies of familial hypercholesterolemia have demonstrated that, in contrast to LDL, Lp(a) is not primarily removed by the low-density lipoprotein receptor (LDLR) [56]. Other receptors, such as the very-low-density lipoproteins receptor (VLDL-R), can bind Lp(a) in vitro, although their physiological relevance in humans remains uncertain [59]. Animal studies show that 50–60% of labeled Lp(a) ends up in the liver, with the rest found in bile, kidneys, and spleen [60].
In the kidneys, there is about a 10% difference in Lp(a) concentration between arteries and veins [61]. Healthy people have been found to excrete apo(a) fragments in their urine, ranging from 50 to 160 kDa [62]. While it is not clear exactly where these fragments are made, evidence suggests many come from outside the kidneys and are then filtered out by them [50]. Urinary apo(a) fragments immediately decrease when plasma Lp(a) is reduced by LDL apheresis, indicating a close relationship between plasma and renal handling of Lp(a) [63].

4. Behavior of Lipoprotein(a) According to Diabetic Phenotype

Diabetic dyslipidemia is a complex set of quantitative and qualitative lipid and lipoprotein abnormalities with strong atherogenic potential [64]. Plasma levels of Lp(a) are primarily determined by genetic factors, although environmental and clinical conditions can modify them [65]. Sex steroids and hormone replacement therapy can decrease Lp(a) [66,67,68], whereas hypothyroidism is usually associated with elevated levels [69]. In healthy subjects, an intravenous glucose tolerance test (IVGTT) revealed an inverse relationship between Lp(a) and first-phase insulin secretion [70], suggesting a possible interplay between Lp(a) metabolism and pancreatic insulin secretion [71].
Lp(a) levels also vary across different diabetes subtypes [72]. In type 1 diabetes mellitus (T1DM), concentrations are usually comparable to healthy individuals, depending on glycemic control and renal involvement [73]. In T2DM, a paradox has been described in which lower Lp(a) levels are observed, attributed to hyperinsulinemia and hormonal alterations [74,75,76]. In maturity-onset diabetes of the young (MODY), Lp(a) levels are influenced by genetic variation in LPA and hepatopancreatic factors [56]. The following subsections describe each phenotype and its influence on plasma Lp(a) concentrations.

4.1. Type 1 Diabetes Mellitus

T1DM results from the interaction of genetic, environmental, and immunological factors, culminating in autoimmune destruction of pancreatic β-cells and insulin deficiency [77,78]. In T1DM, glycemic control is closely associated with Lp(a): higher values correlate with elevated glycosylated hemoglobin (HbA1c) [79]. In a Japanese pediatric cohort, increased Lp(a) strongly correlated with HbA1c [80]. A plausible mechanism is that non-enzymatic glycation prolongs lipoprotein half-life, thereby increasing Lp(a) [81]. In addition, elevated levels of Lp(a) have been reported in the presence of micro/macroalbuminuria, contributing to cardiovascular events (ischemic heart disease) [82].

4.2. Type 2 Diabetes Mellitus

T2DM combines genetic and environmental determinants and is characterized by hyperglycemia, insulin resistance, and relative impairment of insulin secretion [77]. In this context, Lp(a) metabolism appears to be modulated by insulin [74]. Several studies have reported lower plasma Lp(a) concentrations in T2DM compared with non-diabetic controls [83]. A Brazilian cohort demonstrated an inverse relationship between basal insulin and Lp(a): higher Lp(a) when insulin <10 μIU/mL, and lower Lp(a) when ≥10 μIU/mL [81]. This observation has led to the concept of the “Lp(a) paradox in T2DM” [56]. One proposed mechanism is that chronic hyperinsulinemia negatively regulates Lp(a), either by suppressing its synthesis or enhancing its clearance [75]. However, when Lp(a) levels are elevated, their associated risk is not fully neutralized by the T2DM metabolic context.

4.3. Maturity-Onset Diabetes of the Young (MODY)

MODY is characterized by early onset, autosomal dominant inheritance, absence of autoimmunity, and minimal insulin resistance [77]. An inverse relationship exists between Lp(a) and apo(a) isoform size: a higher number of KIV-2 repeats is associated with lower Lp(a) [84]. Lp(a) concentrations are primarily determined by production rate, modulated by the LPA locus [56]. Reduced Lp(a) levels have been described in association with hepatopancreatic gene mutations [85]. For instance, the Q268X variant is linked to decreased apoA-II, apoC-III, and Lp(a), suggesting transcriptional hepatic effects on lipoprotein genes [86]. Mechanistically, the hepatic promoter of LPA contains a DR-1 element recognized by HNF4α; alterations in transcription factors associated with MODY may reduce LPA transcription and Lp(a) synthesis [51,56,87].

5. Molecular Mechanisms of Lipoprotein(a) in DM: From Intimal Retention to Lipid Signaling

Poorly controlled diabetes mellitus, characterized by persistent hyperglycemia and insulin resistance, creates an inflammatory vascular microenvironment that contributes to both microvascular and macrovascular complications [88]. Atherogenic dyslipidemia [1,11] induces oxidative stress, endothelial activation, and tissue injury, ultimately resulting in diabetic vasculopathy [89]. Within this context, Lp(a) has emerged as an independent mediator of cardiovascular risk [90,91,92]. These pathological processes involve subendothelial retention, inflammation, and thromboinflammation, which are further intensified by post-translational modifications such as oxidation and glycation, as well as by lipid signaling [93].

5.1. Vascular Retention of Lipoprotein(a): Intima, Proteoglycans, and Macrophage Uptake

Retention is an important early step in starting vascular inflammation on the arterial intima [94]. This happens through lysine binding sites on apo(a) [95] and heparin-binding domains [96]. There are two main pathways: first, apoB-100 binds to glycosaminoglycan chains (decorin); second, apo(a) binds to the proteoglycan core protein [97]. Lp(a) can form complexes with α-defensins and stay outside cells [98], or it can be taken up by macrophages and help form foam cells [99,100]. When Lp(a) is retained under the endothelium with glycosaminoglycans and fibronectin, it stays longer and helps start inflammation and proatherogenic processes in diabetes [101]; see Figure 3.

5.2. Early Inflammatory Activation: Endothelium, Adhesion, and Chemotaxis

When Lp(a) is retained, it triggers endothelial signaling pathways and raises the levels of vascular cell adhesion molecule-1 (VCAM-1), E-selectin, and intercellular adhesion molecule-1 (ICAM-1) [102], after activating the transcription factor nuclear factor kappa B (NF-κB) [103]. These inflammatory molecules interact with integrin Mac-1, which helps guide chemotaxis and the transformation of monocytes into macrophages through the cyclic guanosine monophosphate pathway [103,104]. Once activated, these monocytes become macrophages and increase the production of interleukin-1β (IL-1β), interleukin-18 (IL-18), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) [105,106]. In the presence of type I collagen and apo(a), they favor reactive oxygen species (ROS) and matrix metalloproteinase 9 (MMP-9), which configures a prothrombotic, proinflammatory, and procalcifying microenvironment that accelerates layer instability and promotes rupture and vascular damage [107,108].

5.3. Lipoprotein(a)–Oxidized Phospholipid Axis: Signaling and Immune Amplification

Once LDLs migrate to the vascular intima, they undergo a transformation that generates oxidized LDL (oxLDL) and oxidized phospholipids (OxPLs) [109,110,111]. Lp(a) binds and transports proinflammatory OxPLs, which are essential in atherogenesis [112]. These OxPLs act as damage-associated molecular patterns (DAMPs) that activate pattern recognition receptors (PRRs) [92], amplifying the innate immune response. Furthermore, they promote the polarization of adaptive responses mediated by helper T cells (Th1, Th2, and Th17), regulatory T cells (Treg), and B cells [113]. In addition, OxPLs interact with scavenger receptors (CD36, SR-B1), Toll-like receptors (TLR2/4/7), G protein-coupled receptors (GPCR, EP2), and peroxisome proliferator-activated receptors (PAF-R, PPARγ, and PPARγ/α), increasing signaling for the stimulation of cytokines, chemokines, and adhesion molecules, which leads to greater plaque instability [114].
This dual role is paradoxical: at low levels, Lp(a) can exert an antioxidant role through the enzyme platelet-activating factor acetylhydrolase (PAF-AH), capable of hydrolyzing and inactivating platelet-activating factor (PAF) and OxPLs [115]; at high levels, its activity decreases, favoring accumulation of OxPLs and ASCVD [116,117,118]. This effect is enhanced in DM by oxidative stress and glycation, which increase the OxPL load and decrease detoxifying capacity, closing a proatherogenic vicious circle [119,120,121]. The quantification of OxPL-apoB and OxPL-apo(a) has been proposed as a marker of vascular inflammation and pharmacodynamic endpoint in interventions that reduce Lp(a), providing a mechanistic window between OxPL burden and atherogenic activity [122,123,124]. See Figure 3.

5.4. Non-Enzymatic Protein Glycation

Persistent hyperglycemia promotes the production of AGEs [125]. In Lp(a), reducing sugars bind to the amino-terminal groups of proteins such as apoB and nucleic acids, forming unstable Schiff bases that are then converted into Amadori products and finally into AGEs [126]. Glycation changes the properties of Lp(a) by modifying its electrical charge, as it alters the lysine and arginine in apoB, which reduces its electropositivity, decreases its affinity for LDLR, and affects its clearance [127,128]. The LDL/Lp(a) glycated complex accumulates in the arterial wall and is taken up by receptor for advanced glycation end-products (RAGEs), TLR, and scavenger receptors, promoting foam cell formation during DM [127,129].
Activation of the AGE-RAGE inflammatory axis induces ROS (NADPH oxidase 4) and JAK-2/STAT, PI3K/AKT, MAPK/ERK, and p38 pathways converging on NF-κB, with increased proinflammatory cytokines and chemokines (IL-6, MCP-1, TNF-α, and transforming growth factor-beta [TGF-β]), as well as overexpression of adhesion molecules (VCAM-1, ICAM-1) [130,131,132,133], which induces expression from [134,135,136]. This reinforces the biological plausibility of a glycated Lp(a)-sustained AGE-RAGE cycle in chronic hyperglycemia [128]. See Figure 4.

5.5. Atherothrombosis and Antifibrinolysis Measured by Apo(a)

The apo(a) is composed of Kringles, which are also found in prothrombin, factor XII, tissue plasminogen activator (tPA), and urokinase-like activator (uPA) [137]. Plasminogen shares the KV domain, several KIVs, and a protease region with apo(a) [138,139]. Its interaction with fibrin depends on lysine binding sites (LBS) [140,141]. In the KIV-10 of apo(a), an arginine replaces the lysine at position 35, giving it a high affinity for lysine [142]. This change produces molecular mimicry that competes with the physiological fibrin, plasminogen, and tPA complex, generating an abnormal quaternary complex (Lp(a), fibrin, plasminogen, tPA). This alteration hinders the conversion of Glu-plasminogen to Lys-plasminogen and makes fibrinolysis less efficient [143,144,145].
Normally, the ternary complex produces plasmin, which hydrolyzes fibrin and releases C-terminal lysines, amplifying plasminogen activation [146,147]. Apo(a) competes for these residues [148], reducing plasmin formation and clot lysis [149,150].

6. Macrovascular Complications

6.1. Atherosclerotic Coronary Artery Disease

Atherosclerotic coronary artery disease is a chronic inflammatory process characterized by subendothelial retention of lipoproteins, wall remodeling, and progressive loss of vascular distensibility [151], which culminates in the formation of subendothelial plaques [152]. In DM, the atherogenic dyslipidemia phenotype, along with sustained hyperglycemia, accelerates atherothrombosis by promoting lipoprotein oxidation and glycation [153,154]. In this scenario, Lp(a) is determined by the genetics of the LPA gene, specifically in three chromosomal regions (6q26-27, 9p21, and 1p13) and in two SNPs (rs10455872 and rs3798220) that were strongly related to coronary artery disease [155]. Lp(a) levels ≥ 30 mg/dL (75 nmol/L), and in particular, >50 mg/dL (125 nmol/L), are associated with accelerated progression and an underestimated residual risk of atherosclerotic disease [20].
Clinical evidence supports this link. A prospective meta-analysis reported a higher incidence of coronary events in subjects with elevated Lp(a) [156]. In recent cohorts, elevated Lp(a) was associated with a hazard ratio (HR) of 1.13 (95% CI: 1.04–1.22) for coronary hospitalization or death, after adjustment for LDL-C, reinforcing its contribution to residual risk [153]. In a cross-sectional study in people with T1DM, elevated Lp(a) levels (>120 nmol/L) are associated with a 1.5-fold increased probability of ASCVD, mainly due to coronary events [154]. Taken together, these data support the need to measure Lp(a) to refine risk stratification and prioritize intensive preventive strategies in subjects with DM and/or ASCVD [156].

6.2. Ischemic Cerebrovascular Disease

Strokes are one of the most common causes of death and severe long-term disability [157]. Ischemic stroke makes up about 85% of all cerebrovascular events. It happens when blood flow in the brain’s arteries is blocked, which triggers inflammation, excitotoxicity, and damage to nerve cells [158]. In people with DM, factors like endothelial dysfunction, a tendency for blood clots, and lipoprotein oxidation make these inflammatory responses worse and encourage large vessel atherothrombosis [159]. Early detection and prompt treatment are essential for better clinical outcomes [160].
Recent clinical evidence shows that high Lp(a) levels are linked to a greater risk of ischemic stroke [161], in both T1DM [154] and T2DM [160]. Studies using in vivo models have found that Lp(a) can cause endothelial dysfunction and oxidative stress, which worsen vascular inflammation and help cause cerebral infarction [162]. A recent meta-analysis found that people with higher levels of Lp(a) face a greater risk of ischemic stroke [161] and increases gradually according to the number of stenoses [160]. Consistently, a higher concentration of Lp(a) was found in young patients with ischemic stroke, underscoring the importance of this clinical biomarker in ischemic stroke [163]. Additional research indicates that elevated Lp(a) not only increases the likelihood of an initial stroke but also raises the risk of having another stroke and may be linked to poorer recovery outcomes [164]. Overall, this evidence points to Lp(a) as an important factor in both the onset and recurrence of cerebrovascular events, particularly in individuals with DM [160]. Monitoring Lp(a) levels could therefore help doctors more accurately assess risk and tailor strategies to prevent MACE.

