Mucosal Viruses in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Missing Piece of the Puzzle?
Abstract
1. Introduction
2. Mucosal Immune System
3. Common Mucosal Viruses Associated with ME/CFS
3.1. Herpesviruses
3.2. Parvoviruses
3.3. Coronaviruses
3.4. Picornaviruses
3.5. Adenoviruses
3.6. Retroviruses
3.7. Gastrointestinal Tract Viruses
3.8. Reproductive Tract Viruses
4. Mucosal Viral Persistence in ME/CFS: A Hypothesis
5. Methodological Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vardaman, M.; Gilmour, S. Letter: Time to correct the record on the global burden of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J. Transl. Med. 2025, 23, 331. [Google Scholar] [CrossRef]
- Jason, L.A.; Ohanian, D.; Brown, A.; Sunnquist, M.; McManimen, S.; Klebek, L.; Fox, P.; Sorenson, M. Differentiating Multiple Sclerosis from Myalgic Encephalomyelitis and Chronic Fatigue Syndrome. Insights Biomed. 2017, 2, 11. [Google Scholar] [CrossRef]
- Nacul, L.C.; Lacerda, E.M.; Campion, P.; Pheby, D.; Drachler, M.d.L.; Leite, J.C.; Poland, F.; Howe, A.; Fayyaz, S.; Molokhia, M. The functional status and well being of people with myalgic encephalomyelitis/chronic fatigue syndrome and their carers. BMC Public Health 2011, 11, 402. [Google Scholar] [CrossRef] [PubMed]
- Pendergrast, T.; Brown, A.; Sunnquist, M.; Jantke, R.; Newton, J.L.; Strand, E.B.; Jason, L.A. Housebound versus nonhousebound patients with myalgic encephalomyelitis and chronic fatigue syndrome. Chronic Illn. 2016, 12, 292–307. [Google Scholar] [CrossRef] [PubMed]
- Unger, E.R.; Lin, J.-M.S.; Tian, H.; Natelson, B.H.; Lange, G.; Vu, D.; Blate, M.; Klimas, N.G.; Balbin, E.G.; Bateman, L.; et al. Multi-Site Clinical Assessment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (MCAM): Design and Implementation of a Prospective/Retrospective Rolling Cohort Study. Am. J. Epidemiol. 2017, 185, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Vink, M.; Vink-Niese, F. Work Rehabilitation and Medical Retirement for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. A Review and Appraisal of Diagnostic Strategies. Diagnostics 2019, 9, 124. [Google Scholar] [CrossRef]
- Angelsen, A.; Schei, T. EMEA Survey of ME/CFS Patients in Europe: Same Disease, Different Approaches and Experiences. European ME Alliance (EMEA), 2024. Available online: https://www.europeanmealliance.org/documents/emeaeusurvey/EMEAMEsurveyreport2024.pdf (accessed on 28 August 2025).
- Arron, H.E.; Marsh, B.D.; Kell, D.B.; Khan, M.A.; Jaeger, B.R.; Pretorius, E. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: The biology of a neglected disease. Front. Immunol. 2024, 15, 1386607. [Google Scholar] [CrossRef]
- NIH Study Offers New Clues into the Causes of Post-Infectious ME/CFS|National Institutes of Health (NIH). Available online: https://www.nih.gov/news-events/news-releases/depth-study-finds-brain-immune-metabolic-abnormalities-linked-debilitating-chronic-disease (accessed on 28 August 2025).
- Sotzny, F.; Blanco, J.; Capelli, E.; Castro-Marrero, J.; Steiner, S.; Murovska, M.; Scheibenbogen, C. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome—Evidence for an autoimmune disease. Autoimmun. Rev. 2018, 17, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Van Campenhout, J.; Buntinx, Y.; Xiong, H.-Y.; Wyns, A.; Polli, A.; Nijs, J.; Aerts, J.L.; Laeremans, T.; Hendrix, J. Unravelling the Connection Between Energy Metabolism and Immune Senescence/Exhaustion in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Biomolecules 2025, 15, 357. [Google Scholar] [CrossRef]
- Obraitis, D.; Li, D. Blood virome research in myalgic encephalomyelitis/chronic fatigue syndrome: Challenges and opportunities. Curr. Opin. Virol. 2024, 68–69, 101437. [Google Scholar] [CrossRef]
- Rasa, S.; Nora-Krukle, Z.; Henning, N.; Eliassen, E.; Shikova, E.; Harrer, T.; Scheibenbogen, C.; Murovska, M.; Prusty, B.K.; European Network on ME/CFS (EUROMENE). Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J. Transl. Med. 2018, 16, 268. [Google Scholar] [CrossRef]
- Buchwald, D.; Ashley, R.L.; Pearlman, T.; Kith, P.; Komaroff, A.L. Viral serologies in patients with chronic fatigue and chronic fatigue syndrome. J. Med. Virol. 1996, 50, 25–30. [Google Scholar] [CrossRef]
- Galbraith, D.N.; Nairn, C.; Clements, G.B. Evidence for enteroviral persistence in humans. J. Gen. Virol. 1997, 78, 307–312. [Google Scholar] [CrossRef]
- Reeves, W.C.; Stamey, F.R.; Black, J.B.; Mawle, A.C.; Stewart, J.A.; Pellett, P.E. Human herpesviruses 6 and 7 in chronic fatigue syndrome: A case-control study. Clin. Infect. Dis. 2000, 31, 48–52. [Google Scholar] [CrossRef]
- Ablashi, D.V.; Eastman, H.B.; Owen, C.B.; Roman, M.M.; Friedman, J.; Zabriskie, J.B.; Peterson, D.L.; Pearson, G.R.; Whitman, J.E. Frequent HHV-6 reactivation in multiple sclerosis (MS) and chronic fatigue syndrome (CFS) patients. J. Clin. Virol. 2000, 16, 179–191. [Google Scholar] [CrossRef]
- Chapenko, S.; Krumina, A.; Kozireva, S.; Nora, Z.; Sultanova, A.; Viksna, L.; Murovska, M. Activation of human herpesviruses 6 and 7 in patients with chronic fatigue syndrome. J. Clin. Virol. 2006, 37, S47–S51. [Google Scholar] [CrossRef]