7. Microvascular Complications

7.1. Diabetic Retinopathy

Diabetic retinopathy is one of the leading global causes of visual impairment and blindness, affecting over one million individuals by 2020, with significant regional variation in burden [165]. Clinically, it is defined as a microvascular disease marked by progressive retinal capillary damage that ultimately leads to visual loss [166]. Beyond vascular changes, both retinal inflammation and neurodegeneration contribute to the early stages of the disease [167]. A recent systematic review reported a significant association between elevated Lp(a) levels and progression of diabetic retinopathy [167]. In T1DM with active retinopathy, serum apolipoprotein(a)/Lp(a) levels were higher than in T1DM without lesions and in controls, supporting an association with retinal microvascular complications [168].
Mechanistic pathways include (1) oxidative stress and lipid peroxidation activating the WNT/β-catenin signaling pathway, thereby driving neuropathological changes [169]; (2) vascular tone loss and leakage of modified lipoproteins, contributing to edema and capillary damage [170]; (3) in vivo studies in diabetic rodents showed that injection of highly oxidized and glycated LDL reproduces clinical features of human retinopathy, including vascular leakage, retinal dysfunction on electroretinography, vascular endothelial growth factor overexpression, inflammation, ER stress, and apoptosis [170,171]; and (4) the OxPL fraction of apo(a) has been shown to induce macrophage apoptosis under ER stress, contributing to vascular–neuronal injury and retinal damage [172]. Altogether, these mechanisms support a role for Lp(a) as an emerging mediator of microvascular injury in diabetic retinopathy.

7.2. Diabetic Nephropathy

Chronic kidney disease attributable to DM affects 20–40% of patients and represents a leading cause of renal morbidity [173]. Pathophysiological features include mesangial cell proliferation mediated by phospholipase C (PLC), inositol-1,4,5-triphosphate (IP3), and elevated intracellular Ca2+, which promote glomerulosclerosis [174]. Clinically, the phenotype manifests with microalbuminuria, progressive decline in glomerular filtration rate (GFR), and eventual progression to end-stage renal disease [175]. Lp(a) may modulate these responses, as in vitro studies have demonstrated that elevated Lp(a) levels correlate with mesangial hypercellularity through PLC–IP3–Ca2+ signaling [176,177]. Concurrently, AGEs binding to RAGEs amplify inflammatory and fibrotic responses, particularly in the presence of glycated LDL, thereby aggravating glomerular injury [178]. Lp(a) metabolism is also altered in diabetic nephropathy, involving reduced renal catabolism [61], increased hepatic synthesis due to protein loss in nephrotic syndrome or peritoneal dialysis [179,180,181], and the impact of inflammation and malnutrition [182]. These processes collectively sustain elevated plasma levels.
Although the causal role of Lp(a) in initiating diabetic nephropathy remains unclear, a meta-analysis reported that elevated Lp(a) is associated with higher odds of nephropathy (OR 1.63) compared with low levels [183]. In people with DM1, higher levels of Lp(a) have also been seen in both early and established stages of kidney disease, suggesting that it could influence kidney progression [82]. Moreover, above the atherogenic threshold of 30 mg/dL, Lp(a) correlates inversely with GFR, with annual declines of 2.75 mL/min versus 1.01 mL/min among patients with low-to-normal Lp(a) [184].

7.3. Diabetic Neuropathy

Diabetic peripheral neuropathy affects ~50% of patients and is among the most prevalent diabetic complications [185,186]. Pathophysiology involves Schwann cell metabolic dysfunction induced by hyperglycemia and dyslipidemia, leading to lactate accumulation, oxidative stress, mitochondrial injury, and progressive axonal loss [187]. Elevated Lp(a) levels have been correlated with diabetic neuropathy in T2DM, driven by its proinflammatory, prothrombotic, and oxidative properties [94,186,188]. Chronic hyperglycemia promotes AGE accumulation and endothelial dysfunction, processes that are exacerbated by Lp(a) through inhibition of fibrinolysis, amplification of vascular inflammation, and reduction in blood flow to peripheral nerves [189,190]. Additionally, the lipid-rich composition of Lp(a) contributes to atherosclerosis and ischemia, further impairing neural perfusion [189].
Interestingly, the relationship between Lp(a) and diabetic neuropathy is not consistent across populations. Significant associations have been reported in Asian cohorts, whereas European studies have not confirmed this link [39,186]. These discrepancies likely reflect genetic, metabolic, or environmental modifiers, as well as differences in clinical practice and diagnostic criteria [191]. Further research is needed to clarify the underlying mechanisms and regional variability [186].

8. Clinical Utility of Lipoprotein(a) in Patients with Diabetes Mellitus

Measurement of Lp(a) is recommended at least once in a lifetime for the general population to identify individuals with extremely high concentrations (>180 mg/dL or >430 nmol/L) [192]. In ASCVD, the clinically significant threshold is established at >30 mg/dL (75 nmol/L) [33]. In T2DM, Lp(a) has emerged as an independent predictor of cardiovascular risk; elevated levels are associated with up to a two-fold increased risk of recurrent cardiovascular events in patients with established ASCVD [193].
From a clinical standpoint, determination of Lp(a) in diabetic patients enables identification of those at higher residual vascular risk and informs more intensive therapeutic strategies [194]. Nevertheless, the relationship between Lp(a) and diabetes is paradoxical: low Lp(a) concentrations have also been linked to an increased risk of microvascular complications in T2DM, adding complexity to its interpretation [195]. Despite this paradox, current evidence supports Lp(a) as a valuable complementary biomarker that extends beyond traditional cardiovascular risk assessment, with potential implications for personalized risk stratification and the selection of emerging Lp(a)-targeted therapies [33].
Interpretation of Lp(a) should not be performed in isolation but rather in conjunction with traditional risk factors and the patient’s metabolic phenotype [56,196]. In clinical practice, diabetic patients with elevated Lp(a) should be considered for more aggressive lipid-lowering regimens—including statins, ezetimibe, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, and inclisiran [197,198,199]—and, in the near future, novel agents specifically targeting Lp(a) [200]. In this context, Lp(a) measurement evolves from a static parameter to an integrated determinant of residual cardiovascular risk, capable of guiding therapeutic intensity and informing the implementation of innovative treatment strategies in the diabetic population.

9. Therapeutic Perspectives and Future Directions

9.1. Conventional Lipid-Lowering Therapies

Conventional lipid-lowering therapies remain the foundation of dyslipidemia management and cardiovascular prevention [201]. Statins and ezetimibe have historically been the mainstay, achieving 20–55% reductions in LDL-C (as monotherapy or in combination, depending on dose). However, their effect on Lp(a) is null or clinically negligible, limiting their ability to address this residual risk factor [202,203]. PCSK9 inhibitors (alirocumab, evolocumab) and inclisiran have represented a major advance, particularly in patients with DM and ASCVD [197,198,199]. In pivotal trials, PCSK9 inhibitors produced ~50–60% reductions in LDL-C and ~20–30% decreases in Lp(a) [197,198] (Figure 5). Inclisiran demonstrated comparable LDL-C lowering with modest Lp(a) reductions and a twice-yearly dosing regimen that may improve adherence [199]. Taken together, these therapies control LDL-C and partially reduce Lp(a), and therefore constitute first-line treatment for secondary prevention of ASCVD in DM [33]. Recent reviews underscore the need for Lp(a)-targeted strategies [204]. These findings are summarized in Table 1.

9.2. Emerging Lp(a)-Targeted Therapies

Therapies that specifically target Lp(a) represent a paradigm shift [33]. Unlike conventional agents, antisense oligonucleotides (pelacarsen) and next-generation small interfering RNAs (siRNAs; olpasiran, lepodisiran, SLN360) have produced sustained Lp(a) reductions of 70–95% [200,206,207,209,210]. In a Phase 2 trial, pelacarsen achieved ~80% Lp(a) lowering in patients with ASCVD [206,207]. The siRNAs (olpasiran, lepodisiran, and SLN360) reported reductions exceeding 94% [200,209,210]. Effects on LDL-C are minimal, with the exception of SLN360, which produced moderate decreases of up to 25% in the Phase 1 APOLLO study [210]. In addition, the oral inhibitor muvalaplin has shown dose-dependent Lp(a) reductions of 45–85% with a favorable safety profile, constituting the first oral approach under investigation for Lp(a) lowering [208,211]. In the context of DM—where elevated Lp(a) is linked to an accelerated progression of complications—these strategies offer a novel and promising avenue. See Figure 5 and Table 1.

10. Conclusions

Lipoprotein(a) is a key—yet still underrecognized—determinant of residual vascular risk in diabetes mellitus. Its proatherogenic, proinflammatory, and antifibrinolytic properties link elevated lipoprotein(a) levels to both microvascular and macrovascular complications. Conventional lipid-lowering therapies are insufficient to address this risk, whereas emerging RNA-based agents provide substantial and clinically meaningful lipoprotein(a) reductions. Incorporating lipoprotein(a) measurement and targeted therapies into routine diabetes mellitus care could redefine risk stratification and improve cardiovascular outcomes in this high-risk population.

Author Contributions

Conceptualization, A.P.-B., C.R.-M. and E.O.-R.; data curation, V.B.-A. and E.O.-R.; formal analysis, E.O.-R.; project administration, E.O.-R.; visualization, V.B.-A., W.B.-D.l.C. and E.O.-R.; writing—original draft preparation, A.P.-B., C.R.-M., V.E.-R., A.N.-M., J.R.-T., V.B.-A., S.V.-C.; W.B.-D.l.C., V.L.-M., V.R.-O., M.I.-E., N.M.-F., J.C.-G., D.R.-B. and E.O.-R.; writing—review and editing, A.P.-B., C.R.-M., V.E.-R., A.N.-M., J.R.-T., V.B.-A., S.V.-C., W.B.-D.l.C., V.L.-M., V.R.-O., M.I.-E., N.M.-F., J.C.-G., D.R.-B. and E.O.-R. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest

The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:
AGEsAdvanced glycation end-products
Apo(a)Apolipoprotein(a)
Apo(B)Apolipoprotein B
ApoB100Apolipoprotein B100
ASCVDAtherosclerotic cardiovascular disease
ASGP-RAsialoglycoprotein receptor
CDCAChenodeoxycholic acid
DAMPsDamage-associated molecular patterns
DMDiabetes mellitus
DR-1Downregulator of Transcription 1
EREndoplasmic reticulum
FGF19Fibroblast growth factor 19
FXRFarnesoid X receptor
GFRGlomerular filtration rate
HbA1CGlycosylated hemoglobin
HDL-CHigh-density lipoprotein cholesterol
HNF4αHepatocyte nuclear factor 4 alpha
ICAM-1Intercellular adhesion molecule-1
IFN-γInterferon-γ
IL-1βInterleukin-1β
IL-18Interleukin-18
IP3Inositol-1,4,5-triphosphate
IVGTTIntravenous glucose tolerance test
KIVKringle IV
KIV-1Kringle IV type 1
KIV-2Kringle IV type 2
KIV-3Kringle IV type 3
KIV-4Kringle IV type 4
KIV-5Kringle IV type 5
KIV-6Kringle IV type 6
KIV-7Kringle IV type 7
KIV-8Kringle IV type 8
KIV-9Kringle IV type 9
KIV-10Kringle IV type 10
KVKringle V
LDLLow-density lipoprotein
LDL-RLow-density lipoprotein receptor
Lp(a)Lipoprotein(a)
LPAApolipoprotein(a) gene
MACEMajor adverse cardiovascular events
MMP-9Matrix metalloproteinase-9
MODYMaturity-onset diabetes of the young
NF-κBFactor nuclear factor kappa B
ox-LDLOxidized low-density lipoprotein
OxPLOxidized phospholipids
PAFPlatelet-activating factor
PAF-AHPlatelet-activating factor acetylhydrolase
PCSK9Proprotein convertase subtilisin/kexin type 9
PLCPhospholipase C
PPARγ/αPeroxisome proliferator-activated receptors
PRRsPattern recognition receptors
ROSReactive oxygen species
sdLDLDense low-density lipoprotein
siRNASmall interfering RNA
SNPsSingle-nucleotide polymorphisms
T1DMType 1 diabetes mellitus
T2DMType 2 diabetes mellitus
TLRsToll-like receptors
TNF-αTumor necrosis factor-α
tPATissue-type plasminogen activator
VCAM-1Vascular cell adhesion molecule-1
VLDLVery-low-density lipoprotein
VLDL-RVery-low-density lipoprotein receptor

References

  1. Cuevas, M.A.; Alonso, K.R. Dislipidemia Diabética. Rev. Médica Clínica Condes 2016, 27, 152–159. [Google Scholar] [CrossRef]
  2. Antini, C.; Caixeta, R.; Luciani, S.; Hennis, A.J.M. Diabetes Mortality: Trends and Multi-Country Analysis of the Americas from 2000 to 2019. Int. J. Epidemiol. 2024, 53, dyad182. [Google Scholar] [CrossRef] [PubMed]
  3. World Health Organization Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 30 October 2025).
  4. Dal Canto, E.; Ceriello, A.; Rydén, L.; Ferrini, M.; Hansen, T.B.; Schnell, O.; Standl, E.; Beulens, J.W. Diabetes as a Cardiovascular Risk Factor: An Overview of Global Trends of Macro and Micro Vascular Complications. Eur. J. Prev. Cardiol. 2019, 26, 25–32. [Google Scholar] [CrossRef] [PubMed]
  5. Bertoluci, M.C.; Rocha, V.Z. Cardiovascular Risk Assessment in Patients with Diabetes. Diabetol. Metab. Syndr. 2017, 9, 25. [Google Scholar] [CrossRef] [PubMed]
  6. Taskinen, M.-R.; Borén, J. New Insights into the Pathophysiology of Dyslipidemia in Type 2 Diabetes. Atherosclerosis 2015, 239, 483–495. [Google Scholar] [CrossRef]
  7. Leiter, L.A.; Lundman, P.; da Silva, P.M.; Drexel, H.; Jünger, C.; Gitt, A.K. Persistent Lipid Abnormalities in Statin-treated Patients with Diabetes Mellitus in Europe and Canada: Results of the Dyslipidaemia International Study. Diabet. Med. 2011, 28, 1343–1351. [Google Scholar] [CrossRef]
  8. Koschinsky, M.L.; Bajaj, A.; Boffa, M.B.; Dixon, D.L.; Ferdinand, K.C.; Gidding, S.S.; Gill, E.A.; Jacobson, T.A.; Michos, E.D.; Safarova, M.S.; et al. A Focused Update to the 2019 NLA Scientific Statement on Use of Lipoprotein(a) in Clinical Practice. J. Clin. Lipidol. 2024, 18, e308–e319. [Google Scholar] [CrossRef]
  9. ElSayed, N.A.; McCoy, R.G.; Aleppo, G.; Balapattabi, K.; Beverly, E.A.; Briggs Early, K.; Bruemmer, D.; Das, S.R.; Echouffo-Tcheugui, J.B.; Ekhlaspour, L.; et al. 10. Cardiovascular Disease and Risk Management: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48, S207–S238. [Google Scholar] [CrossRef]
  10. Fan, W.; Wong, N.D. Epidemiology, Control, and Cardiovascular Outcomes of Dyslipidemia in Diabetes. In Lipoproteins in Diabetes Mellitus; Springer International Publishing: Cham, Switzerland, 2023; pp. 891–913. [Google Scholar]
  11. Mooradian, A.D. Dyslipidemia in Type 2 Diabetes Mellitus. Nat. Rev. Endocrinol. 2009, 5, 150–159. [Google Scholar] [CrossRef]
  12. Vergès, B. Pathophysiology of Diabetic Dyslipidaemia: Where Are We? Diabetologia 2015, 58, 886–899. [Google Scholar] [CrossRef]
  13. Hirano, T. Pathophysiology of Diabetic Dyslipidemia. J. Atheroscler. Thromb. 2018, 25, 771–782. [Google Scholar] [CrossRef]
  14. UK Prospective Diabetes Study (UKPDS) Group. Intensive Blood-Glucose Control with Sulphonylureas or Insulin Compared with Conventional Treatment and Risk of Complications in Patients with Type 2 Diabetes (UKPDS 33). Lancet 1998, 352, 837–853. [Google Scholar] [CrossRef]
  15. Morgan, C.L.; Durand, A.; McCormack, T.; Hughes, E.; Berni, T.R.; Lahoz, R. Risk of Major Adverse Cardiovascular Events Associated with Elevated Low-Density Lipoprotein Cholesterol in a Population with Atherosclerotic Cardiovascular Disease with and without Type 2 Diabetes: A UK Database Analysis Using the Clinical Practice Resea. BMJ Open 2023, 13, e064541. [Google Scholar] [CrossRef]
  16. Lamina, C.; Ward, N.C. Lipoprotein (a) and Diabetes Mellitus. Atherosclerosis 2022, 349, 63–71. [Google Scholar] [CrossRef]
  17. Durlach, V.; Bonnefont-Rousselot, D.; Boccara, F.; Varret, M.; Di-Filippo Charcosset, M.; Cariou, B.; Valero, R.; Charriere, S.; Farnier, M.; Morange, P.E.; et al. Lipoprotein(a): Pathophysiology, Measurement, Indication and Treatment in Cardiovascular Disease. A Consensus Statement from the Nouvelle Société Francophone d’Athérosclérose (NSFA). Arch. Cardiovasc. Dis. 2021, 114, 828–847. [Google Scholar] [CrossRef]
  18. Vinci, P.; Di Girolamo, F.G.; Panizon, E.; Tosoni, L.M.; Cerrato, C.; Pellicori, F.; Altamura, N.; Pirulli, A.; Zaccari, M.; Biasinutto, C.; et al. Lipoprotein(a) as a Risk Factor for Cardiovascular Diseases: Pathophysiology and Treatment Perspectives. Int. J. Environ. Res. Public Health 2023, 20, 6721. [Google Scholar] [CrossRef]
  19. Tsimikas, S.; Karwatowska-Prokopczuk, E.; Gouni-Berthold, I.; Tardif, J.-C.; Baum, S.J.; Steinhagen-Thiessen, E.; Shapiro, M.D.; Stroes, E.S.; Moriarty, P.M.; Nordestgaard, B.G.; et al. Lipoprotein(a) Reduction in Persons with Cardiovascular Disease. N. Engl. J. Med. 2020, 382, 244–255. [Google Scholar] [CrossRef] [PubMed]
  20. Dyrbuś, K.; Mędrala, Z.; Konsek, K.; Nowowiejska-Wiewióra, A.; Trzeciak, P.; Skrzypek, M.; Cieśla, D.; Banach, M.; Gąsior, M. Lipoprotein(a) and Its Impact on Cardiovascular Disease—The Polish Perspective: Design and First Results of the Zabrze-Lipoprotein(a) Registry. Arch. Med. Sci. 2024, 20, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
  21. Masson, W.; Lobo, M.; Barbagelata, L.; Lavalle-Cobo, A.; Nogueira, J.P. Acute Pancreatitis due to Different Semaglutide Regimens: An Updated Meta-Analysis. Endocrinol. Diabetes Nutr. 2024, 71, 124–132. [Google Scholar] [CrossRef]
  22. Kronenberg, F. Human Genetics and the Causal Role of Lipoprotein(a) for Various Diseases. Cardiovasc. Drugs Ther. 2016, 30, 87–100. [Google Scholar] [CrossRef] [PubMed]
  23. Trinder, M.; Zekavat, S.M.; Uddin, M.M.; Pampana, A.; Natarajan, P. Apolipoprotein B Is an Insufficient Explanation for the Risk of Coronary Disease Associated with Lipoprotein(a). Cardiovasc. Res. 2021, 117, 1245–1247. [Google Scholar] [CrossRef] [PubMed]
  24. Burgess, S.; Ference, B.A.; Staley, J.R.; Freitag, D.F.; Mason, A.M.; Nielsen, S.F.; Willeit, P.; Young, R.; Surendran, P.; Karthikeyan, S.; et al. Association of LPA Variants With Risk of Coronary Disease and the Implications for Lipoprotein(a)-Lowering Therapies. JAMA Cardiol. 2018, 3, 619–627. [Google Scholar] [CrossRef] [PubMed]
  25. Poznyak, A.V.; Sukhorukov, V.N.; Surkova, R.; Orekhov, N.A.; Orekhov, A.N. Glycation of LDL: AGEs, Impact on Lipoprotein Function, and Involvement in Atherosclerosis. Front. Cardiovasc. Med. 2023, 10, 1094188. [Google Scholar] [CrossRef] [PubMed]
  26. Jenkins, A.J.; Best, J.D.; Klein, R.L.; Lyons, T.J. Lipoproteins, Glycoxidation and Diabetic Angiopathy. Diabetes Metab. Res. Rev. 2004, 20, 349–368. [Google Scholar] [CrossRef]
  27. Mengstie, M.A.; Chekol Abebe, E.; Behaile Teklemariam, A.; Tilahun Mulu, A.; Agidew, M.M.; Teshome Azezew, M.; Zewde, E.A.; Agegnehu Teshome, A. Endogenous Advanced Glycation End Products in the Pathogenesis of Chronic Diabetic Complications. Front. Mol. Biosci. 2022, 9, 1002710. [Google Scholar] [CrossRef]
  28. Yoon, Y.W.; Kang, T.S.; Lee, B.K.; Chang, W.; Hwang, K.-C.; Rhee, J.-H.; Min, P.-K.; Hong, B.-K.; Rim, S.-J.; Kwon, H.M. Pathobiological Role of Advanced Glycation Endproducts via Mitogen-Activated Protein Kinase Dependent Pathway in the Diabetic Vasculopathy. Exp. Mol. Med. 2008, 40, 398–406. [Google Scholar] [CrossRef]
  29. Steinbrecher, U.P.; Parthasarathy, S.; Leake, D.S.; Witztum, J.L.; Steinberg, D. Modification of Low Density Lipoprotein by Endothelial Cells Involves Lipid Peroxidation and Degradation of Low Density Lipoprotein Phospholipids. Proc. Natl. Acad. Sci. USA 1984, 81, 3883–3887. [Google Scholar] [CrossRef]
  30. Liu, J.; Pan, S.; Wang, X.; Liu, Z.; Zhang, Y. Role of Advanced Glycation End Products in Diabetic Vascular Injury: Molecular Mechanisms and Therapeutic Perspectives. Eur. J. Med. Res. 2023, 28, 553. [Google Scholar] [CrossRef]
  31. Lee, J.; Yun, J.-S.; Ko, S.-H. Advanced Glycation End Products and Their Effect on Vascular Complications in Type 2 Diabetes Mellitus. Nutrients 2022, 14, 3086. [Google Scholar] [CrossRef]
  32. Stirban, A.; Gawlowski, T.; Roden, M. Vascular Effects of Advanced Glycation Endproducts: Clinical Effects and Molecular Mechanisms. Mol. Metab. 2014, 3, 94–108. [Google Scholar] [CrossRef]
  33. Tsimikas, S. A Test in Context: Lipoprotein(a). J. Am. Coll. Cardiol. 2017, 69, 692–711. [Google Scholar] [CrossRef]
  34. Duarte Lau, F.; Giugliano, R.P. Lipoprotein(a) and Its Significance in Cardiovascular Disease. JAMA Cardiol. 2022, 7, 760–769. [Google Scholar] [CrossRef] [PubMed]
  35. Gries, A.; Nimpf, J.; Nimpf, M.; Wurm, H.; Kostner, G.M. Free and Apo B-Associated Lpa-Specific Protein in Human Serum. Clin. Chim. Acta 1987, 164, 93–100. [Google Scholar] [CrossRef]
  36. Weisel, J.W.; Nagaswami, C.; Woodhead, J.L.; Higazi, A.A.-R.; Cain, W.J.; Marcovina, S.M.; Koschinsky, M.L.; Cines, D.B.; Bdeir, K. The Structure of Lipoprotein(a) and Ligand-Induced Conformational Changes. Biochemistry 2001, 40, 10424–10435. [Google Scholar] [CrossRef]
  37. Scanu, A.M.; Nakajima, K.; Edelstein, C. Apolipoprotein(a): Structure and Biology. Front. Biosci. 2001, 6, 546–554. [Google Scholar] [CrossRef] [PubMed]
  38. Kronenberg, F.; Utermann, G. Lipoprotein(a): Resurrected by Genetics. J. Intern. Med. 2013, 273, 6–30. [Google Scholar] [CrossRef] [PubMed]
  39. Volgman, A.S.; Koschinsky, M.L.; Mehta, A.; Rosenson, R.S. Genetics and Pathophysiological Mechanisms of Lipoprotein(a)-Associated Cardiovascular Risk. J. Am. Heart Assoc. 2024, 13, e033654. [Google Scholar] [CrossRef]
  40. Argraves, K.M.; Kozarsky, K.F.; Fallon, J.T.; Harpel, P.C.; Strickland, D.K. The Atherogenic Lipoprotein Lp(a) Is Internalized and Degraded in a Process Mediated by the VLDL Receptor. J. Clin. Investig. 1997, 100, 2170–2181. [Google Scholar] [CrossRef]
  41. Thompson-Paul, A.M.; Gillespie, C.; Wall, H.K.; Loustalot, F.; Sperling, L.; Hong, Y. Recommended and Observed Statin Use among U.S. Adults—National Health and Nutrition Examination Survey, 2011—2018. J. Clin. Lipidol. 2023, 17, 225–235. [Google Scholar] [CrossRef]
  42. Marcovina, S.M.; Koschinsky, M.L. Lipoprotein(a) Concentration and Apolipoprotein(a) Size. Circulation 1999, 100, 1151–1153. [Google Scholar] [CrossRef]
  43. Mack, S.; Coassin, S.; Rueedi, R.; Yousri, N.A.; Seppälä, I.; Gieger, C.; Schönherr, S.; Forer, L.; Erhart, G.; Marques-Vidal, P.; et al. A Genome-Wide Association Meta-Analysis on Lipoprotein (a) Concentrations Adjusted for Apolipoprotein (a) Isoforms. J. Lipid Res. 2017, 58, 1834–1844. [Google Scholar] [CrossRef]
  44. Hoekstra, M.; Chen, H.Y.; Rong, J.; Dufresne, L.; Yao, J.; Guo, X.; Tsai, M.Y.; Tsimikas, S.; Post, W.S.; Vasan, R.S.; et al. Genome-Wide Association Study Highlights APOH as a Novel Locus for Lipoprotein(a) Levels—Brief Report. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 458–464. [Google Scholar] [CrossRef]
  45. Kostakou, P.M.; Hatzigeorgiou, G.; Kolovou, V.; Mavrogeni, S.; Kolovou, G.D. Lipoprotein (a) Evolution: Possible Benefits and Harm. Genetic and Non-Genetic Factors Influencing Its Plasma Levels. Curr. Med. Chem. 2017, 24, 969–978. [Google Scholar] [CrossRef]
  46. Foody, J.M.; Milberg, J.A.; Pearce, G.L.; Sprecher, D.L. Lipoprotein(a) Associated with Coronary Artery Disease in Older Women: Age and Gender Analysis. Atherosclerosis 2000, 153, 445–451. [Google Scholar] [CrossRef]
  47. Nordestgaard, B.G.; Langsted, A. Lipoprotein(a) and Cardiovascular Disease. Lancet 2024, 404, 1255–1264. [Google Scholar] [CrossRef]
  48. Guertin, J.; Kaiser, Y.; Manikpurage, H.; Perrot, N.; Bourgeois, R.; Couture, C.; Wareham, N.J.; Bossé, Y.; Pibarot, P.; Stroes, E.S.G.; et al. Sex-Specific Associations of Genetically Predicted Circulating Lp(a) (Lipoprotein(a)) and Hepatic LPA Gene Expression Levels With Cardiovascular Outcomes: Mendelian Randomization and Observational Analyses. Circ. Genom. Precis. Med. 2021, 14, 485–494. [Google Scholar] [CrossRef]
  49. Reyes-Soffer, G.; Ginsberg, H.N.; Berglund, L.; Duell, P.B.; Heffron, S.P.; Kamstrup, P.R.; Lloyd-Jones, D.M.; Marcovina, S.M.; Yeang, C.; Koschinsky, M.L.; et al. Lipoprotein(a): A Genetically Determined, Causal, and Prevalent Risk Factor for Atherosclerotic Cardiovascular Disease: A Scientific Statement From the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 2022, 42, E48–E60. [Google Scholar] [CrossRef] [PubMed]
  50. Kostner, K.M.; Marz, W.; Kostner, G.M. When Should We Measure Lipoprotein (A)? Eur. Heart J. 2013, 34, 3268–3276. [Google Scholar] [CrossRef] [PubMed]
  51. Chawla, A.; Repa, J.J.; Evans, R.M.; Mangelsdorf, D.J. Nuclear Receptors and Lipid Physiology: Opening the X-Files. Science 2001, 294, 1866–1870. [Google Scholar] [CrossRef] [PubMed]
  52. Chennamsetty, I.; Claudel, T.; Kostner, K.M.; Trauner, M.; Kostner, G.M. FGF19 Signaling Cascade Suppresses APOA Gene Expression. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1220–1227. [Google Scholar] [CrossRef]
  53. Inagaki, T.; Choi, M.; Moschetta, A.; Peng, L.; Cummins, C.L.; McDonald, J.G.; Luo, G.; Jones, S.A.; Goodwin, B.; Richardson, J.A.; et al. Fibroblast Growth Factor 15 Functions as an Enterohepatic Signal to Regulate Bile Acid Homeostasis. Cell Metab. 2005, 2, 217–225. [Google Scholar] [CrossRef]
  54. White, A.L.; Lanford, R.E. Biosynthesis and Metabolism of Lipoprotein (a). Curr. Opin. Lipidol. 1995, 6, 75–80. [Google Scholar] [CrossRef] [PubMed]
  55. Jacobson, T.A. Lipoprotein(a), Cardiovascular Disease, and Contemporary Management. Mayo Clin. Proc. 2013, 88, 1294–1311. [Google Scholar] [CrossRef]
  56. Kostner, K.M.; Kostner, G.M. Lp(a) and the Risk for Cardiovascular Disease: Focus on the Lp(a) Paradox in Diabetes Mellitus. Int. J. Mol. Sci. 2022, 23, 3584. [Google Scholar] [CrossRef] [PubMed]