- Chapenko, S.; Krumina, A.; Logina, I.; Rasa, S.; Chistjakovs, M.; Sultanova, A.; Viksna, L.; Murovska, M. Association of Active Human Herpesvirus-6, -7 and Parvovirus B19 Infection with Clinical Outcomes in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Adv. Virol. 2012, 2012, 205085. [Google Scholar] [CrossRef] [PubMed]
- Burbelo, P.D.; Bayat, A.; Wagner, J.; Nutman, T.B.; Baraniuk, J.N.; Iadarola, M.J. No serological evidence for a role of HHV-6 infection in chronic fatigue syndrome. Am. J. Transl. Res. 2012, 4, 443–451. [Google Scholar] [PubMed]
- Oakes, B.; Hoagland-Henefield, M.; Komaroff, A.L.; Erickson, J.L.; Huber, B.T. Human Endogenous Retrovirus-K18 Superantigen Expression and Human Herpesvirus-6 and Human Herpesvirus-7 Viral Loads in Chronic Fatigue Patients. Clin. Infect. Dis. 2013, 56, 1394–1400. [Google Scholar] [CrossRef]
- Miller, R.R.; Uyaguari-Diaz, M.; McCabe, M.N.; Montoya, V.; Gardy, J.L.; Parker, S.; Steiner, T.; Hsiao, W.; Nesbitt, M.J.; Tang, P.; et al. Metagenomic Investigation of Plasma in Individuals with ME/CFS Highlights the Importance of Technical Controls to Elucidate Contamination and Batch Effects. PLoS ONE 2016, 11, e0165691. [Google Scholar] [CrossRef] [PubMed]
- Bouquet, J.; Gardy, J.L.; Brown, S.; Pfeil, J.; Miller, R.R.; Morshed, M.; Avina-Zubieta, A.; Shojania, K.; McCabe, M.; Parker, S.; et al. RNA-Seq Analysis of Gene Expression, Viral Pathogen, and B-Cell/T-Cell Receptor Signatures in Complex Chronic Disease. Clin. Infect. Dis. 2017, 64, 476–481. [Google Scholar] [CrossRef]
- Blomberg, J.; Rizwan, M.; Böhlin-Wiener, A.; Elfaitouri, A.; Julin, P.; Zachrisson, O.; Rosén, A.; Gottfries, C.-G. Antibodies to Human Herpesviruses in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. Front. Immunol. 2019, 10, 1946. [Google Scholar] [CrossRef] [PubMed]
- Bouquet, J.; Li, T.; Gardy, J.L.; Kang, X.; Stevens, S.; Stevens, J.; VanNess, M.; Snell, C.; Potts, J.; Miller, R.R.; et al. Whole blood human transcriptome and virome analysis of ME/CFS patients experiencing post-exertional malaise following cardiopulmonary exercise testing. PLoS ONE 2019, 14, e0212193. [Google Scholar] [CrossRef]
- Cliff, J.M.; King, E.C.; Lee, J.-S.; Sepúlveda, N.; Wolf, A.-S.; Kingdon, C.; Bowman, E.; Dockrell, H.M.; Nacul, L.; Lacerda, E.; et al. Cellular Immune Function in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Front. Immunol. 2019, 10, 796. [Google Scholar] [CrossRef] [PubMed]
- Shikova, E.; Reshkova, V.; Kumanova, A.; Raleva, S.; Alexandrova, D.; Capo, N.; Murovska, M. Cytomegalovirus, Epstein-Barr virus, and human herpesvirus-6 infections in patients with myalgic encephalomyelitis/chronic fatigue syndrome. J. Med. Virol. 2020, 92, 3682–3688. [Google Scholar] [CrossRef]
- Domingues, T.D.; Grabowska, A.D.; Lee, J.-S.; Ameijeiras-Alonso, J.; Westermeier, F.; Scheibenbogen, C.; Cliff, J.M.; Nacul, L.; Lacerda, E.M.; Mouriño, H.; et al. Herpesviruses Serology Distinguishes Different Subgroups of Patients From the United Kingdom Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Biobank. Front. Med. 2021, 8, 686736. [Google Scholar] [CrossRef]
- Orlova, S.; Rudjko, G.; Orlova, O.; Dakukina, T. Detection of herpes viruses in patients with myalgic encephalomyelitis /chronic fatigue syndrome in Belarus. Pol. J. Appl. Sci. 2021, 6, 50–53. [Google Scholar] [CrossRef]
- Gravelsina, S.; Vilmane, A.; Svirskis, S.; Rasa-Dzelzkaleja, S.; Nora-Krukle, Z.; Vecvagare, K.; Krumina, A.; Leineman, I.; Shoenfeld, Y.; Murovska, M. Biomarkers in the diagnostic algorithm of myalgic encephalomyelitis/chronic fatigue syndrome. Front. Immunol. 2022, 13, 928945. [Google Scholar] [CrossRef]
- Briese, T.; Tokarz, R.; Bateman, L.; Che, X.; Guo, C.; Jain, K.; Kapoor, V.; Levine, S.; Hornig, M.; Oleynik, A.; et al. A multicenter virome analysis of blood, feces, and saliva in myalgic encephalomyelitis/chronic fatigue syndrome. J. Med. Virol. 2023, 95, e28993. [Google Scholar] [CrossRef]
- Domingues, T.D.; Malato, J.; Grabowska, A.D.; Lee, J.-S.; Ameijeiras-Alonso, J.; Biecek, P.; Graça, L.; Mouriño, H.; Scheibenbogen, C.; Westermeier, F.; et al. Association analysis between symptomology and herpesvirus IgG antibody concentrations in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and multiple sclerosis. Heliyon 2023, 9, e18250. [Google Scholar] [CrossRef] [PubMed]
- Rasa-Dzelzkaleja, S.; Krumina, A.; Capenko, S.; Nora-Krukle, Z.; Gravelsina, S.; Vilmane, A.; Ievina, L.; Shoenfeld, Y.; Murovska, M.; The VirA Project. The persistent viral infections in the development and severity of myalgic encephalomyelitis/chronic fatigue syndrome. J. Transl. Med. 2023, 21, 33. [Google Scholar] [CrossRef] [PubMed]
- Apostolou, E.; Rizwan, M.; Moustardas, P.; Sjögren, P.; Bertilson, B.C.; Bragée, B.; Polo, O.; Rosén, A. Saliva antibody-fingerprint of reactivated latent viruses after mild/asymptomatic COVID-19 is unique in patients with myalgic-encephalomyelitis/chronic fatigue syndrome. Front. Immunol. 2022, 13, 949787. [Google Scholar] [CrossRef]
- Hannestad, U.; Apostolou, E.; Sjögren, P.; Bragée, B.; Polo, O.; Bertilson, B.C.; Rosén, A. Post-COVID sequelae effect in chronic fatigue syndrome: SARS-CoV-2 triggers latent adenovirus in the oral mucosa. Front. Med. 2023, 10, 1208181. [Google Scholar] [CrossRef] [PubMed]
- Zubchenko, S.; Kril, I.; Nadizhko, O.; Matsyura, O.; Chopyak, V. Herpesvirus infections and post-COVID-19 manifestations: A pilot observational study. Rheumatol. Int. 2022, 42, 1523–1530. [Google Scholar] [CrossRef]
- Mestecky, J.; Moldoveanu, Z.; Russell, M.W. Immunologic Uniqueness of the Genital Tract: Challenge for Vaccine Development. Am. J. Reprod. Immunol. 2005, 53, 208–214. [Google Scholar] [CrossRef]
- Mestecky, J.; Fultz, P.N. Mucosal Immune System of the Human Genital Tract. J. Infect. Dis. 1999, 179, S470–S474. [Google Scholar] [CrossRef]
- Monin, L.; Whettlock, E.M.; Male, V. Immune responses in the human female reproductive tract. Immunology 2020, 160, 106–115. [Google Scholar] [CrossRef]
- Chapter 2—Components of the Immune System. In Primer to the Immune Response, 2nd ed.; Mak, T.W., Saunders, M.E., Jett, B.D., Eds.; Academic Cell: Boston, MA, USA, 2014; pp. 21–54. [Google Scholar] [CrossRef]
- Reinholdt, J.; Husby, S. IgA and Mucosal Homeostasis. In Madame Curie Bioscience Database; Landes Bioscience: Austin, TX, USA, 2013. [Google Scholar]
- Cerutti, A.; Cols, M.; Gentile, M.; Cassis, L.; Barra, C.M.; He, B.; Puga, I.; Chen, K. Regulation of mucosal IgA responses: Lessons from primary immunodeficiencies. Ann. N. Y. Acad. Sci. 2011, 1238, 132–144. [Google Scholar] [CrossRef]
- Barbara, G.; Barbaro, M.R.; Fuschi, D.; Palombo, M.; Falangone, F.; Cremon, C.; Marasco, G.; Stanghellini, V. Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front. Nutr. 2021, 8, 718356. [Google Scholar] [CrossRef] [PubMed]
- Ouellette, A.J. Paneth cells and innate mucosal immunity. Curr. Opin. Gastroenterol. 2010, 26, 547. [Google Scholar] [CrossRef]
- Panda, S.K.; Colonna, M. Innate Lymphoid Cells in Mucosal Immunity. Front. Immunol. 2019, 10, 861. [Google Scholar] [CrossRef]
- Harrison, O.J.; Srinivasan, N.; Pott, J.; Schiering, C.; Krausgruber, T.; Ilott, N.E.; Maloy, K.J. Epithelial-derived IL-18 regulates Th17 cell differentiation and Foxp3+ Treg cell function in the intestine. Mucosal Immunol. 2015, 8, 1226–1236. [Google Scholar] [CrossRef] [PubMed]
- Di Vincenzo, F.; Del Gaudio, A.; Petito, V.; Lopetuso, L.R.; Scaldaferri, F. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review. Intern. Emerg. Med. 2024, 19, 275–293. [Google Scholar] [CrossRef]
- König, R.S.; Albrich, W.C.; Kahlert, C.R.; Bahr, L.S.; Löber, U.; Vernazza, P.; Scheibenbogen, C.; Forslund, S.K. The Gut Microbiome in Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS). Front. Immunol. 2022, 12, 628741. [Google Scholar] [CrossRef]
- Cohen, J.I. Herpesvirus latency. J. Clin. Investig. 2020, 130, 3361–3369. [Google Scholar] [CrossRef] [PubMed]
- Maidji, E.; Somsouk, M.; Rivera, J.M.; Hunt, P.W.; Stoddart, C.A. Replication of CMV in the gut of HIV-infected individuals and epithelial barrier dysfunction. PLoS Pathog. 2017, 13, e1006202. [Google Scholar] [CrossRef]
- Garrec, C.; Arrindell, J.; Andrieu, J.; Desnues, B.; Mege, J.-L.; Omar Osman, I.; Devaux, C. Preferential apical infection of Caco-2 intestinal cell monolayers by SARS-CoV-2 is associated with damage to cellular barrier integrity: Implications for the pathophysiology of COVID-19. PLoS ONE 2025, 20, e0313068. [Google Scholar] [CrossRef]
- Moretti, S.; Schietroma, I.; Sberna, G.; Maggiorella, M.T.; Sernicola, L.; Farcomeni, S.; Giovanetti, M.; Ciccozzi, M.; Borsetti, A. HIV-1–Host Interaction in Gut-Associated Lymphoid Tissue (GALT): Effects on Local Environment and Comorbidities. Int. J. Mol. Sci. 2023, 24, 12193. [Google Scholar] [CrossRef] [PubMed]
- Hanson, M.R. The viral origin of myalgic encephalomyelitis/chronic fatigue syndrome. PLOS Pathog. 2023, 19, e1011523. [Google Scholar] [CrossRef]
- Magnus, P.; Gunnes, N.; Tveito, K.; Bakken, I.J.; Ghaderi, S.; Stoltenberg, C.; Hornig, M.; Lipkin, W.I.; Trogstad, L.; Håberg, S.E. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is associated with pandemic influenza infection, but not with an adjuvanted pandemic influenza vaccine. Vaccine 2015, 33, 6173–6177. [Google Scholar] [CrossRef]
- Underhill, R.; Baillod, R. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Organic Disease or Psychosomatic Illness? A Re-Examination of the Royal Free Epidemic of 1955. Medicina 2020, 57, 12. [Google Scholar] [CrossRef]
- Underhill, R.A. Myalgic encephalomyelitis, chronic fatigue syndrome: An infectious disease. Med. Hypotheses 2015, 85, 765–773. [Google Scholar] [CrossRef]
- Galbraith, D.N.; Nairn, C.; Clements, G.B. Phylogenetic analysis of short enteroviral sequences from patients with chronic fatigue syndrome. J. Gen. Virol. 1995, 76, 1701–1707. [Google Scholar] [CrossRef]
- Lee, J.-S.; Lacerda, E.M.; Nacul, L.; Kingdon, C.C.; Norris, J.; O’Boyle, S.; Roberts, C.H.; Palla, L.; Riley, E.M.; Cliff, J.M. Salivary DNA Loads for Human Herpesviruses 6 and 7 Are Correlated With Disease Phenotype in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front. Med. 2021, 8, 656692. [Google Scholar] [CrossRef]
- Hannestad, U.; Allard, A.; Nilsson, K.; Rosén, A. Prevalence of EBV, HHV6, HCMV, HAdV, SARS-CoV-2, and Autoantibodies to Type I Interferon in Sputum from Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. Viruses 2025, 17, 422. [Google Scholar] [CrossRef]