  57. Frischmann, M.E.; Ikewaki, K.; Trenkwalder, E.; Lamina, C.; Dieplinger, B.; Soufi, M.; Schweer, H.; Schaefer, J.R.; König, P.; Kronenberg, F.; et al. In Vivo Stable-Isotope Kinetic Study Suggests Intracellular Assembly of Lipoprotein(a). Atherosclerosis 2012, 225, 322–327. [Google Scholar] [CrossRef]
  58. HRZENJAK, A.; FRANK, S.; WO, X.; ZHOU, Y.; van BERKEL, T.; KOSTNER, G.M. Galactose-Specific Asialoglycoprotein Receptor Is Involved in Lipoprotein (a) Catabolism. Biochem. J. 2003, 376, 765–771. [Google Scholar] [CrossRef]
  59. Kostner, K.M.; Kostner, G.M. Lipoprotein (a): A Historical Appraisal. J. Lipid Res. 2017, 58, 1–14. [Google Scholar] [CrossRef] [PubMed]
  60. Kostner, G.M.; Wo, X.; Frank, S.; Kostner, K.; Zimmermann, R.; Steyrer, E. Metabolism of Lp(a): Assembly and Excretion. Clin. Genet. 1997, 52, 347–354. [Google Scholar] [CrossRef]
  61. Kronenberg, F.; Trenkwalder, E.; Lingenhel, A.; Friedrich, G.; Lhotta, K.; Schober, M.; Moes, N.; König, P.; Utermann, G.; Dieplinger, H. Renovascular Arteriovenous Differences in Lp[a] Plasma Concentrations Suggest Removal of Lp[a] from the Renal Circulation. J. Lipid Res. 1997, 38, 1755–1763. [Google Scholar] [CrossRef]
  62. Kostner, K.M.; Maurer, G.; Huber, K.; Stefenelli, T.; Dieplinger, H.; Steyrer, E.; Kostner, G.M. Urinary Excretion of Apo(a) Fragments. Arterioscler. Thromb. Vasc. Biol. 1996, 16, 905–911. [Google Scholar] [CrossRef]
  63. KOSTNER, K.M.; JANSEN, M.; MAURER, G.; DERFLER, K. LDL-apheresis Significantly Reduces Urinary Apo(a) Excretion. Eur. J. Clin. Investig. 1997, 27, 93–95. [Google Scholar] [CrossRef]
  64. Carmena, R. Riesgo Elevado de Disfunción Lipoproteica En La Diabetes Mellitus Tipo 2. Rev. Española Cardiol. Supl. 2008, 8, 19C–26C. [Google Scholar] [CrossRef]
  65. Brandstätter, A.; Lingenhel, A.; Zwiauer, K.; Strobl, W.; Kronenberg, F. Decrease of Lp(a) during Weight Reduction in Obese Children Is Modified by the Apo(a) Kringle-IV Copy Number Variation. Int. J. Obes. 2009, 33, 1136–1142. [Google Scholar] [CrossRef]
  66. Marcovina, S.M.; Lippi, G.; Bagatell, C.J.; Bremner, W.J. Testosterone-Induced Suppression of Lipoprotein(a) in Normal Men; Relation to Basal Lipoprotein(a) Level. Atherosclerosis 1996, 122, 89–95. [Google Scholar] [CrossRef] [PubMed]
  67. Estellés, A.; Falcó, C.; Gilabert-Estellés, J. La Influencia Del Tratamiento Hormonal Sustitutivo En La Lipoproteína (A), La Coagulación Y La Fibrinólisis. Clínica Investig. Arterioscler. 2001, 13, 204–208. [Google Scholar] [CrossRef]
  68. García-Martínez, M.C.; Cano, A.; Hermenegildo, C. Metabolismo Lipídico Y Aterogénesis Femenina: Acción de Hormonas, SERM Y Fitoestrógenos. Prog. Obstet. Ginecol. 2001, 44, 99–107. [Google Scholar] [CrossRef]
  69. Pop-Radu, C.C.; Gliga, M. Lipoprotein(a) Levels in Thyroid Disorders. Acta Medica Marisiensis 2013, 59, 81–84. [Google Scholar] [CrossRef]
  70. Sidhu, M.; Crook, D.; Godsland, I.F.; Walton, C.; Wynn, V.; Oliver, M.F. Inverse Relationship Between Serum Lp(a) Levels and First-Phase Insulin Secretion. Diabetes 1992, 41, 1341–1345. [Google Scholar] [CrossRef]
  71. Vaverková, H.; Karásek, D.; Halenka, M.; Cibíčková, L.; Kubíčková, V. Inverse Association of Lipoprotein (a) With Markers of Insulin Resistance in Dyslipidemic Subjects. Physiol. Res. 2017, 66, S113–S120. [Google Scholar] [CrossRef] [PubMed]
  72. Taskinen, M.-R. Quantitative and Qualitative Lipoprotein Abnormalities in Diabetes Mellitus. Diabetes 1992, 41, 12–17. [Google Scholar] [CrossRef]
  73. Krempler, F.; Kostner, G.M.; Bolzano, K.; Sandhofer, F. Turnover of Lipoprotein (a) in Man. J. Clin. Investig. 1980, 65, 1483–1490. [Google Scholar] [CrossRef]
  74. Lejawa, M.; Goławski, M.; Fronczek, M.; Osadnik, T.; Paneni, F.; Ruscica, M.; Pawlas, N.; Lisik, M.; Banach, M. Causal Associations between Insulin and Lp(a) Levels in Caucasian Population: A Mendelian Randomization Study. Cardiovasc. Diabetol. 2024, 23, 316. [Google Scholar] [CrossRef]
  75. Rainwater, D.L.; Haffner, S.M. Insulin and 2-Hour Glucose Levels Are Inversely Related to Lp(a) Concentrations Controlled for LPA Genotype. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 1335–1341. [Google Scholar] [CrossRef]
  76. Neele, D.M.; de Wit, E.C.M.; Princen, H.M.G. Insulin Suppresses Apolipoprotein(a) Synthesis by Primary Cultures of Cynomolgus Monkey Hepatocytes (Short Communication). Diabetologia 1999, 42, 41–44. [Google Scholar] [CrossRef] [PubMed]
  77. Díaz Naya, L.; Delgado Álvarez, E. Diabetes Mellitus. Criterios Diagnósticos Y Clasificación. Epidemiología. Etiopatogenia. Evaluación Inicial Del Paciente Con Diabetes. Med.-Programa Form. Médica Contin. Acreditado 2016, 12, 935–946. [Google Scholar] [CrossRef]
  78. Antar, S.A.; Ashour, N.A.; Sharaky, M.; Khattab, M.; Ashour, N.A.; Zaid, R.T.; Roh, E.J.; Elkamhawy, A.; Al-Karmalawy, A.A. Diabetes Mellitus: Classification, Mediators, and Complications; A Gate to Identify Potential Targets for the Development of New Effective Treatments. Biomed. Pharmacother. 2023, 168, 115734. [Google Scholar] [CrossRef] [PubMed]
  79. Haffner, S.M. Lipoprotein(a) and Diabetes: An Update. Diabetes Care 1993, 16, 835–840. [Google Scholar] [CrossRef] [PubMed]
  80. Nagashima, K.; Yutani, S.; Miyake, H.; Onigata, K.; Yagi, H.; Kuroume, T. Lipoprotein(a) Levels in Japanese Children With IDDM. Diabetes Care 1993, 16, 846. [Google Scholar] [CrossRef]
  81. Habib, S.S.; Aslam, M.; Shah, S.F.A.; Naveed, A.K. Lipoproteína (a) Está Associada Com Níveis Basais de Insulina Em Pacientes Com Diabetes Mellitus Tipo 2. Arq. Bras. Cardiol. 2009, 93, 28–33. [Google Scholar] [CrossRef]
  82. Groop, P.-H.; Viberti, G.C.; Elliott, T.G.; Friedman, R.; Mackie, A.; Ehnholm, C.; Jauhiainen, M.; Taskinen, M.-R. Lipoprotein(a) in Type 1 Diabetic Patients with Renal Disease. Diabet. Med. 1994, 11, 961–967. [Google Scholar] [CrossRef]
  83. Botana López, M.A. Lipoproteína (a): ¿está Indicada Su Determinación Sistemática? Endocrinol. Diabetes Nutr. 2024, 71, 191–193. [Google Scholar] [CrossRef]
  84. Parhofer, K.G.; Demant, T.; Ritter, M.M.; Geiss, H.C.; Donner, M.; Schwandt, P. Lipoprotein (a) Metabolism Estimated by Nonsteady-state Kinetics. Lipids 1999, 34, 325–335. [Google Scholar] [CrossRef]
  85. Tracz, A.; Madzio, J.; Gnys, P.; Malachowska, B.; Borowiec, M.; Wyka, K.; Jarosz-Chobot, P.; Mysliwiec, M.; Szadkowska, A.; Mlynarski, W.; et al. Genetic Variability of GCKR Alters Lipid Profiles in Children with Monogenic and Autoimmune Diabetes. Exp. Clin. Endocrinol. Diabetes 2014, 122, 503–509. [Google Scholar] [CrossRef] [PubMed]
  86. Shih, D.Q.; Dansky, H.M.; Fleisher, M.; Assmann, G.; Fajans, S.S.; Stoffel, M. Genotype/phenotype Relationships in HNF-4alpha/MODY1: Haploinsufficiency Is Associated with Reduced Apolipoprotein (AII), Apolipoprotein (CIII), Lipoprotein(a), and Triglyceride Levels. Diabetes 2000, 49, 832–837. [Google Scholar] [CrossRef]
  87. Fajans, S.S. Maturity-onset Diabetes of the Young (MODY). Diabetes Metab. Rev. 1989, 5, 579–606. [Google Scholar] [CrossRef]
  88. Carral, F.; Tomé, M.; Fernández, J.J.; Piñero, A.; Expósito, C.; Jiménez, A.I.; García, C.; Ayala, C. La Presencia de Complicaciones Microvasculares Se Asocia Con Un Mal Control Metabólico Evolutivo En Pacientes Con Diabetes Tipo 1. Endocrinol. Diabetes Nutr. 2021, 68, 389–397. [Google Scholar] [CrossRef]
  89. Yang, H.; Jin, X.; Kei Lam, C.W.; Yan, S.-K. Oxidative Stress and Diabetes Mellitus. Clin. Chem. Lab. Med. 2011, 49, 1773–1782. [Google Scholar] [CrossRef]
  90. Dzobo, K.E.; Kraaijenhof, J.M.; Stroes, E.S.G.; Nurmohamed, N.S.; Kroon, J. Lipoprotein(a): An Underestimated Inflammatory Mastermind. Atherosclerosis 2022, 349, 101–109. [Google Scholar] [CrossRef]
  91. Rider, D.A.; Eisermann, M.; Löffler, K.; Aleku, M.; Swerdlow, D.I.; Dames, S.; Hauptmann, J.; Morrison, E.; Lindholm, M.W.; Schubert, S.; et al. Pre-Clinical Assessment of SLN360, a Novel siRNA Targeting LPA, Developed to Address Elevated Lipoprotein (a) in Cardiovascular Disease. Atherosclerosis 2022, 349, 240–247. [Google Scholar] [CrossRef] [PubMed]
  92. Catapano, A.L.; Daccord, M.; Damato, E.; Humphries, S.E.; Neely, R.D.G.; Nordestgaard, B.G.; Pistollato, M.; Steinhagen-Thiessen, E. How Should Public Health Recommendations Address Lp(a) Measurement, a Causative Risk Factor for Cardiovascular Disease (CVD)? Atherosclerosis 2022, 349, 136–143. [Google Scholar] [CrossRef] [PubMed]
  93. Lampsas, S.; Xenou, M.; Oikonomou, E.; Pantelidis, P.; Lysandrou, A.; Sarantos, S.; Goliopoulou, A.; Kalogeras, K.; Tsigkou, V.; Kalpis, A.; et al. Lipoprotein(a) in Atherosclerotic Diseases: From Pathophysiology to Diagnosis and Treatment. Molecules 2023, 28, 969. [Google Scholar] [CrossRef]
  94. Ugovšek, S.; Šebeštjen, M. Lipoprotein(a)—The Crossroads of Atherosclerosis, Atherothrombosis and Inflammation. Biomolecules 2021, 12, 26. [Google Scholar] [CrossRef]
  95. van der Hoek, Y.Y.; Sangrar, W.; Côté, G.P.; Kastelein, J.J.; Koschinsky, M.L. Binding of Recombinant Apolipoprotein(a) to Extracellular Matrix Proteins. Arterioscler. Thromb. J. Vasc. Biol. 1994, 14, 1792–1798. [Google Scholar] [CrossRef]
  96. Miles, L.A.; Fless, G.M.; Scanu, A.M.; Baynham, P.; Sebald, M.T.; Skocir, P.; Curtiss, L.K.; Levin, E.G.; Hoover-Plow, J.L.; Plow, E.F. Interaction of Lp(a) with Plasminogen Binding Sites on Cells. Thromb. Haemost. 1995, 73, 458–465. [Google Scholar] [CrossRef] [PubMed]
  97. Klezovitch, O.; Edelstein, C.; Zhu, L.; Scanu, A.M. Apolipoprotein(a) Binds via Its C-Terminal Domain to the Protein Core of the Proteoglycan Decorin. J. Biol. Chem. 1998, 273, 23856–23865. [Google Scholar] [CrossRef] [PubMed]
  98. Bdeir, K.; Cane, W.; Canziani, G.; Chaiken, I.; Weisel, J.; Koschinsky, M.L.; Lawn, R.M.; Bannerman, P.G.; Sachais, B.S.; Kuo, A.; et al. Defensin Promotes the Binding of Lipoprotein(a) to Vascular Matrix. Blood 1999, 94, 2007–2019. Available online: https://pubmed.ncbi.nlm.nih.gov/10477730/ (accessed on 30 October 2025).
  99. Trpkovic, A.; Resanovic, I.; Stanimirovic, J.; Radak, D.; Mousa, S.A.; Cenic-Milosevic, D.; Jevremovic, D.; Isenovic, E.R. Oxidized Low-Density Lipoprotein as a Biomarker of Cardiovascular Diseases. Crit. Rev. Clin. Lab. Sci. 2015, 52, 70–85. [Google Scholar] [CrossRef]
  100. Kiechl, S.; Willeit, J. The Mysteries of Lipoprotein(a) and Cardiovascular Disease Revisited**Editorials Published in the Journal of the American College of Cardiologyreflect the Views of the Authors and Do Not Necessarily Represent the Views of JACCor the American College of Ca. J. Am. Coll. Cardiol. 2010, 55, 2168–2170. [Google Scholar] [CrossRef]
  101. Salonen, E.M.; Jauhiainen, M.; Zardi, L.; Vaheri, A.; Ehnholm, C. Lipoprotein(a) Binds to Fibronectin and Has Serine Proteinase Activity Capable of Cleaving It. EMBO J. 1989, 8, 4035–4040. [Google Scholar] [CrossRef] [PubMed]
  102. Allen, S.; Khan, S.; Tam, S.-P.; Koschinsky, M.; Taylor, P.; Yacoub, M. Expression of Adhesion Molecules by Lp(a): A Potential Novel Mechanism for Its Atherogenicity. FASEB J. 1998, 12, 1765–1776. [Google Scholar] [CrossRef]
  103. Sotiriou, S.N.; Orlova, V.V.; Al-Fakhri, N.; Ihanus, E.; Economopoulou, M.; Isermann, B.; Bdeir, K.; Nawroth, P.P.; Preissner, K.T.; Gahmberg, C.G.; et al. Lipoprotein(a) in Atherosclerotic Plaques Recruits Inflammatory Cells through Interaction with Mac-1 Integrin. FASEB J. 2006, 20, 559–561. [Google Scholar] [CrossRef]
  104. Syrovets, T.; Thillet, J.; Chapman, M.J.; Simmet, T. Lipoprotein(a) Is a Potent Chemoattractant for Human Peripheral Monocytes. Blood 1997, 90, 2027–2036. [Google Scholar] [CrossRef]
  105. Størling, J.; Juntti-Berggren, L.; Olivecrona, G.; Prause, M.C.; Berggren, P.-O.; Mandrup-Poulsen, T. Apolipoprotein CIII Reduces Proinflammatory Cytokine-Induced Apoptosis in Rat Pancreatic Islets via the Akt Prosurvival Pathway. Endocrinology 2011, 152, 3040–3048. [Google Scholar] [CrossRef]
  106. Rocha, N.A.; East, C.; Zhang, J.; McCullough, P.A. ApoCIII as a Cardiovascular Risk Factor and Modulation by the Novel Lipid-Lowering Agent Volanesorsen. Curr. Atheroscler. Rep. 2017, 19, 62. [Google Scholar] [CrossRef]
  107. Sabbah, N.; Jaisson, S.; Garnotel, R.; Anglés-Cano, E.; Gillery, P. Small Size Apolipoprotein(a) Isoforms Enhance Inflammatory and Proteolytic Potential of Collagen-Primed Monocytes. Lipids Health Dis. 2019, 18, 166. [Google Scholar] [CrossRef] [PubMed]
  108. Rodríguez, J.A.; Orbe, J.; Páramo, J.A. Metaloproteasas, Remodelado Vascular Y Syndromes Aterotrombóticos. Rev. Española Cardiol. 2007, 60, 959–967. [Google Scholar] [CrossRef]
  109. Rath, M.; Niendorf, A.; Reblin, T.; Dietel, M.; Krebber, H.J.; Beisiegel, U. Detection and Quantification of Lipoprotein(a) in the Arterial Wall of 107 Coronary Bypass Patients. Arterioscler. Off. J. Am. Heart Assoc. Inc. 1989, 9, 579–592. [Google Scholar] [CrossRef]
  110. Fruhwirth, G.O.; Loidl, A.; Hermetter, A. Oxidized Phospholipids: From Molecular Properties to Disease. Biochim. Biophys. Acta-Mol. Basis Dis. 2007, 1772, 718–736. [Google Scholar] [CrossRef] [PubMed]
  111. Ylä-Herttuala, S.; Palinski, W.; Rosenfeld, M.E.; Parthasarathy, S.; Carew, T.E.; Butler, S.; Witztum, J.L.; Steinberg, D. Evidence for the Presence of Oxidatively Modified Low Density Lipoprotein in Atherosclerotic Lesions of Rabbit and Man. J. Clin. Investig. 1989, 84, 1086–1095. [Google Scholar] [CrossRef] [PubMed]