- Chia, J.K.S.; Chia, A.Y. Chronic fatigue syndrome is associated with chronic enterovirus infection of the stomach. J. Clin. Pathol. 2008, 61, 43–48. [Google Scholar] [CrossRef]
- Frémont, M.; Metzger, K.; Rady, H.; Hulstaert, J.; Meirleir, K.D. Detection of Herpesviruses and Parvovirus B19 in Gastric and Intestinal Mucosa of Chronic Fatigue Syndrome Patients. In Vivo 2009, 23, 209–213. [Google Scholar]
- Chia, J.; Chia, A.; Voeller, M.; Lee, T.; Chang, R. Acute enterovirus infection followed by myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and viral persistence. J. Clin. Pathol. 2010, 63, 165–168. [Google Scholar] [CrossRef]
- De Meirleir, K.L.; Khaiboullina, S.F.; Frémont, M.; Hulstaert, J.; Rizvanov, A.A.; Palotás, A.; Lombardi, V.C. Plasmacytoid Dendritic Cells in the Duodenum of Individuals Diagnosed with Myalgic Encephalomyelitis Are Uniquely Immunoreactive to Antibodies to Human Endogenous Retroviral Proteins. In Vivo 2013, 27, 177–187. [Google Scholar]
- Hsieh, S.-Y.; Savva, G.M.; Telatin, A.; Tiwari, S.K.; Tariq, M.A.; Newberry, F.; Seton, K.A.; Booth, C.; Bansal, A.S.; Wileman, T.; et al. Investigating the Human Intestinal DNA Virome and Predicting Disease-Associated Virus–Host Interactions in Severe Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Int. J. Mol. Sci. 2023, 24, 17267. [Google Scholar] [CrossRef]
- Damania, B.; Kenney, S.C.; Raab-Traub, N. Epstein-Barr virus: Biology and clinical disease. Cell 2022, 185, 3652–3670. [Google Scholar] [CrossRef]
- Skuhala, T.; Židovec-Lepej, S.; Trkulja, V.; Radmanić, L.; Đaković Rode, O.; Špiljak, B.; Šimunović, L.; Rimac, M.; Dragobratović, A. Epstein—Barr Virus Salivary Shedding in Patients with Acute Infectious Diseases: A Pilot Study. Acta Stomatol. Croat. 2024, 58, 76–84. [Google Scholar] [CrossRef]
- Pedersen, M.; Asprusten, T.T.; Godang, K.; Leegaard, T.M.; Osnes, L.T.; Skovlund, E.; Tjade, T.; Øie, M.G.; Wyller, V.B.B. Predictors of chronic fatigue in adolescents six months after acute Epstein-Barr virus infection: A prospective cohort study. Brain. Behav. Immun. 2019, 75, 94–100. [Google Scholar] [CrossRef]
- Schreiner, P.; Harrer, T.; Scheibenbogen, C.; Lamer, S.; Schlosser, A.; Naviaux, R.K.; Prusty, B.K. Human Herpesvirus-6 Reactivation, Mitochondrial Fragmentation, and the Coordination of Antiviral and Metabolic Phenotypes in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. ImmunoHorizons 2020, 4, 201–215. [Google Scholar] [CrossRef]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146, Correction in Nat. Rev. Microbiol. 2023, 21, 408. https://doi.org/10.1038/s41579-023-00896-0. [Google Scholar] [CrossRef]
- AlMuhaissen, S.; Abu Libdeh, A.; ElKhatib, Y.; Alshayeb, R.; Jaara, A.; Bardaweel, S.K. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and COVID-19: Is there a connection? Curr. Med. Res. Opin. 2023, 39, 1119–1126. [Google Scholar] [CrossRef]
- Annesley, S.J.; Missailidis, D.; Heng, B.; Josev, E.K.; Armstrong, C.W. Unravelling shared mechanisms: Insights from recent ME/CFS research to illuminate long COVID pathologies. Trends Mol. Med. 2024, 30, 443–458. [Google Scholar] [CrossRef]
- Ballering, A.V.; van Zon, S.K.R.; Olde Hartman, T.C.; Rosmalen, J.G.M.; Lifelines Corona Research Initiative. Persistence of somatic symptoms after COVID-19 in the Netherlands: An observational cohort study. Lancet 2022, 400, 452–461. [Google Scholar] [CrossRef]
- Bonilla, H.; Quach, T.C.; Tiwari, A.; Bonilla, A.E.; Miglis, M.; Yang, P.C.; Eggert, L.E.; Sharifi, H.; Horomanski, A.; Subramanian, A.; et al. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome is common in post-acute sequelae of SARS-CoV-2 infection (PASC): Results from a post-COVID-19 multidisciplinary clinic. Front. Neurol. 2023, 14, 1090747. [Google Scholar] [CrossRef]
- Dehlia, A.; Guthridge, M.A. The persistence of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) after SARS-CoV-2 infection: A systematic review and meta-analysis. J. Infect. 2024, 89, 106297. [Google Scholar] [CrossRef]
- Jason, L.A.; Dorri, J.A. ME/CFS and Post-Exertional Malaise among Patients with Long COVID. Neurol. Int. 2023, 15, 1–11. [Google Scholar] [CrossRef]
- Morita, S.; Tokumasu, K.; Otsuka, Y.; Honda, H.; Nakano, Y.; Sunada, N.; Sakurada, Y.; Matsuda, Y.; Soejima, Y.; Ueda, K.; et al. Phase-dependent trends in the prevalence of myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) related to long COVID: A criteria-based retrospective study in Japan. PLoS ONE 2024, 19, e0315385. [Google Scholar] [CrossRef]
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. eClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef]
- Kedor, C.; Freitag, H.; Meyer-Arndt, L.; Wittke, K.; Hanitsch, L.G.; Zoller, T.; Steinbeis, F.; Haffke, M.; Rudolf, G.; Heidecker, B.; et al. A prospective observational study of post-COVID-19 chronic fatigue syndrome following the first pandemic wave in Germany and biomarkers associated with symptom severity. Nat. Commun. 2022, 13, 5104, Correction in Nat. Commun. 2022, 13, 6009. https://doi.org/10.1038/s41467-022-33784-x. [Google Scholar] [CrossRef]