  112. Xu, R.; Wang, Z.; Dong, J.; Yu, M.; Zhou, Y. Lipoprotein(a) and Panvascular Disease. Lipids Health Dis. 2025, 24, 186. [Google Scholar] [CrossRef]
  113. Ketelhuth, D.F.J.; Hansson, G.K. Adaptive Response of T and B Cells in Atherosclerosis. Circ. Res. 2016, 118, 668–678. [Google Scholar] [CrossRef]
  114. Wang, T.; Wang, Y.; Zhang, X.; Xu, W.; Jin, K.; Pang, Y.; Wu, Y.; Luo, J.; Xu, R.; Jiao, L.; et al. Mechanism of Oxidized Phospholipid-Related Inflammatory Response in Vascular Ageing. Ageing Res. Rev. 2023, 86, 101888. [Google Scholar] [CrossRef] [PubMed]
  115. Tsironis, L.D.; Katsouras, C.S.; Lourida, E.S.; Mitsios, J.V.; Goudevenos, J.; Elisaf, M.; Tselepis, A.D. Reduced PAF-Acetylhydrolase Activity Associated with Lp(a) in Patients with Coronary Artery Disease. Atherosclerosis 2004, 177, 193–201. [Google Scholar] [CrossRef]
  116. TSIRONIS, L.; MITSIOS, J.; MILIONIS, H.; ELISAF, M.; TSELEPIS, A. Effect of Lipoprotein (a) on Platelet Activation Induced by Platelet-Activating Factor: Role of Apolipoprotein (a) and Endogenous PAF-Acetylhydrolase. Cardiovasc. Res. 2004, 63, 130–138. [Google Scholar] [CrossRef] [PubMed]
  117. Gerber, Y.; McConnell, J.P.; Jaffe, A.S.; Weston, S.A.; Killian, J.M.; Roger, V.L. Lipoprotein-Associated Phospholipase A 2 and Prognosis After Myocardial Infarction in the Community. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2517–2522. [Google Scholar] [CrossRef] [PubMed]
  118. Koenig, W.; Twardella, D.; Brenner, H.; Rothenbacher, D. Lipoprotein-Associated Phospholipase A 2 Predicts Future Cardiovascular Events in Patients With Coronary Heart Disease Independently of Traditional Risk Factors, Markers of Inflammation, Renal Function, and Hemodynamic Stress. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 1586–1593. [Google Scholar] [CrossRef]
  119. Vlassara, H. The AGE-receptor in the Pathogenesis of Diabetic Complications. Diabetes Metab. Res. Rev. 2001, 17, 436–443. [Google Scholar] [CrossRef]
  120. Nishikawa, T.; Edelstein, D.; Du, X.L.; Yamagishi, S.; Matsumura, T.; Kaneda, Y.; Yorek, M.A.; Beebe, D.; Oates, P.J.; Hammes, H.-P.; et al. Normalizing Mitochondrial Superoxide Production Blocks Three Pathways of Hyperglycaemic Damage. Nature 2000, 404, 787–790. [Google Scholar] [CrossRef]
  121. Sadai, G.R.Z.; Nahomy, G.G.; Andree, O.A.; Leonor, S.B.N.; Llelena, S.L.V.; Eduardo, A.M.M. Prevalencia de Complicaciones Micro Y Macrovasculares En Derechohabientes Con Diabetes Mellitus, Salina Cruz, Oaxaca 2022–2024. South Fla. J. Dev. 2024, 5, e4492. [Google Scholar] [CrossRef]
  122. Rader, D.J.; Bajaj, A. Lipoprotein(a) and Oxidized Phospholipids. J. Am. Coll. Cardiol. 2023, 81, 1793–1796. [Google Scholar] [CrossRef]
  123. Oskolkova, O.V.; Birukova, A.A.; Birukov, K.G.; Bochkov, V.N. Oxidized Phospholipids Are Biomarkers, Drug Targets, and Drug Leads. Front. Drug Discov. 2022, 2, 1043708. [Google Scholar] [CrossRef]
  124. Tsimikas, S.; Brilakis, E.S.; Miller, E.R.; McConnell, J.P.; Lennon, R.J.; Kornman, K.S.; Witztum, J.L.; Berger, P.B. Oxidized Phospholipids, Lp(a) Lipoprotein, and Coronary Artery Disease. N. Engl. J. Med. 2005, 353, 46–57. [Google Scholar] [CrossRef]
  125. Patton, A.R.; Hill, E.G. Inactivation of Nutrients by Heating With Glucose. Science 1948, 107, 68–69. [Google Scholar] [CrossRef]
  126. Pinto, R.S.; Minanni, C.A.; de Araújo Lira, A.L.; Passarelli, M. Advanced Glycation End Products: A Sweet Flavor That Embitters Cardiovascular Disease. Int. J. Mol. Sci. 2022, 23, 2404. [Google Scholar] [CrossRef]
  127. Toma, L.; Stancu, C.S.; Sima, A.V. Endothelial Dysfunction in Diabetes Is Aggravated by Glycated Lipoproteins; Novel Molecular Therapies. Biomedicines 2020, 9, 18. [Google Scholar] [CrossRef]
  128. Makino, K.; Furbee, J.W.; Scanu, A.M.; Fless, G.M. Effect of Glycation on the Properties of Lipoprotein(a). Arterioscler. Thromb. Vasc. Biol. 1995, 15, 385–391. [Google Scholar] [CrossRef] [PubMed]
  129. Steinbrecher, U.P.; Witztum, J.L. Glucosylation of Low-Density Lipoproteins to an Extent Comparable to That Seen in Diabetes Slows Their Catabolism. Diabetes 1984, 33, 130–134. [Google Scholar] [CrossRef] [PubMed]
  130. Ott, C.; Jacobs, K.; Haucke, E.; Navarrete Santos, A.; Grune, T.; Simm, A. Role of Advanced Glycation End Products in Cellular Signaling. Redox Biol. 2014, 2, 411–429. [Google Scholar] [CrossRef] [PubMed]
  131. Senatus, L.M.; Schmidt, A.M. The AGE-RAGE Axis: Implications for Age-Associated Arterial Diseases. Front. Genet. 2017, 8, 187. [Google Scholar] [CrossRef]
  132. Mohamed, A.K.; Bierhaus, A.; Schiekofer, S.; Tritschler, H.; Ziegler, R.; Nawroth, P.P. The Role of Oxidative Stress and NF-κB Activation in Late Diabetic Complications. BioFactors 1999, 10, 157–167. [Google Scholar] [CrossRef]
  133. Lander, H.M.; Tauras, J.M.; Ogiste, J.S.; Hori, O.; Moss, R.A.; Schmidt, A.M. Activation of the Receptor for Advanced Glycation End Products Triggers a p21 -Dependent Mitogen-Activated Protein Kinase Pathway Regulated by Oxidant Stress. J. Biol. Chem. 1997, 272, 17810–17814. [Google Scholar] [CrossRef]
  134. Zhao, R.; Ren, S.; Moghadasain, M.H.; Rempel, J.D.; Shen, G.X. Involvement of Fibrinolytic Regulators in Adhesion of Monocytes to Vascular Endothelial Cells Induced by Glycated LDL and to Aorta from Diabetic Mice. J. Leukoc. Biol. 2014, 95, 941–949. [Google Scholar] [CrossRef] [PubMed]
  135. Toma, L.; Sanda, G.M.; Deleanu, M.; Stancu, C.S.; Sima, A.V. Glycated LDL Increase VCAM-1 Expression and Secretion in Endothelial Cells and Promote Monocyte Adhesion through Mechanisms Involving Endoplasmic Reticulum Stress. Mol. Cell. Biochem. 2016, 417, 169–179. [Google Scholar] [CrossRef] [PubMed]
  136. Sanajou, D.; Ghorbani Haghjo, A.; Argani, H.; Aslani, S. AGE-RAGE Axis Blockade in Diabetic Nephropathy: Current Status and Future Directions. Eur. J. Pharmacol. 2018, 833, 158–164. [Google Scholar] [CrossRef] [PubMed]
  137. Patthy, L. Evolution of the Proteases of Blood Coagulation and Fibrinolysis by Assembly from Modules. Cell 1985, 41, 657–663. [Google Scholar] [CrossRef]
  138. McLean, J.W.; Tomlinson, J.E.; Kuang, W.-J.; Eaton, D.L.; Chen, E.Y.; Fless, G.M.; Scanu, A.M.; Lawn, R.M. cDNA Sequence of Human Apolipoprotein(a) Is Homologous to Plasminogen. Nature 1987, 330, 132–137. [Google Scholar] [CrossRef]
  139. Utermann, G. The Mysteries Of Lipoprotein(a). Science 1989, 246, 904–910. [Google Scholar] [CrossRef] [PubMed]
  140. Patthy, L.; Trexler, M.; Váli, Z.; Bányai, L.; Váradi, A. Kringles: Modules Specialized for Protein Binding. FEBS Lett. 1984, 171, 131–136. [Google Scholar] [CrossRef]
  141. Tulinsky, A.; Park, C.H.; Mao, B.; Llináas, M. Lysine/fibrin Binding Sites of Kringles Modeled after the Structure of Kringle 1 of Prothrombin. Proteins Struct. Funct. Bioinform. 1988, 3, 85–96. [Google Scholar] [CrossRef]
  142. Sangrar, W.; Marcovina, S.M.; Koschinsky, M.L. Expression and Characterization of Apolipoprotein(a) Kringle IV Types 1, 2 and 10 in Mammalian Cells. Protein Eng. Des. Sel. 1994, 7, 723–731. [Google Scholar] [CrossRef]
  143. Hoylaerts, M.; Rijken, D.C.; Lijnen, H.R.; Collen, D. Kinetics of Plasminogen Activation by Tissue Plasminogen Activator. Role of Fibrin. Thromb. Haemost. 1981, 46, 0494. [Google Scholar] [CrossRef]
  144. Fredenburgh, J.C.; Nesheim, M.E. Lys-Plasminogen Is a Significant Intermediate in the Activation of Glu-Plasminogen during Fibrinolysis in Vitro. J. Biol. Chem. 1992, 267, 26150–26156. [Google Scholar] [CrossRef]
  145. Feric, N.T.; Boffa, M.B.; Johnston, S.M.; Koschinsky, M.L. Apolipoprotein(a) Inhibits the Conversion of Glu-plasminogen to Lys-plasminogen: A Novel Mechanism for Lipoprotein(a)-mediated Inhibition of Plasminogen Activation. J. Thromb. Haemost. 2008, 6, 2113–2120. [Google Scholar] [CrossRef]
  146. Hoylaerts, M.; Rijken, D.C.; Lijnen, H.R.; Collen, D. Kinetics of the Activation of Plasminogen by Human Tissue Plasminogen Activator. Role of Fibrin. J. Biol. Chem. 1982, 257, 2912–2919. [Google Scholar] [CrossRef]
  147. Suenson, E.; Petersen, L.C. Fibrin and Plasminogen Structures Essential to Stimulation of Plasmin Formation by Tissue-Type Plasminogen Activator. Biochim. Biophys. Acta-Protein Struct. Mol. Enzymol. 1986, 870, 510–519. [Google Scholar] [CrossRef]
  148. Romagnuolo, R.; Marcovina, S.M.; Boffa, M.B.; Koschinsky, M.L. Inhibition of Plasminogen Activation by Apo(a): Role of Carboxyl-Terminal Lysines and Identification of Inhibitory Domains in Apo(a). J. Lipid Res. 2014, 55, 625–634. [Google Scholar] [CrossRef]
  149. Miles, L.A.; Fless, G.M.; Levin, E.G.; Scanu, A.M.; Plow, E.F. A Potential Basis for the Thrombotic Risks Associated with Lipoprotein(a). Nature 1989, 339, 301–303. [Google Scholar] [CrossRef]
  150. Hajjar, K.A.; Gavishi, D.; Breslow, J.L.; Nachman, R.L. Lipoprotein(a) Modulation of Endothelial Cell Surface Fibrinolysis and Its Potential Role in Atherosclerosis. Nature 1989, 339, 303–305. [Google Scholar] [CrossRef] [PubMed]
  151. Lahoz, C.; Mostaza, J.M. La Aterosclerosis Como Enfermedad Sistémica. Rev. Española Cardiol. 2007, 60, 184–195. [Google Scholar] [CrossRef]
  152. Ajoolabady, A.; Pratico, D.; Lin, L.; Mantzoros, C.S.; Bahijri, S.; Tuomilehto, J.; Ren, J. Inflammation in Atherosclerosis: Pathophysiology and Mechanisms. Cell Death Dis. 2024, 15, 817. [Google Scholar] [CrossRef] [PubMed]
  153. Gurdasani, D.; Sjouke, B.; Tsimikas, S.; Hovingh, G.K.; Luben, R.N.; Wainwright, N.W.J.; Pomilla, C.; Wareham, N.J.; Khaw, K.-T.; Boekholdt, S.M.; et al. Lipoprotein(a) and Risk of Coronary, Cerebrovascular, and Peripheral Artery Disease. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 3058–3065. [Google Scholar] [CrossRef]
  154. Littmann, K.; Wodaje, T.; Alvarsson, M.; Bottai, M.; Eriksson, M.; Parini, P.; Brinck, J. The Association of Lipoprotein(a) Plasma Levels With Prevalence of Cardiovascular Disease and Metabolic Control Status in Patients With Type 1 Diabetes. Diabetes Care 2020, 43, 1851–1858. [Google Scholar] [CrossRef]
  155. Clarke, R.; Peden, J.F.; Hopewell, J.C.; Kyriakou, T.; Goel, A.; Heath, S.C.; Parish, S.; Barlera, S.; Franzosi, M.G.; Rust, S.; et al. Genetic Variants Associated with Lp(a) Lipoprotein Level and Coronary Disease. N. Engl. J. Med. 2009, 361, 2518–2528. [Google Scholar] [CrossRef]
  156. Danesh, J.; Collins, R.; Peto, R. Lipoprotein(a) and Coronary Heart Disease. Circulation 2000, 102, 1082–1085. [Google Scholar] [CrossRef]
  157. Holanda, M.M.d.A.; Filizola, R.G.; Costa, M.J.d.C.; de Andrade, R.V.C.L.; da Silva, J.A.G. Plasma Lipoprotein(a) Levels: A Comparison between Diabetic and Non-Diabetic Patients with Acute Ischemic Stroke. Arq. Neuropsiquiatr. 2004, 62, 233–236. [Google Scholar] [CrossRef]
  158. Lyden, P.D. Thrombolytic Therapy for Acute Ischemic Stroke. Stroke 2019, 50, 2597–2603. [Google Scholar] [CrossRef] [PubMed]
  159. Kisler, K.; Nelson, A.R.; Montagne, A.; Zlokovic, B.V. Cerebral Blood Flow Regulation and Neurovascular Dysfunction in Alzheimer Disease. Nat. Rev. Neurosci. 2017, 18, 419–434. [Google Scholar] [CrossRef] [PubMed]
  160. Arenillas, J.F.; Molina, C.A.; Chacón, P.; Rovira, A.; Montaner, J.; Coscojuela, P.; Sánchez, E.; Quintana, M.; Álvarez-Sabín, J. High Lipoprotein (A), Diabetes, and the Extent of Symptomatic Intracranial Atherosclerosis. Neurology 2004, 63, 27–32. [Google Scholar] [CrossRef] [PubMed]
  161. Nave, A.H.; Lange, K.S.; Leonards, C.O.; Siegerink, B.; Doehner, W.; Landmesser, U.; Steinhagen-Thiessen, E.; Endres, M.; Ebinger, M. Lipoprotein (a) as a Risk Factor for Ischemic Stroke: A Meta-Analysis. Atherosclerosis 2015, 242, 496–503. [Google Scholar] [CrossRef]
  162. Contreras-Romero, J.A.; Castro Gomez, K.G.; Morales Ortigoza, M.P.; Saavedra López, H.F. Lipoproteína (a) Y Oligonucleótidos Antisentido. Rev. Colomb. Endocrinol. Diabetes Metab. 2023, 10, 218–239. [Google Scholar] [CrossRef]
  163. Koh, M.Y.; Toh, K.Z.; Loh, E.D.; Teo, Y.N.; Joon, K.C.; Tan, Q.X.; Sharma, V.K.; Yeo, L.L.; Sia, C.-H.; Loh, W.J.; et al. Association of Elevated Lipoprotein(a) Levels with Ischemic Stroke in Young Patients—A Systematic Review and Meta-Analysis. J. Stroke Cerebrovasc. Dis. 2024, 33, 107960. [Google Scholar] [CrossRef]
  164. Palaiodimou, L.; Melanis, K.; Stefanou, M.-I.; Theodorou, A.; Giannopoulos, S.; Lambadiari, V.; de Sousa, D.A.; Sacco, S.; Katan, M.; Siasos, G.; et al. The Association of Lipoprotein(a) and Stroke Recurrence: A Systematic Review and Meta-Analysis. J. Stroke 2025, 27, 161–168. [Google Scholar] [CrossRef] [PubMed]
  165. World Health Organization Blindness and Vision Impairment. Available online: https://www.who.int/es/news-room/fact-sheets/detail/blindness-and-visual-impairment (accessed on 30 October 2025).
  166. Kropp, M.; Golubnitschaja, O.; Mazurakova, A.; Koklesova, L.; Sargheini, N.; Vo, T.-T.K.S.; de Clerck, E.; Polivka, J.; Potuznik, P.; Polivka, J.; et al. Diabetic Retinopathy as the Leading Cause of Blindness and Early Predictor of Cascading Complications—Risks and Mitigation. EPMA J. 2023, 14, 21–42. [Google Scholar] [CrossRef]
  167. Gholami Chahkand, M.S.; Esmaeilpour Moallem, F.; Qezelgachi, A.; Seifouri, K.; Pesaran Afsharian, A.; Sheikhzadeh, F.; Poursalehi, A.; Fani Sadrabadi, F.S.; Saghab Torbati, M.; Ramezanzade, M.; et al. Lipoprotein (a) as a Predictor of Diabetic Retinopathy in Patients with Type 2 Diabetes: A Systematic Review. Diabetes Vasc. Dis. Res. 2023, 20, 14791641231197114. [Google Scholar] [CrossRef]
  168. Gazzaruso, C.; Garzaniti, A.; Buscaglia, P.; D’Annunzio, G.; Porta, A.; Vandelli, G.; Lorini, R.; Finardi, G.; Fratino, P.; Geroldi, D. Lipoprotein(a) Levels and Apolipoprotein(a) Polymorphism in Type 1 Diabetes Mellitus: Relationships to Microvascular and Neurological Complications. Acta Diabetol. 1998, 35, 13–18. [Google Scholar] [CrossRef]
  169. Zhou, T.; Zhou, K.K.; Lee, K.; Gao, G.; Lyons, T.J.; Kowluru, R.; Ma, J. The Role of Lipid Peroxidation Products and Oxidative Stress in Activation of the Canonical Wingless-Type MMTV Integration Site (WNT) Pathway in a Rat Model of Diabetic Retinopathy. Diabetologia 2011, 54, 459–468. [Google Scholar] [CrossRef]
  170. Yu, J.Y.; Du, M.; Elliott, M.H.; Wu, M.; Fu, D.; Yang, S.; Basu, A.; Gu, X.; Ma, J.-X.; Aston, C.E.; et al. Extravascular Modified Lipoproteins: A Role in the Propagation of Diabetic Retinopathy in a Mouse Model of Type 1 Diabetes. Diabetologia 2016, 59, 2026–2035. [Google Scholar] [CrossRef] [PubMed]
  171. Cogan, D.G.; Toussaint, D.; Kuwabara, T. Retinal Vascular Patterns. Arch. Ophthalmol. 1961, 66, 366–378. [Google Scholar] [CrossRef] [PubMed]
  172. Scipione, C.A.; Sayegh, S.E.; Romagnuolo, R.; Tsimikas, S.; Marcovina, S.M.; Boffa, M.B.; Koschinsky, M.L. Mechanistic Insights into Lp(a)-Induced IL-8 Expression: A Role for Oxidized Phospholipid Modification of Apo(a). J. Lipid Res. 2015, 56, 2273–2285. [Google Scholar] [CrossRef] [PubMed]
  173. de Boer, I.H.; Khunti, K.; Sadusky, T.; Tuttle, K.R.; Neumiller, J.J.; Rhee, C.M.; Rosas, S.E.; Rossing, P.; Bakris, G. Diabetes Management in Chronic Kidney Disease: A Consensus Report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes Care 2022, 45, 3075–3090. [Google Scholar] [CrossRef]
  174. Russo, G.; Piscitelli, P.; Giandalia, A.; Viazzi, F.; Pontremoli, R.; Fioretto, P.; De Cosmo, S. Atherogenic Dyslipidemia and Diabetic Nephropathy. J. Nephrol. 2020, 33, 1001–1008. [Google Scholar] [CrossRef]
  175. Amor Valero, J. Características de La Enfermedad Renal Diabética. Diabetes Práctica 2023, 14. [Google Scholar] [CrossRef]
  176. Mondorf, U.F.; Piiper, A.; Herrero, M.; Olbrich, H.-G.; Bender, M.; Gross, W.; Scheuermann, E.; Geiger, H. Lipoprotein(a) Stimulates Growth of Human Mesangial Cells and Induces Activation of Phospholipase C via Pertussis Toxin-Sensitive G Proteins. Kidney Int. 1999, 55, 1359–1366. [Google Scholar] [CrossRef]
  177. Wu, F.; Cui, C.; Wu, J.; Wang, Y. Can Lipoprotein(a) Predict the Risk of Diabetic Nephropathy in Type 2 Diabetes Mellitus?: A Systematic Review and Meta-Analysis. Horm. Metab. Res. 2025, 57, 242–251. [Google Scholar] [CrossRef]
  178. Iacobini, C.; Menini, S.; Ricci, C.; Scipioni, A.; Sansoni, V.; Mazzitelli, G.; Cordone, S.; Pesce, C.; Pugliese, F.; Pricci, F.; et al. Advanced Lipoxidation End-products Mediate Lipid-induced Glomerular Injury: Role of Receptor-mediated Mechanisms. J. Pathol. 2009, 218, 360–369. [Google Scholar] [CrossRef]
  179. Faucher, C.; Doucet, C.; Baumelou, A.; Chapman, J.; Jacobs, C.; Thillet, J. Elevated Lipoprotein (a) Levels in Primary Nephrotic Syndrome. Am. J. Kidney Dis. 1993, 22, 808–813. [Google Scholar] [CrossRef] [PubMed]
  180. Thomas, M.E.; Freestone, A.; Varghese, Z.; Persaud, J.W.; Moorhead, J.F. Lipoprotein (a) in Patients with Proteinuria. Nephrol. Dial. Transplant. 1992, 7, 597–601. [Google Scholar] [CrossRef] [PubMed]
  181. Heimbürger, O.; Stenvinkel, P.; Berglund, L.; Tranæus, A.; Lindholm, B. Increased Plasma Lipoprotein(a) in Continuous Ambulatory Peritoneal Dialysis Is Related to Peritoneal Transport of Proteins and Glucose. Nephron 1996, 72, 135–144. [Google Scholar] [CrossRef] [PubMed]
  182. Stenvinkel, P.; Heimbürger, O.; Tuck, C.H.; Berglund, L. Apo(a)-Isoform Size, Nutritional Status and Inflammatory Markers in Chronic Renal Failure. Kidney Int. 1998, 53, 1336–1342. [Google Scholar] [CrossRef]
  183. Ren, X.; Zhang, Z.; Yan, Z. Association Between Lipoprotein (A) and Diabetic Nephropathy in Patients With Type 2 Diabetes Mellitus: A Meta-Analysis. Front. Endocrinol. 2021, 12, 633529. [Google Scholar] [CrossRef]
  184. Lin, J.; Khetarpal, S.A.; Terembula, K.; Reilly, M.P.; Wilson, F.P. Relation of Atherogenic Lipoproteins with Estimated Glomerular Filtration Rate Decline: A Longitudinal Study. BMC Nephrol. 2015, 16, 130. [Google Scholar] [CrossRef] [PubMed]
  185. Zhu, J.; Hu, Z.; Luo, Y.; Liu, Y.; Luo, W.; Du, X.; Luo, Z.; Hu, J.; Peng, S. Diabetic Peripheral Neuropathy: Pathogenetic Mechanisms and Treatment. Front. Endocrinol. 2024, 14, 1265372. [Google Scholar] [CrossRef]
  186. Sheng, L.; Yang, Y.; Zhou, Y. Association between Lipoprotein(a) and Diabetic Peripheral Neuropathy in Patients with Type 2 Diabetes: A Meta-Analysis. Diabetol. Metab. Syndr. 2025, 17, 76. [Google Scholar] [CrossRef] [PubMed]
  187. Chang, M.C.; Yang, S. Diabetic Peripheral Neuropathy Essentials: A Narrative Review. Ann. Palliat. Med. 2023, 12, 390–398. [Google Scholar] [CrossRef]
  188. Pop-Busui, R.; Boulton, A.J.M.; Feldman, E.L.; Bril, V.; Freeman, R.; Malik, R.A.; Sosenko, J.M.; Ziegler, D. Diabetic Neuropathy: A Position Statement by the American Diabetes Association. Diabetes Care 2017, 40, 136–154. [Google Scholar] [CrossRef] [PubMed]
  189. Vlassara, H.; Uribarri, J. Advanced Glycation End Products (AGE) and Diabetes: Cause, Effect, or Both? Curr. Diabetes Rep. 2014, 14, 453. [Google Scholar] [CrossRef]
  190. Di Fusco, S.A.; Maggioni, A.P.; Scicchitano, P.; Zuin, M.; D’Elia, E.; Colivicchi, F. Lipoprotein (A), Inflammation, and Atherosclerosis. J. Clin. Med. 2023, 12, 2529. [Google Scholar] [CrossRef]
  191. Atmaca, A.; Ketenci, A.; Sahin, I.; Sengun, I.S.; Oner, R.I.; Erdem Tilki, H.; Adas, M.; Soyleli, H.; Demir, T. Expert Opinion on Screening, Diagnosis and Management of Diabetic Peripheral Neuropathy: A Multidisciplinary Approach. Front. Endocrinol. 2024, 15, 1380929. [Google Scholar] [CrossRef]
  192. Shah, N.P.; Mulder, H.; Lydon, E.; Chiswell, K.; Hu, X.; Lampron, Z.; Cohen, L.; Patel, M.R.; Taubes, S.; Song, W.; et al. Lipoprotein (a) Testing in Patients With Atherosclerotic Cardiovascular Disease in 5 Large US Health Systems. J. Am. Heart Assoc. 2024, 13, e035610. [Google Scholar] [CrossRef]
  193. Zhang, Y.; Jin, J.-L.; Cao, Y.-X.; Zhang, H.-W.; Guo, Y.-L.; Wu, N.-Q.; Zhu, C.-G.; Gao, Y.; Hua, Q.; Li, Y.-F.; et al. Lipoprotein (a) Predicts Recurrent Worse Outcomes in Type 2 Diabetes Mellitus Patients with Prior Cardiovascular Events: A Prospective, Observational Cohort Study. Cardiovasc. Diabetol. 2020, 19, 111. [Google Scholar] [CrossRef]
  194. Reyes-Soffer, G.; Yeang, C.; Michos, E.D.; Boatwright, W.; Ballantyne, C.M. High Lipoprotein(a): Actionable Strategies for Risk Assessment and Mitigation. Am. J. Prev. Cardiol. 2024, 18, 100651. [Google Scholar] [CrossRef]
  195. Zhang, J.; Sang, J.; Jiang, Y.; Zheng, Y.; Zhang, J.; Liu, X.; Qiu, H.; Zhao, K.; Sun, H.; Yang, Y.; et al. Elevated Plasma Concentrations of Lipoprotein (a) Are Associated with Cardiovascular Diseases in Patients with Early-Onset Type 2 Diabetes Mellitus. Front. Endocrinol. 2025, 16, 1434745. [Google Scholar] [CrossRef]
  196. Albers, J.J.; Slee, A.; O’Brien, K.D.; Robinson, J.G.; Kashyap, M.L.; Kwiterovich, P.O.; Xu, P.; Marcovina, S.M. Relationship of Apolipoproteins A-1 and B, and Lipoprotein(a) to Cardiovascular Outcomes. J. Am. Coll. Cardiol. 2013, 62, 1575–1579. [Google Scholar] [CrossRef]
  197. Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef]
  198. Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef]
  199. Ray, K.K.; Wright, R.S.; Kallend, D.; Koenig, W.; Leiter, L.A.; Raal, F.J.; Bisch, J.A.; Richardson, T.; Jaros, M.; Wijngaard, P.L.J.; et al. Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol. N. Engl. J. Med. 2020, 382, 1507–1519. [Google Scholar] [CrossRef]
  200. O’Donoghue, M.L.; Rosenson, R.S.; Gencer, B.; López, J.A.G.; Lepor, N.E.; Baum, S.J.; Stout, E.; Gaudet, D.; Knusel, B.; Kuder, J.F.; et al. Small Interfering RNA to Reduce Lipoprotein(a) in Cardiovascular Disease. N. Engl. J. Med. 2022, 387, 1855–1864. [Google Scholar] [CrossRef]
  201. Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
  202. de Boer, L.M.; Oorthuys, A.O.J.; Wiegman, A.; Langendam, M.W.; Kroon, J.; Spijker, R.; Zwinderman, A.H.; Hutten, B.A. Statin Therapy and Lipoprotein(a) Levels: A Systematic Review and Meta-Analysis. Eur. J. Prev. Cardiol. 2022, 29, 779–792. [Google Scholar] [CrossRef]
  203. Cannon, C.P.; Blazing, M.A.; Giugliano, R.P.; McCagg, A.; White, J.A.; Theroux, P.; Darius, H.; Lewis, B.S.; Ophuis, T.O.; Jukema, J.W.; et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N. Engl. J. Med. 2015, 372, 2387–2397. [Google Scholar] [CrossRef]
  204. Koschinsky, M.L.; Stroes, E.S.G.; Kronenberg, F. Daring to Dream: Targeting Lipoprotein(a) as a Causal and Risk-Enhancing Factor. Pharmacol. Res. 2023, 194, 106843. [Google Scholar] [CrossRef]
  205. Feng, T.; Li, Y.; Xue, X.; Yang, W.; Li, Q.; Huang, Y.; Zhu, T.; Wang, J.; Xu, L.; Li, X.; et al. Association of Statin Use and Increase in Lipoprotein(a): A Real-World Database Research. Eur. J. Med. Res. 2023, 28, 212. [Google Scholar] [CrossRef]
  206. Yeang, C.; Karwatowska-Prokopczuk, E.; Su, F.; Dinh, B.; Xia, S.; Witztum, J.L.; Tsimikas, S. Effect of Pelacarsen on Lipoprotein(a) Cholesterol and Corrected Low-Density Lipoprotein Cholesterol. J. Am. Coll. Cardiol. 2022, 79, 1035–1046. [Google Scholar] [CrossRef]
  207. Cho, L.; Nicholls, S.J.; Nordestgaard, B.G.; Landmesser, U.; Tsimikas, S.; Blaha, M.J.; Leitersdorf, E.; Lincoff, A.M.; Lesogor, A.; Manning, B.; et al. Design and Rationale of Lp(a)HORIZON Trial: Assessing the Effect of Lipoprotein(a) Lowering With Pelacarsen on Major Cardiovascular Events in Patients With CVD and Elevated Lp(a). Am. Heart J. 2025, 287, 1–9. [Google Scholar] [CrossRef]
  208. Nicholls, S.J.; Nissen, S.E.; Fleming, C.; Urva, S.; Suico, J.; Berg, P.H.; Linnebjerg, H.; Ruotolo, G.; Turner, P.K.; Michael, L.F. Muvalaplin, an Oral Small Molecule Inhibitor of Lipoprotein(a) Formation. JAMA 2023, 330, 1042–1053. [Google Scholar] [CrossRef]
  209. Nissen, S.E.; Linnebjerg, H.; Shen, X.; Wolski, K.; Ma, X.; Lim, S.; Michael, L.F.; Ruotolo, G.; Gribble, G.; Navar, A.M.; et al. Lepodisiran, an Extended-Duration Short Interfering RNA Targeting Lipoprotein(a). JAMA 2023, 330, 2075–2083. [Google Scholar] [CrossRef]
  210. Nissen, S.E.; Wolski, K.; Balog, C.; Swerdlow, D.I.; Scrimgeour, A.C.; Rambaran, C.; Wilson, R.J.; Boyce, M.; Ray, K.K.; Cho, L.; et al. Single Ascending Dose Study of a Short Interfering RNA Targeting Lipoprotein(a) Production in Individuals With Elevated Plasma Lipoprotein(a) Levels. JAMA 2022, 327, 1679–1687. [Google Scholar] [CrossRef]
  211. Panagiotopoulos, E.; Palaiodimou, L.; Theodorou, A.; Papagiannopoulou, G.; Bakola, E.; Chondrogianni, M.; Psychogios, K.; Kargiotis, O.; Safouris, A.; Vlachopoulos, C.; et al. Lipoprotein(a) as a Stroke Biomarker: Pathophysiological Pathways and Therapeutic Implications. J. Clin. Med. 2025, 14, 2990. [Google Scholar] [CrossRef]
Figure 1. Schematic representation of the LPA gene locus on chromosome 6 (band 6q27) and the structure of lipoprotein(a) [Lp(a)]. Lp(a) consists of an LDL particle containing apolipoprotein B100 (apoB100) covalently linked via a disulfide bond (–S–S–) to apolipoprotein(a) [apo(a)]. Apo(a) is composed of multiple kringle domains—kringle IV (subtypes 1–10) and kringle V—and a catalytically inactive protease domain. The number of kringle IV type 2 (KIV-2) repeats varies widely among individuals and determines apo(a) size and, consequently, plasma Lp(a) concentrations. Abbreviations: LPA: apolipoprotein(a) gene; apoB100: apolipoprotein B100; apo(a): apolipoprotein(a); KIV: kringle IV; KIV-1: kringle IV type 1; KIV-2: kringle IV type 2; KIV-3: kringle IV type 3; KIV-4: kringle IV type 4; KIV-5: kringle IV type 5; KIV-6: kringle IV type 6; KIV-7: kringle IV type 7; KIV-8: kringle IV type 8; KIV-9: kringle IV type 9; KIV-10: kringle IV type 10; KV: kringle V; OxPL: Oxidized phospholipids. Created with https://BioRender.com/wps73bu (accessed on 31 October 2025).
Figure 1. Schematic representation of the LPA gene locus on chromosome 6 (band 6q27) and the structure of lipoprotein(a) [Lp(a)]. Lp(a) consists of an LDL particle containing apolipoprotein B100 (apoB100) covalently linked via a disulfide bond (–S–S–) to apolipoprotein(a) [apo(a)]. Apo(a) is composed of multiple kringle domains—kringle IV (subtypes 1–10) and kringle V—and a catalytically inactive protease domain. The number of kringle IV type 2 (KIV-2) repeats varies widely among individuals and determines apo(a) size and, consequently, plasma Lp(a) concentrations. Abbreviations: LPA: apolipoprotein(a) gene; apoB100: apolipoprotein B100; apo(a): apolipoprotein(a); KIV: kringle IV; KIV-1: kringle IV type 1; KIV-2: kringle IV type 2; KIV-3: kringle IV type 3; KIV-4: kringle IV type 4; KIV-5: kringle IV type 5; KIV-6: kringle IV type 6; KIV-7: kringle IV type 7; KIV-8: kringle IV type 8; KIV-9: kringle IV type 9; KIV-10: kringle IV type 10; KV: kringle V; OxPL: Oxidized phospholipids. Created with https://BioRender.com/wps73bu (accessed on 31 October 2025).
Ijms 26 11427 g001