- O’Neal, A.J.; Hanson, M.R. The Enterovirus Theory of Disease Etiology in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Critical Review. Front. Med. 2021, 8, 688486. [Google Scholar] [CrossRef]
- Blattner, R.J. Benign myalgic encephalomyelitis (Akureyri disease, Iceland disease). J. Pediatr. 1956, 49, 504–506. [Google Scholar] [CrossRef]
- Chapman, N.M. Prior immune exposure can protect or can enhance pathology in the enteroviruses: What predicts the outcome? Virulence 2016, 8, 643–645. [Google Scholar] [CrossRef]
- Parish, J.G. Early outbreaks of “epidemic neuromyasthenia”. Postgrad. Med. J. 1978, 54, 711–717. [Google Scholar] [CrossRef]
- Boldogh, I.; Albrecht, T.; Porter, D.D. Persistent Viral Infections. In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996. [Google Scholar]
- Ahn, K.; Kim, H.-S. Structural and Quantitative Expression Analyses of HERV Gene Family in Human Tissues. Mol. Cells 2009, 28, 99–104. [Google Scholar] [CrossRef]
- Kim, T.-H.; Jeon, Y.-J.; Yi, J.-M.; Kim, D.-S.; Huh, J.-W.; Hur, C.-G.; Kim, H.-S. The Distribution and Expression of HERV Families in the Human Genome. Mol. Cells 2004, 18, 87–93. [Google Scholar] [CrossRef]
- Bhetariya, P.; Kriesel, J.; Fischer, K. Analysis of Human Endogenous Retrovirus Expression in Multiple Sclerosis Plaques. J. Emerg. Dis. Virol. 2017, 3. [Google Scholar] [CrossRef]
- Garcia-Montojo, M.; Dominguez-Mozo, M.; Arias-Leal, A.; Garcia-Martinez, Á.; Heras, V.D.L.; Casanova, I.; Faucard, R.; Gehin, N.; Madeira, A.; Arroyo, R.; et al. The DNA Copy Number of Human Endogenous Retrovirus-W (MSRV-Type) Is Increased in Multiple Sclerosis Patients and Is Influenced by Gender and Disease Severity. PLoS ONE 2013, 8, e53623. [Google Scholar] [CrossRef]
- Pérez-Pérez, S.; Domínguez-Mozo, M.I.; García-Martínez, M.Á.; García-Frontini, M.C.; Villarrubia, N.; Costa-Frossard, L.; Villar, L.M.; Arroyo, R.; Álvarez-Lafuente, R. Anti-Human Herpesvirus 6 A/B Antibodies Titers Correlate With Multiple Sclerosis-Associated Retrovirus Envelope Expression. Front. Immunol. 2021, 12, 798003. [Google Scholar] [CrossRef]
- Pérez-Pérez, S.; Domínguez-Mozo, M.I.; García-Martínez, M.Á.; Ballester-González, R.; Nieto-Gañán, I.; Arroyo, R.; Alvarez-Lafuente, R. Epstein-Barr Virus Load Correlates with Multiple Sclerosis-Associated Retrovirus Envelope Expression. Biomedicines 2022, 10, 387. [Google Scholar] [CrossRef]
- Schmitt, K.; Richter, C.; Backes, C.; Meese, E.; Ruprecht, K.; Mayer, J. Comprehensive analysis of human endogenous retrovirus group HERV-W locus transcription in multiple sclerosis brain lesions by high-throughput amplicon sequencing. J. Virol. 2013, 87, 13837–13852. [Google Scholar] [CrossRef]
- Agoni, L.; Guha, C.; Lenz, J. Detection of Human Endogenous Retrovirus K (HERV-K) Transcripts in Human Prostate Cancer Cell Lines. Front. Oncol. 2013, 3, 54271. [Google Scholar] [CrossRef]
- Agoni, L. Alternative and aberrant splicing of human endogenous retroviruses in cancer. What about head and neck? —A mini review. Front. Oncol. 2022, 12, 1019085. [Google Scholar] [CrossRef]
- Hahn, S.; Ugurel, S.; Hanschmann, K.-M.; Strobel, H.; Tondera, C.; Schadendorf, D.; Löwer, J.; Löwer, R. Serological response to human endogenous retrovirus K in melanoma patients correlates with survival probability. AIDS Res. Hum. Retroviruses 2008, 24, 717–723. [Google Scholar] [CrossRef]
- Schmitt, K.; Reichrath, J.; Roesch, A.; Meese, E.; Mayer, J. Transcriptional Profiling of Human Endogenous Retrovirus Group HERV-K(HML-2) Loci in Melanoma. Genome Biol. Evol. 2013, 5, 307–328. [Google Scholar] [CrossRef]
- Tovo, P.-A.; Ribaldone, D.G.; Galliano, I.; Caviglia, G.P.; Dini, M.; Veglio, V.; Calvi, C.; Montanari, P.; Pitoni, D.; Frara, S.; et al. Enhanced Transcription of Human Endogenous Retroviruses and TRIM28 Downregulation in Patients with Inflammatory Bowel Disease. Viruses 2024, 16, 1570. [Google Scholar] [CrossRef]
- Bao, C.; Gao, Q.; Xiang, H.; Shen, Y.; Chen, Q.; Gao, Q.; Cao, Y.; Zhang, M.; He, W.; Mao, L. Human endogenous retroviruses and exogenous viral infections. Front. Cell. Infect. Microbiol. 2024, 14, 1439292. [Google Scholar] [CrossRef]
- Chen, J.; Foroozesh, M.; Qin, Z. Transactivation of human endogenous retroviruses by tumor viruses and their functions in virus-associated malignancies. Oncogenesis 2019, 8, 6. [Google Scholar] [CrossRef]
- Charvet, B.; Brunel, J.; Pierquin, J.; Iampietro, M.; Decimo, D.; Queruel, N.; Lucas, A.; Encabo-Berzosa, M.d.M.; Arenaz, I.; Marmolejo, T.P.; et al. SARS-CoV-2 awakens ancient retroviral genes and the expression of proinflammatory HERV-W envelope protein in COVID-19 patients. iScience 2023, 26, 106604. [Google Scholar] [CrossRef]
- Giménez-Orenga, K.; Pierquin, J.; Brunel, J.; Charvet, B.; Martín-Martínez, E.; Perron, H.; Oltra, E. HERV-W ENV antigenemia and correlation of increased anti-SARS-CoV-2 immunoglobulin levels with post-COVID-19 symptoms. Front. Immunol. 2022, 13, 1020064. [Google Scholar] [CrossRef]
- Kitsou, K.; Kotanidou, A.; Paraskevis, D.; Karamitros, T.; Katzourakis, A.; Tedder, R.; Hurst, T.; Sapounas, S.; Kotsinas, A.; Gorgoulis, V.; et al. Upregulation of Human Endogenous Retroviruses in Bronchoalveolar Lavage Fluid of COVID-19 Patients. Microbiol. Spectr. 2021, 9, e0126021. [Google Scholar] [CrossRef] [PubMed]
- Marston, J.L.; Greenig, M.; Singh, M.; Bendall, M.L.; Duarte, R.R.R.; Feschotte, C.; Iñiguez, L.P.; Nixon, D.F. SARS-CoV-2 infection mediates differential expression of human endogenous retroviruses and long interspersed nuclear elements. JCI Insight 2021, 6, e147170. [Google Scholar] [CrossRef] [PubMed]
- Petrone, V.; Fanelli, M.; Giudice, M.; Toschi, N.; Conti, A.; Maracchioni, C.; Iannetta, M.; Resta, C.; Cipriani, C.; Miele, M.T.; et al. Expression profile of HERVs and inflammatory mediators detected in nasal mucosa as a predictive biomarker of COVID-19 severity. Front. Microbiol. 2023, 14, 1155624. [Google Scholar] [CrossRef] [PubMed]
- Sutkowski, N.; Conrad, B.; Thorley-Lawson, D.A.; Huber, B.T. Epstein-Barr Virus Transactivates the Human Endogenous Retrovirus HERV-K18 that Encodes a Superantigen. Immunity 2001, 15, 579–589. [Google Scholar] [CrossRef]
- van der Kuyl, A.C. HIV infection and HERV expression: A review. Retrovirology 2012, 9, 6. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Z.; Wu, Z.; Ren, J.; Fan, Y.; Sun, L.; Cao, G.; Niu, Y.; Zhang, B.; Ji, Q.; et al. Resurrection of endogenous retroviruses during aging reinforces senescence. Cell 2023, 186, 287–304.e26. [Google Scholar] [CrossRef]
- Nevalainen, T.; Autio, A.; Mishra, B.H.; Marttila, S.; Jylhä, M.; Hurme, M. Aging-associated patterns in the expression of human endogenous retroviruses. PLoS ONE 2018, 13, e0207407. [Google Scholar] [CrossRef]
- Rodrigues, L.S.; da Silva Nali, L.H.; Leal, C.O.D.; Sabino, E.C.; Lacerda, E.M.; Kingdon, C.C.; Nacul, L.; Romano, C.M. HERV-K and HERV-W transcriptional activity in myalgic encephalomyelitis/chronic fatigue syndrome. Autoimmun. Highlights 2019, 10, 12. [Google Scholar] [CrossRef]
- Giménez-Orenga, K.; Martín-Martínez, E.; Nathanson, L.; Oltra, E. HERV activation segregates ME/CFS from fibromyalgia while defining a novel nosologic entity. eLife 2025, 14, RP104441. [Google Scholar] [CrossRef]
- Ovejero, T.; Sadones, O.; Sánchez-Fito, T.; Almenar-Pérez, E.; Espejo, J.A.; Martín-Martínez, E.; Nathanson, L.; Oltra, E. Activation of Transposable Elements in Immune Cells of Fibromyalgia Patients. Int. J. Mol. Sci. 2020, 21, 1366. [Google Scholar] [CrossRef]
- Laudański, P.; Zyguła, A.; Czyżyk, A.; Olszak-Wasik, K.; Warzecha, D.; Wojtyła, C.; Kurzawa, R. Viral infection and its impact on fertility, medically assisted reproduction and early pregnancy—A narrative review. Reprod. Biol. Endocrinol. 2025, 23, 68. [Google Scholar] [CrossRef]
- Marci, R.; Gentili, V.; Bortolotti, D.; Lo Monte, G.; Caselli, E.; Bolzani, S.; Rotola, A.; Di Luca, D.; Rizzo, R. Presence of HHV-6A in Endometrial Epithelial Cells from Women with Primary Unexplained Infertility. PLoS ONE 2016, 11, e0158304. [Google Scholar] [CrossRef]
- van der Kuyl, A.C.; Berkhout, B. Viruses in the reproductive tract: On their way to the germ line? Virus Res. 2020, 286, 198101. [Google Scholar] [CrossRef] [PubMed]
- Samms, G.L.; Ponting, C.P. Unequal access to diagnosis of myalgic encephalomyelitis in England. BMC Public Health 2025, 25, 1417. [Google Scholar] [CrossRef] [PubMed]
- Vahratian, A.; Lin, J.-M.S.; Bertolli, J.; Unger, E.R. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in Adults: United States, 2021–2022; NCHS Data Brief: Hyattsville, MD, USA, 2023. [Google Scholar]
- Wira, C.R.; Rodriguez-Garcia, M.; Patel, M.V. The role of sex hormones in immune protection of the female reproductive tract. Nat. Rev. Immunol. 2015, 15, 217–230. [Google Scholar] [CrossRef]
- Honorato, L.; Paião, H.G.O.; da Costa, A.C.; Tozetto-Mendoza, T.R.; Mendes-Correa, M.C.; Witkin, S.S. Viruses in the female lower reproductive tract: A systematic descriptive review of metagenomic investigations. Npj Biofilms Microbiomes 2024, 10, 137. [Google Scholar] [CrossRef] [PubMed]
- Madere, F.S.; Monaco, C.L. The female reproductive tract virome: Understanding the dynamic role of viruses in gynecological health and disease. Curr. Opin. Virol. 2022, 52, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Komaroff, A.L.; Dantzer, R. Causes of symptoms and symptom persistence in long COVID and myalgic encephalomyelitis/chronic fatigue syndrome. Cell Rep. Med. 2025, 6, 102259. [Google Scholar] [CrossRef] [PubMed]
- Nunes, J.M.; Kell, D.B.; Pretorius, E. Herpesvirus Infection of Endothelial Cells as a Systemic Pathological Axis in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Viruses 2024, 16, 572. [Google Scholar] [CrossRef] [PubMed]
- Tate, W.; Walker, M.; Sweetman, E.; Helliwell, A.; Peppercorn, K.; Edgar, C.; Blair, A.; Chatterjee, A. Molecular Mechanisms of Neuroinflammation in ME/CFS and Long COVID to Sustain Disease and Promote Relapses. Front. Neurol. 2022, 13, 877772. [Google Scholar] [CrossRef]
- Papadopoulos, A.S.; Cleare, A.J. Hypothalamic-pituitary-adrenal axis dysfunction in chronic fatigue syndrome. Nat. Rev. Endocrinol. 2011, 8, 22–32. [Google Scholar] [CrossRef]
- Tomas, C.; Newton, J.; Watson, S. A Review of Hypothalamic-Pituitary-Adrenal Axis Function in Chronic Fatigue Syndrome. ISRN Neurosci. 2013, 2013, 784520. [Google Scholar] [CrossRef]