Figure 2. Schematic model of Lp(a) metabolism: (1) hepatic synthesis of apo(a); (2) assembly of apo(a) with lipoprotein particles at the hepatocyte surface/space of Disse or in plasma; (3) lipid association on triglyceride-rich (VLDL-like) or cholesterol-rich (LDL-like) cores; (4) intravascular remodeling converting VLDL-like Lp(a) toward an LDL-like phenotype; (5) catabolism: partial dissociation of Lp(a) and apo(a) proteolysis by elastases and matrix metalloproteinases within the vascular wall, followed by hepatic clearance (ASGPR, LDLR), renal uptake, and vascular deposition; (6) FXR-mediated transcriptional repression of LPA via two complementary routes: (6a) the intestinal–hepatic axis (ileal FXR → FGF19 → FGFR4 → RAS–RAF–MEK1/2–ELK-1; modulation of the ETS site −1630/−1615) and (6b) a direct hepatic route (FXR/HNF4α competition at DR-1 −826/−814). Solid arrows indicate chronological biochemical steps, and dashed arrows indicate modulatory or inhibitory interactions. Abreviations: Lp(a): lipoprotein(a); apo(a): apolipoprotein(a); TG: triglyceride; VLDL: very-low-density lipoprotein; LDL: low-density lipoprotein; LDLR: low-density lipoprotein receptor; ASGPR: asialoglycoprotein receptor; FXR: farnesoid X receptor; CDCA: chenodeoxycholic acid; HNF4α: hepatocyte nuclear factor 4 alpha; FGF19: fibroblast growth factor 19; RAS: RAS protein family; RAF: RAF proto-oncogene serine/threonine–protein kinase; MEK1/2: mitogen-activated protein kinase kinase 1/2 (MAPKK1/2); ELK-1: ETS domain-containing protein ELK-1; ETS: E26 transformation-specific transcription factor family. Created by authors.
Figure 2. Schematic model of Lp(a) metabolism: (1) hepatic synthesis of apo(a); (2) assembly of apo(a) with lipoprotein particles at the hepatocyte surface/space of Disse or in plasma; (3) lipid association on triglyceride-rich (VLDL-like) or cholesterol-rich (LDL-like) cores; (4) intravascular remodeling converting VLDL-like Lp(a) toward an LDL-like phenotype; (5) catabolism: partial dissociation of Lp(a) and apo(a) proteolysis by elastases and matrix metalloproteinases within the vascular wall, followed by hepatic clearance (ASGPR, LDLR), renal uptake, and vascular deposition; (6) FXR-mediated transcriptional repression of LPA via two complementary routes: (6a) the intestinal–hepatic axis (ileal FXR → FGF19 → FGFR4 → RAS–RAF–MEK1/2–ELK-1; modulation of the ETS site −1630/−1615) and (6b) a direct hepatic route (FXR/HNF4α competition at DR-1 −826/−814). Solid arrows indicate chronological biochemical steps, and dashed arrows indicate modulatory or inhibitory interactions. Abreviations: Lp(a): lipoprotein(a); apo(a): apolipoprotein(a); TG: triglyceride; VLDL: very-low-density lipoprotein; LDL: low-density lipoprotein; LDLR: low-density lipoprotein receptor; ASGPR: asialoglycoprotein receptor; FXR: farnesoid X receptor; CDCA: chenodeoxycholic acid; HNF4α: hepatocyte nuclear factor 4 alpha; FGF19: fibroblast growth factor 19; RAS: RAS protein family; RAF: RAF proto-oncogene serine/threonine–protein kinase; MEK1/2: mitogen-activated protein kinase kinase 1/2 (MAPKK1/2); ELK-1: ETS domain-containing protein ELK-1; ETS: E26 transformation-specific transcription factor family. Created by authors.
Ijms 26 11427 g002
Figure 3. Sequential model of Lp(a) pathophysiology in diabetes mellitus: (A) Endothelial and extracellular matrix anchoring: (A1) Apo(a) binds decorin/GAGs through lysine sites on apo(a). (A2) Subendothelial anchoring via Lp(a)–fibronectin/type I collagen interactions (heparin-facilitated), with possible involvement of MAC-1. (B) Endothelial activation and chemotaxis. Upregulation of VCAM-1, ICAM-1, and E-selectin, recruitment of monocytes, and differentiation into macrophages releasing IL-1β, IL-18, TNF-α, and IFN-γ. (C) Lp(a)-bound oxidized phospholipids (oxPL). Elevated Lp(a) and its oxPL act as DAMPs that trigger PRR, promoting innate responses and modulating the adaptive arm: (C1) Atherothrombotic effect. (C2) Antioxidant effect: PAF-AH on Lp(a) hydrolyzes oxPL (oxPL-hydrolysate). (D) Structural homology between Lp(a) and plasminogen. KIV/KV domains in apo(a) mimic plasminogen and compete for lysine-binding sites, impairing fibrinolysis (an antifibrinolytic action). (E) Non-enzymatic glycation of Lp(a). Glucose forms Schiff bases (hours) and Amadori products (days), evolving to AGEs (weeks); glycation of apoB-100 reduces LDLR binding, favoring gLp(a). (F) Additional atherothrombotic/antifibrinolytic potential. Lp(a)/apo(a) occupancy of lysine sites diminishes plasminogen binding and tPA activation, reducing fibrin affinity and promoting thrombo-resistance. Solid arrows indicate chronological biochemical steps, dashed arrows indicate modulatory or inhibitory interactions, and the upward arrow (↑) denotes a relative increase (e.g., in concentration, expression, or activity of the indicated component or pathway). Abbreviations: Lp(a): lipoprotein(a); apo(a): apolipoprotein(a); GAG: glycosaminoglycan; MAC-1: αMβ2 integrin; VCAM-1: vascular cell adhesion molecule-1; ICAM-1: intercellular adhesion molecule-1; E-selectin: endothelial-selectin; IL-1β. interleukin-1 beta; IL-18: interleukin-18; TNF-α: tumor necrosis factor-alpha; IFN-γ: interferon-gamma; oxPL: oxidized phospholipid; DAMPs: damage-associated molecular patterns; PRRs: pattern recognition receptors; PAF-AH: lipoprotein-associated phospholipase A2 (Lp-PLA2); KIV/KV: apo(a) kringle IV/kringle V; AGEs: advanced glycation end products; LDLR: low-density lipoprotein receptor; tPA: tissue plasminogen activator; gLp(a): glycated Lp(a). Created with https://BioRender.com/uenhksj (accessed on 31 October 2025).
Figure 3. Sequential model of Lp(a) pathophysiology in diabetes mellitus: (A) Endothelial and extracellular matrix anchoring: (A1) Apo(a) binds decorin/GAGs through lysine sites on apo(a). (A2) Subendothelial anchoring via Lp(a)–fibronectin/type I collagen interactions (heparin-facilitated), with possible involvement of MAC-1. (B) Endothelial activation and chemotaxis. Upregulation of VCAM-1, ICAM-1, and E-selectin, recruitment of monocytes, and differentiation into macrophages releasing IL-1β, IL-18, TNF-α, and IFN-γ. (C) Lp(a)-bound oxidized phospholipids (oxPL). Elevated Lp(a) and its oxPL act as DAMPs that trigger PRR, promoting innate responses and modulating the adaptive arm: (C1) Atherothrombotic effect. (C2) Antioxidant effect: PAF-AH on Lp(a) hydrolyzes oxPL (oxPL-hydrolysate). (D) Structural homology between Lp(a) and plasminogen. KIV/KV domains in apo(a) mimic plasminogen and compete for lysine-binding sites, impairing fibrinolysis (an antifibrinolytic action). (E) Non-enzymatic glycation of Lp(a). Glucose forms Schiff bases (hours) and Amadori products (days), evolving to AGEs (weeks); glycation of apoB-100 reduces LDLR binding, favoring gLp(a). (F) Additional atherothrombotic/antifibrinolytic potential. Lp(a)/apo(a) occupancy of lysine sites diminishes plasminogen binding and tPA activation, reducing fibrin affinity and promoting thrombo-resistance. Solid arrows indicate chronological biochemical steps, dashed arrows indicate modulatory or inhibitory interactions, and the upward arrow (↑) denotes a relative increase (e.g., in concentration, expression, or activity of the indicated component or pathway). Abbreviations: Lp(a): lipoprotein(a); apo(a): apolipoprotein(a); GAG: glycosaminoglycan; MAC-1: αMβ2 integrin; VCAM-1: vascular cell adhesion molecule-1; ICAM-1: intercellular adhesion molecule-1; E-selectin: endothelial-selectin; IL-1β. interleukin-1 beta; IL-18: interleukin-18; TNF-α: tumor necrosis factor-alpha; IFN-γ: interferon-gamma; oxPL: oxidized phospholipid; DAMPs: damage-associated molecular patterns; PRRs: pattern recognition receptors; PAF-AH: lipoprotein-associated phospholipase A2 (Lp-PLA2); KIV/KV: apo(a) kringle IV/kringle V; AGEs: advanced glycation end products; LDLR: low-density lipoprotein receptor; tPA: tissue plasminogen activator; gLp(a): glycated Lp(a). Created with https://BioRender.com/uenhksj (accessed on 31 October 2025).
Ijms 26 11427 g003
Figure 4. Non-enzymatic glycation of Lp(a) and proinflammatory signaling. Lp(a) undergoes non-enzymatic glycation (Maillard reaction) with sequential formation of Schiff bases → Amadori products → AGEs. Glycated Lp(a) becomes more electronegative and loses affinity for LDLR. AGE–RAGE engagement activates inflammatory pathways—NADPH oxidase/ROS, JAK2/STAT, PI3K/AKT, MAPK/ERK, and NF-κB— driving transcriptional activation of cytokines (IL-6, TNF-α), chemokines (MCP-1), growth factors (TGF-β), and adhesion molecules (VCAM-1, ICAM-1), thereby promoting microvascular and macrovascular complications. Solid arrows indicate the chronological biochemical steps. Abbreviations: Lp(a), lipoprotein(a); glLp(a), glycated Lp(a); apoB, apolipoprotein B; LDLR, low-density lipoprotein receptor; AGEs, advanced glycation end products; RAGE, receptor for AGEs; ROS, reactive oxygen species; NADPH oxidase, nicotinamide adenine dinucleotide phosphate oxidase; JAK2, Janus kinase 2; STAT, signal transducers and activators of transcription; PI3K, phosphoinositide 3-kinase; AKT, protein kinase B; MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; NF-κB, nuclear factor kappa B; IL-6, interleukin-6; MCP-1, monocyte chemoattractant protein-1; TNF-α, tumor necrosis factor-alpha; TGF-β, transforming growth factor-beta; VCAM-1, vascular cell adhesion molecule-1; ICAM-1, intercellular adhesion molecule-1. Created with https://BioRender.com/tqjwvgv (accessed on 31 October 2025).
Figure 4. Non-enzymatic glycation of Lp(a) and proinflammatory signaling. Lp(a) undergoes non-enzymatic glycation (Maillard reaction) with sequential formation of Schiff bases → Amadori products → AGEs. Glycated Lp(a) becomes more electronegative and loses affinity for LDLR. AGE–RAGE engagement activates inflammatory pathways—NADPH oxidase/ROS, JAK2/STAT, PI3K/AKT, MAPK/ERK, and NF-κB— driving transcriptional activation of cytokines (IL-6, TNF-α), chemokines (MCP-1), growth factors (TGF-β), and adhesion molecules (VCAM-1, ICAM-1), thereby promoting microvascular and macrovascular complications. Solid arrows indicate the chronological biochemical steps. Abbreviations: Lp(a), lipoprotein(a); glLp(a), glycated Lp(a); apoB, apolipoprotein B; LDLR, low-density lipoprotein receptor; AGEs, advanced glycation end products; RAGE, receptor for AGEs; ROS, reactive oxygen species; NADPH oxidase, nicotinamide adenine dinucleotide phosphate oxidase; JAK2, Janus kinase 2; STAT, signal transducers and activators of transcription; PI3K, phosphoinositide 3-kinase; AKT, protein kinase B; MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; NF-κB, nuclear factor kappa B; IL-6, interleukin-6; MCP-1, monocyte chemoattractant protein-1; TNF-α, tumor necrosis factor-alpha; TGF-β, transforming growth factor-beta; VCAM-1, vascular cell adhesion molecule-1; ICAM-1, intercellular adhesion molecule-1. Created with https://BioRender.com/tqjwvgv (accessed on 31 October 2025).
Ijms 26 11427 g004
Figure 5. Effect of conventional and emerging lipid-lowering therapies on Lp(a) levels.
Figure 5. Effect of conventional and emerging lipid-lowering therapies on Lp(a) levels.
Ijms 26 11427 g005
Table 1. Conventional versus emerging therapies targeting Lp(a): impact on lipid profile and cardiovascular risk.
Table 1. Conventional versus emerging therapies targeting Lp(a): impact on lipid profile and cardiovascular risk.
TherapiesClass/MechanismKey TrialPopulationLDL-C
Reduction %
Representative
Reduction % ɟ
Reported Range % ɟTimepointKey Source
(DOI)
Conventional
Alirocumab
(PCSK9-mAb)
Anti-PCSK9 mAbODYSSEY (Ph3)Hypercholesterolemia ± ASCVD46–61−25.6~20–3024–104 weeks[197]
Evolocumab
(PCSK9-mAb)
Anti-PCSK9 mAbFOURIER (Ph3)ASCVD~59−26.9IQR 6.2–46.748 weeks[198]
Inclisiran
(PCSK9-siRNA)
siRNA to PCSK9
(semiannual)
ORION-10/11 (Ph3)ASCVD or equivalent~50–52−25.6~18.6–25.6Day 510–540[199]
StatinsHMG-CoA reductase
inhibitors
Prospective studies and systematic reviewsDyslipidemia/ASCVD20–55.n.s. (slightly ↑)6 weeks–6 months [202,205]
EzetimibeNPC1L1 inhibitorsIMPROVE-ITDyslipidemia/ASCVD18–25 (mono); ~24 add-onn.s.~0–7Weeks–months[203]
Emerging
Olpasiran (siRNA-LPA)siRNA to LPAOCEAN(a)-DOSE (Ph2)ASCVD + high Lp(a)~0–5−97.4~70–100Week 36[200]
Pelacarsen (ASO-LPA)Antisense oligonucleotide to LPANEJM 2020 (Ph2)ASCVD + high Lp(a)~7–26
(2–19 LDL-C-corrected)
−80~35–80 (dose–dependent)Weeks 24–26[206,207]
Muvalaplin (LY3819469)First-in-class oral small-molecule; Lp(a) assembly inhibitor (apo[a]-apoB100 blocker)JAMA 2023 (Ph2)ASCVD + high Lp(a)n.s.−75~65–85 (dose–dependent)Weeks 4–12[208]
Lepodisiran (siRNA-LPA)Long-acting siRNAJAMA (Ph1)High Lp(a)≤5−94~88–9648–50 weeks (to day 360)[209]
SLN360 (siRNA-LPA)SiRNA to LPAAPOLLO (Ph1) High Lp(a)~20–25 (higher doses)−98Up to 98Day 150–210[210]
ɟ Reported values of Lp(a). Abbreviations: ASCVD: atherosclerotic cardiovascular disease; LDL-C: low-density lipoprotein cholesterol; Lp(a): lipoprotein(a); mAb: monoclonal antibody; NPC1L1: Niemann–Pick C1-like 1; n.s.: not significant; PCSK9: proprotein convertase subtilisin/kexin type 9; siRNA: small interfering RNA. ↑: slight increase.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Polo-Barranco, A.; Rebolledo-Maldonado, C.; Esquiaqui-Rangel, V.; Nuñez-Mejia, A.; Rambal-Torres, J.; Barraza-Ahumada, V.; Vargas-Cantillo, S.; Benavides-De la Cruz, W.; Liñán-Martínez, V.; Rada-Obeso, V.; et al. Diabetes Mellitus and Lipoprotein(a): A Determinant Interaction in Micro- and Macrovascular Damage. Int. J. Mol. Sci. 2025, 26, 11427. https://doi.org/10.3390/ijms262311427