- Savela, E.S.; Viloria Winnett, A.; Romano, A.E.; Porter, M.K.; Shelby, N.; Akana, R.; Ji, J.; Cooper, M.M.; Schlenker, N.W.; Reyes, J.A.; et al. Quantitative SARS-CoV-2 Viral-Load Curves in Paired Saliva Samples and Nasal Swabs Inform Appropriate Respiratory Sampling Site and Analytical Test Sensitivity Required for Earliest Viral Detection. J. Clin. Microbiol. 2022, 60, e01785-21. [Google Scholar] [CrossRef]
- Debat, H.; Bejerman, N. An Update on RNA Virus Discovery: Current Challenges and Future Perspectives. Viruses 2025, 17, 983. [Google Scholar] [CrossRef]


| Sample | Diagnostic Criteria | Cohorts | Detection Method | Viruses Studied * | Association with ME/CFS | Ref. |
|---|---|---|---|---|---|---|
| Serum | Centers for Disease Control and Prevention (CDC) | 548 chronic fatigue syndrome (CFS) patients and 30 healthy controls | Immunoassay | Herpes simplex virus (HSV) 1/2 Rubella Adenovirus HHV-6 EBV Cytomegalovirus (CMV) Coxsackie B virus types 1–6 | No difference in the seroprevalence of the viruses between CFS and healthy controls. | [14] |
| Serum | Oxford | 8 CFS patients | PCR and sequencing | Enterovirus | Enteroviruses can persist in the serum of CFS patients. | [15] |
| Serum and peripheral blood leukocytes (PBLs) | CDC | 26 CFS patients and 50 healthy controls | PCR and antibody profiling | HHV-6A/B HHV-7 | No difference in active or latent HHV-6A/B or HHV-7 infections between CFS patients and controls. | [16] |
| Serum, plasma and PBMC | CDC-1994 (“Fukuda”) | 35 CFS patients (27 severe CFS) and 25 healthy controls | PCR and immunoassay | HHV-6 HHV-7 HHV-8 | Frequent reactivation of HHV-6 detected in CFS patients. | [17] |
| PBLs and plasma | Fukuda | 17 diagnosed CFS patients, 12 unexplained CFS patients, and 20 healthy controls | PCR and immunoassay | HHV-6 HHV-7 | No difference in prevalence of HHV-6 or HHV-7 between the groups. CFS patients showed a significantly higher rate of dual HHV-6 and HHV-7 infection, increased plasma viraemia for HHV-7 and simultaneous reactivation of both viruses. | [18] |
| PBLs and plasma | Fukuda | 108 ME/CFS patients and 90 healthy controls | PCR and immunoassay | HHV-6 HHV-7 Parvovirus B19 | Active HHV-6, HHV-7 and parvovirus B19 infections and co-infection of these viruses show a high prevalence in ME/CFS patients compared to healthy controls. | [19] |
| Serum | Fukuda | 72 CFS patients and 59 healthy controls | Immunoassay | HHV-6A/B | No difference in antibody levels to HHV-6A/B between CFS patients and healthy controls. | [20] |
| PBMC | Fukuda | 39 CFS patients and 9 healthy controls | RT-PCR | HHV-6 HHV-7 Human endogenous retrovirus (HERV)-K18 | No difference in HHV-6 or HHV-7 viral copy numbers or HERV-K18 transcripts between CFS patients and healthy controls. | [21] |
| Plasma | Canadian Consensus Criteria (CCC) | 25 ME/CFS patients, and 25 healthy controls | Metagenomics | Broad virus diversity | No consistent viral associations detected in ME/CFS and contamination and batch effects confound results if controls are inadequate. | [22] |
| Whole blood | CCC | 25 ME/CFS patients, and 25 healthy controls | Metagenomics | Anelloviruses Pegivirus 1 Herpesviruses Papillomaviruses | No difference in the viral composition between ME/CFS cases and controls. | [23] |
| Serum | CCC | 163 ME/CFS patients with/without comorbidities and 103 healthy controls | Immunoassay | HHV-1 to HHV-7 | No significant difference in IgG reactivity to HHV-1 to HHV-7 between ME/CFS and controls, but there are subtle variations in antibody responses to HHV-1 and EBV antigens in ME/CFS. | [24] |
| Whole blood | CCC | 14 female ME/CFS patients and 11 matched sedentary controls | Metagenomics | Enterovirus A Influenza A Anelloviruses Human herpesviruses | No differences in viral abundance or virome composition between ME/CFS patients with post-exertional malaise and controls before or after exercise. | [25] |
| Plasma | CCC and Fukuda | 251 ME/CFS patients and 107 healthy controls | Immunoassay | HSV-1/2 VZV CMV EBV HHV-6 | No difference in the seroprevalence of these viruses between ME/CFS patients and healthy controls. | [26] |
| PBMC and plasma | Fukuda | 58 ME/CFS patients and 50 healthy controls | PCR and immunoassay | HHV-6 CMV EBV | Active EBV infection is more common in ME/CFS patients, with no significant differences in active CMV or HHV-6 infections. | [27] |
| Plasma | Fukuda or CCC | 226 ME/CFS patients and 99 healthy controls | Immunoassay | HSV-1/2 VZV CMV EBV HHV-6 | Herpesvirus serology could potentially distinguish different subgroups of ME/CFS patients based on their reported disease trigger (infection versus non-infection) | [28] |
| PBMC and serum | Fukuda | 30 ME/CFS patients and 20 healthy controls | PCR and immunoassays | HHV-6 HHV-7 EBV | Higher frequencies of both latent and active HHV-6, HHV-7, EBV, and co-infections of these viruses detected in ME/CFS patients compared to healthy controls. | [29] |
| Whole blood | Fukuda | 134 ME/CFS patients and 33 healthy controls | PCR | HHV-6A/B | Disease severity in ME/CFS relates to persistent HHV-6 viral load. | [30] |
| Plasma and PBMC | Fukuda and CCC | 391 ME/CFS patients and 292 healthy controls | PCR, and VirCapSeq | Herpesviruses Pegiviruses Anelloviruses HERVs | No difference in the prevalence or diversity of viruses between ME/CFS patients and healthy controls. | [31] |
| Plasma | CDC or CCC | 222 ME/CFS patients and 46 multiple sclerosis (MS) patients | Immunoassay | HSV-1/2 VZV CMV EBV HHV-6 | IgG antibody concentrations explained symptom associations in multiple sclerosis more robustly than in ME/CFS. | [32] |
| Whole blood and plasma | Fukuda | 200 ME/CFS patients and 150 healthy controls | PCR | HHV-6A/B HHV-7 Parvovirus B19 | Persistent active infections or co-infections with HHV-6A/B, HHV-7, and parvovirus B19 are more frequent in ME/CFS patients compared to healthy individuals. | [33] |
| Mucosal Sampling Site | Diagnosis Criteria | Cohorts | Detection Method | Viruses Studied * | Association with ME/CFS | Ref. |
|---|---|---|---|---|---|---|
| Throat swab | Oxford | 175 throat swabs from CFS patients | PCR and sequencing | Enteroviruses | Enterovirus sequences found in some CFS patients. | [57] |
| Saliva | Fukuda | 39 CFS patients and 9 healthy controls | RT-PCR | HHV-6 HHV-7 | No difference in HHV6 or HHV7 viral loads. No difference detected in human endogenous retrovirus-K18 (HERV-K18) levels in PBMCs. | [21] |
| Saliva | CCC and/or Fukuda | 14 ME/CFS-Mild/ Moderate, 16 ME/CFS-Severe Patients, and 16 healthy controls | ddPCR | HHV-6B HHV-7 HSV-1 EBV | High viral loads of HHV-6B and HHV-7 observed in ME/CFS patients, and fluctuations in viral load correlated with specific ME/CFS disease phenotypes. No difference in EBV or HSV-1 viral loads. | [58] |
| Saliva | CCC | 95 ME/CFS patients (78 female) and 110 healthy controls (71 female) | Antibody profiling | EBV HHV-6 HERV-K | COVID-19 triggers reactivation of latent herpesviruses (EBV, HHV-6) and HERV-K, with stronger reactivation and uniquely elevated EBV nuclear antigen antibodies in ME/CFS patients, who also show higher baseline EBV antibodies before SARS-CoV-2 infection. | [34] |
| Saliva and oropharynx | 88 post-COVID patients (68 with herpesvirus reactivation and 20 non-detectable herpesvirus DNA controls). 46/88 female and 42/88 male. | RT-PCR | EBV HHV-6 | Herpesvirus reactivation is associated with post-COVID syndrome and chronic fatigue. | [36] | |
| Saliva | CCC | 84 ME/CFS patients and 94 healthy controls | Antibody profiling | Adenovirus SARS-CoV-2 | SARS-CoV-2 triggers Adenovirus reactivation in ME/CFS. | [35] |
| Saliva and faeces | Fukuda and CCC | 106 ME/CFS patients and 91 healthy controls | VirCapSeq | Herpesviruses and papillomaviruses | No difference in the prevalence of viral sequences between ME/CFS patients and healthy controls. | [31] |
| Sputum | CCC | 13 ME/CFS patients, 10 healthy, 4 elderly, and 2 immunosuppressed controls | RT-PCR | EBV HHV-6 Adenovirus | High EBV viral load in ME/CFS patients. No difference in HHV-6 viral loads. | [59] |
| Stomach biopsies | CDC | 165 patients, 22 healthy controls, and 12 patients with other gastric disorders | Immuno-staining | Enteroviruses | Enterovirus detected in stomach biopsies from 82% of CFS patients compared to 20% of controls. | [60] |
| Gastric antrum and duodenum biopsies | Fukuda | 48 CFS patients and 35 healthy controls. 78% patients and 66% of the controls were females. | RT-PCR | HHV-7 HHV-6 EBV Parvovirus B19 | High viral loads of Parvovirus B19 detected in ME/CFS patients. | [61] |
| Stomach biopsies | Follow-up of three patients with acute enterovirus infection, later developed ME/CFS | RT-PCR Immuno-staining | Enteroviruses | Acute enterovirus infection could lead to ME/CFS, and enteroviruses were detected in stomach biopsies years after initial infection. | [62] | |
| Duodenal and stomach biopsies | CCC and Fukuda | 12 ME patients and 8 healthy controls | Immuno-staining | HERVs | Immunoreactivity to HERV proteins was observed in some ME/CFS patients. | [63] |
| Faeces | CCC and National Institute for Health and Care Excellence (NICE) 2007/CG53 guideline | 9 severely affected female ME/CFS patients and 8 healthy controls (3 males and 5 females) | Virome profiling, metagenomics | Multiple bacteriophages HHV-6A Papillomaviruses Coronavirus NL63 Adenovirus 54 | ME/CFS-specific viral–bacterial associations. | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perera, K.D.; Cameron, P.; Sarwar, T.; Carding, S.R. Mucosal Viruses in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Missing Piece of the Puzzle? Int. J. Mol. Sci. 2025, 26, 11161. https://doi.org/10.3390/ijms262211161
Perera KD, Cameron P, Sarwar T, Carding SR. Mucosal Viruses in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Missing Piece of the Puzzle? International Journal of Molecular Sciences. 2025; 26(22):11161. https://doi.org/10.3390/ijms262211161
Chicago/Turabian StylePerera, Krishani Dinali, Paige Cameron, Tayyibah Sarwar, and Simon R. Carding. 2025. "Mucosal Viruses in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Missing Piece of the Puzzle?" International Journal of Molecular Sciences 26, no. 22: 11161. https://doi.org/10.3390/ijms262211161
APA StylePerera, K. D., Cameron, P., Sarwar, T., & Carding, S. R. (2025). Mucosal Viruses in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Missing Piece of the Puzzle? International Journal of Molecular Sciences, 26(22), 11161. https://doi.org/10.3390/ijms262211161