AMA Style

Polo-Barranco A, Rebolledo-Maldonado C, Esquiaqui-Rangel V, Nuñez-Mejia A, Rambal-Torres J, Barraza-Ahumada V, Vargas-Cantillo S, Benavides-De la Cruz W, Liñán-Martínez V, Rada-Obeso V, et al. Diabetes Mellitus and Lipoprotein(a): A Determinant Interaction in Micro- and Macrovascular Damage. International Journal of Molecular Sciences. 2025; 26(23):11427. https://doi.org/10.3390/ijms262311427

Chicago/Turabian Style

Polo-Barranco, Alberto, Carlos Rebolledo-Maldonado, Valeria Esquiaqui-Rangel, Andrea Nuñez-Mejia, Jeisón Rambal-Torres, Valentina Barraza-Ahumada, Shivleivy Vargas-Cantillo, Wylman Benavides-De la Cruz, Valentina Liñán-Martínez, Valentina Rada-Obeso, and et al. 2025. "Diabetes Mellitus and Lipoprotein(a): A Determinant Interaction in Micro- and Macrovascular Damage" International Journal of Molecular Sciences 26, no. 23: 11427. https://doi.org/10.3390/ijms262311427

APA Style

Polo-Barranco, A., Rebolledo-Maldonado, C., Esquiaqui-Rangel, V., Nuñez-Mejia, A., Rambal-Torres, J., Barraza-Ahumada, V., Vargas-Cantillo, S., Benavides-De la Cruz, W., Liñán-Martínez, V., Rada-Obeso, V., Isaac-Escorcia, M., Martínez-Fontalvo, N., Correa-Guerrero, J., Rodelo-Barrios, D., & Osorio-Rodríguez, E. (2025). Diabetes Mellitus and Lipoprotein(a): A Determinant Interaction in Micro- and Macrovascular Damage. International Journal of Molecular Sciences, 26(23), 11427. https://doi.org/10.3390/ijms262311427

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop