Enterolignans Improve the Expression of Iron-Related Genes in a Cellular Model of Inflammatory Bowel Disease
Abstract
1. Introduction
2. Results
2.1. Effects of IL-6 Treatment on Iron Metabolism Gene Expression in the Caco-2 In Vitro Model
2.1.1. Effects of Enterodiol on Iron Metabolism Gene Expression in the Caco-2 In Vitro Model
2.1.2. Effects of Enterolactone on Iron Metabolism Gene Expression in the Caco-2 In Vitro Model
3. Discussion
4. Materials and Methods
4.1. Cell Culture and Treatments
4.2. RNA Extraction and RT-qPCR
- 4 µL of cDNA;
- 6 µL of master mix, consisting of the following:
- ○
- 16.25 µL SYBR Green PCR mix;
- ○
- 0.325 µL of 10 µM concentrated primers;
- ○
- 2.925 µL of nuclease-free water.
4.3. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ACD | Anemia of chronic disease |
| CD | Crohn’s Disease |
| IBD | Inflammatory bowel disease |
| IDA | Iron deficiency anemia |
| IL-6 | Interleukin 6 |
| IRE | Iron regulatory element |
| END | Enterodiol |
| ENL | Enterolactone |
| ERE | Estrogen regulatory elements |
| ROS | Reactive oxygen species |
| RQ | Relative quantification |
| UC | Ulcerative Colitis |
| UTR | Untranslated region |
References
- Mahadea, D.; Adamczewska, E.; Ratajczak, A.E.; Rychter, A.M.; Zawada, A.; Eder, P.; Dobrowolska, A.; Krela-Kaźmierczak, I. Iron Deficiency Anemia in Inflammatory Bowel Diseases—A Narrative Review. Nutrients 2021, 13, 4008. [Google Scholar] [CrossRef]
- Aksan, A.; Beales, I.L.P.; Baxter, G.; de Arellano, A.R.; Gavata, S.; Valentine, W.J.; Hunt, B. Evaluation of the Cost-Effectiveness of Iron Formulations for the Treatment of Iron Deficiency Anaemia in Patients with Inflammatory Bowel Disease in the UK. Clin. Outcomes Res. 2021, 13, 541–552. [Google Scholar] [CrossRef]
- Podolsky, D.K. Inflammatory bowel disease. N. Engl. J. Med. 2002, 347, 417–429. [Google Scholar] [CrossRef] [PubMed]
- El-Hussuna, A.; Hauer, A.C.; Karakan, T.; Pittet, V.; Yanai, H.; Devi, J.; Yamamoto-Furusho, J.K.; Sima, A.R.; Desalegn, H.; Sultan, M.I.; et al. ECCO consensus on management of Inflammatory Bowel Disease in low-and middle-income countries. J. Crohns Colitis 2025, jjaf125. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 2017, 390, 2769–2778, Correction in Lancet 2020, 396, 10256. [Google Scholar] [CrossRef]
- Torres, J.; Halfvarson, J.; Rodríguez-Lago, I.; Hedin, C.R.H.; Jess, T.; Dubinsky, M.; Croitoru, K.; Colombel, J.F. Results of the Seventh Scientific Workshop of ECCO: Precision Medicine in IBD—Prediction and Prevention of Inflammatory Bowel Disease. J. Crohns Colitis 2021, 15, 1443–1454. [Google Scholar] [CrossRef]
- Detlie, T.E.; Burisch, J.; Jahnsen, J.; Bonderup, O.; Hellström, P.M.; Lindgren, S.; Frigstad, S.O. Iron deficiency should not be accepted in patients with inflammatory bowel disease—A Scandinavian expert opinion. Scand. J. Gastroenterol. 2025, 60, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, M.; Barańska, M.; Małecka-Panas, E.; Talar-Wojnarowska, R. The prevalence, characteristics, and determinants of anaemia in newly diagnosed patients with inflammatory bowel disease. Prz. Gastroenterol. 2019, 14, 39–47. [Google Scholar] [CrossRef]
- Auerbach, M.; DeLoughery, T.G.; Tirnauer, J.S. Iron Deficiency in Adults: A Review. JAMA 2025, 333, 1813–1823. [Google Scholar] [CrossRef]
- Ferrari, F.; Carini, M.; Zanella, I.; Treglia, G.; Luglio, G.; Bresciani, R.; Biasiotto, G. Potential Diagnostic Role of Hepcidin in Anemic Patients Affected by Inflammatory Bowel Disease: A Systematic Review. Diagnostics 2024, 14, 375. [Google Scholar] [CrossRef]
- Ganz, T. The Discovery of the Iron-Regulatory Hormone Hepcidin. Clin. Chem. 2019, 65, 1330–1331. [Google Scholar] [CrossRef]
- Girelli, D.; Busti, F.; Brissot, P.; Cabantchik, I.; Muckenthaler, M.U.; Porto, G. Hemochromatosis classification: Update and recommendations by the BIOIRON Society. Blood 2022, 139, 3018–3029. [Google Scholar] [CrossRef] [PubMed]
- Biasiotto, G.; Carini, M.; Bresciani, R.; Ferrari, F. Hereditary hemochromatosis: The complex role of the modifier genes. J. Trace Elem. Med. Biol. 2023, 79, 127248. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.; Ganz, T. Hepcidin and Iron in Health and Disease. Annu. Rev. Med. 2023, 74, 261–277. [Google Scholar] [CrossRef]
- Chiabrando, D.; Vinchi, F.; Fiorito, V.; Mercurio, S.; Tolosano, E. Heme in pathophysiology: A matter of scavenging, metabolism and trafficking across cell membranes. Front. Pharmacol. 2014, 5, 61. [Google Scholar] [CrossRef]
- Bergamaschi, G.; Di Sabatino, A.; Pasini, A.; Ubezio, C.; Costanzo, F.; Grataroli, D.; Masotti, M.; Alvisi, C.; Corazza, G.R. Intestinal expression of genes implicated in iron absorption and their regulation by hepcidin. Clin. Nutr. 2017, 36, 1427–1433. [Google Scholar] [CrossRef]
- Anderson, G.J.; Frazer, D.M. Current understanding of iron homeostasis. Am. J. Clin. Nutr. 2017, 106, 1559S–1566S. [Google Scholar] [CrossRef] [PubMed]
- Adriouch, S.; Kesse-Guyot, E.; Feuillet, T.; Touvier, M.; Olié, V.; Andreeva, V.; Hercberg, S.; Galan, P.; Fezeu, L.K. Total and specific dietary polyphenol intakes and 6-year anthropometric changes in a middle-aged general population cohort. Int. J. Obes. 2018, 42, 310–317. [Google Scholar] [CrossRef]
- Zanella, I.; Biasiotto, G.; Holm, F.; di Lorenzo, D. Cereal Lignans, Natural Compounds of Interest for Human Health? Nat. Prod. Commun. 2017, 12, 139–146. [Google Scholar] [CrossRef]
- Biasiotto, G.; Penza, M.; Zanella, I.; Cadei, M.; Caimi, L.; Rossini, C.; Smeds, A.I.; Di Lorenzo, D. Oilseeds ameliorate metabolic parameters in male mice, while contained lignans inhibit 3T3-L1 adipocyte differentiation in vitro. Eur. J. Nutr. 2014, 53, 1685–1697. [Google Scholar] [CrossRef]
- Hassanein, E.H.M.; Althagafy, H.S.; Baraka, M.A.; Abd-Alhameed, E.K.; Ibrahim, I.M.; Abd El-Maksoud, M.S.; Mohamed, N.M.; Ross, S.A. The promising antioxidant effects of lignans: Nrf2 activation comes into view. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 6439–6458. [Google Scholar] [CrossRef] [PubMed]
- De Silva, S.F.; Alcorn, J. Flaxseed Lignans as Important Dietary Polyphenols for Cancer Prevention and Treatment: Chemistry, Pharmacokinetics, and Molecular Targets. Pharmaceuticals 2019, 12, 68. [Google Scholar] [CrossRef]
- Laveriano-Santos, E.P.; Luque-Corredera, C.; Trius-Soler, M.; Lozano-Castellón, J.; Dominguez-López, I.; Castro-Barquero, S.; Vallverdú-Queralt, A.; Lamuela-Raventós, R.M.; Pérez, M. Enterolignans: From natural origins to cardiometabolic significance, including chemistry, dietary sources, bioavailability, and activity. Crit. Rev. Food Sci. Nutr. 2025, 65, 3764–3784. [Google Scholar] [CrossRef]
- Lucendo, A.J.; Arias, Á.; Roncero, Ó.; Hervías, D.; Verdejo, C.; Naveas-Polo, C.; Bouhmidi, A.; Lorente, R.; Alcázar, L.M.; Salueña, I.; et al. Anemia at the time of diagnosis of inflammatory bowel disease: Prevalence and associated factors in adolescent and adult patients. Dig. Liver Dis. 2017, 49, 405–411. [Google Scholar] [CrossRef]
- Dignass, A.U.; Gasche, C.; Bettenworth, D.; Birgegård, G.; Danese, S.; Gisbert, J.P.; Gomollon, F.; Iqbal, T.; Katsanos, K.; Koutroubakis, I.; et al. European consensus on the diagnosis and management of iron deficiency and anaemia in inflammatory bowel diseases. J. Crohns Colitis 2015, 9, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Atreya, R.; Neurath, M.F. Involvement of IL-6 in the pathogenesis of inflammatory bowel disease and colon cancer. Clin. Rev. Allergy Immunol. 2005, 28, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Aebisher, D.; Bartusik-Aebisher, D.; Przygórzewska, A.; Oleś, P.; Woźnicki, P.; Kawczyk-Krupka, A. Key Interleukins in Inflammatory Bowel Disease-A Review of Recent Studies. Int. J. Mol. Sci. 2024, 26, 121. [Google Scholar] [CrossRef]
- Lakhal-Littleton, S.; Peyssonnaux, C. Hepcidin and Tissue-Specific Iron Regulatory Networks. Adv. Exp. Med. Biol. 2025, 1480, 89–102. [Google Scholar] [CrossRef]
- Daher, R.; Lefebvre, T.; Puy, H.; Karim, Z. Extrahepatic hepcidin production: The intriguing outcomes of recent years. World J. Clin. Cases 2019, 7, 1926–1936. [Google Scholar] [CrossRef]
- Jacolot, S.; Férec, C.; Mura, C. Iron responses in hepatic, intestinal and macrophage/monocyte cell lines under different culture conditions. Blood Cells Mol. Dis. 2008, 41, 100–108. [Google Scholar] [CrossRef]
- Angmo, S.; Rana, S.; Yadav, K.; Sandhir, R.; Singhal, N.K. Novel Liposome Eencapsulated Guanosine Di Phosphate based Therapeutic Target against Anemia of Inflammation. Sci. Rep. 2018, 8, 17684. [Google Scholar] [CrossRef]
- Zanella, I.; Paiardi, G.; Di Lorenzo, D.; Biasiotto, G. Iron Absorption in Celiac Disease and Nutraceutical Effect of 7-Hydroxymatairesinol. Mini-Review. Molecules 2020, 25, 2041. [Google Scholar] [CrossRef]
- Rogers, J.T. Ferritin translation by interleukin-1and interleukin-6: The role of sequences upstream of the start codons of the heavy and light subunit genes. Blood 1996, 87, 2525–2537. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, C.; Zhou, F.; Ying, X.; Zhang, X.; Peng, C.; Wang, L. Iron and Inflammatory Cytokines Synergistically Induce Colonic Epithelial Cell Ferroptosis in Colitis. J. Gastroenterol. Hepatol. 2025, 40, 666–676. [Google Scholar] [CrossRef]
- Lan, J.; Deng, Z.; Wang, Q.; Li, D.; Fan, K.; Chang, J.; Ma, Y. Neuropeptide substance P attenuates colitis by suppressing inflammation and ferroptosis via the cGAS-STING signaling pathway. Int. J. Biol. Sci. 2024, 20, 2507–2531. [Google Scholar] [CrossRef]
- Liu, J.; Ren, Z.; Yang, L.; Zhu, L.; Li, Y.; Bie, C.; Liu, H.; Ji, Y.; Chen, D.; Zhu, M.; et al. The NSUN5-FTH1/FTL pathway mediates ferroptosis in bone marrow-derived mesenchymal stem cells. Cell Death Discov. 2022, 8, 99. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zhao, L.; Wang, S.; Zhang, X.; Quan, J.; Lin, Z.; Piao, J. RSL1D1 knockdown induces ferroptosis and mediates ferrous iron accumulation in senescent cells by inhibiting FTH1 mRNA stability. Carcinogenesis 2023, 44, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zeng, J.; He, S.; Yang, Y.; Wang, C. METTL14 decreases FTH1 mRNA stability via m6A methylation to promote sorafenib-induced ferroptosis of cervical cancer. Cancer Biol. Ther. 2024, 25, 2349429. [Google Scholar] [CrossRef]
- Kim, Y.I.; Cho, J.H.; Yoo, O.J.; Ahnn, J. Transcriptional regulation and life-span modulation of cytosolic aconitase and ferritin genes in C.elegans. J. Mol. Biol. 2004, 342, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.; Ortega, F.; Xifra, G.; Ricart, W.; Fernández-Real, J.M.; Moreno-Navarrete, J.M. Cytosolic aconitase activity sustains adipogenic capacity of adipose tissue connecting iron metabolism and adipogenesis. FASEB J. 2015, 29, 1529–1539. [Google Scholar] [CrossRef]
- Wang, J.; Chen, G.; Pantopoulos, K. Inhibition of transferrin receptor 1 transcription by a cell density response element. Biochem. J. 2005, 392, 383–388. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, W.; Tsuji, Y.; Torti, S.V.; Torti, F.M. Post-transcriptional modulation of iron homeostasis during p53-dependent growth arrest. J. Biol. Chem. 2008, 283, 33911–33918. [Google Scholar] [CrossRef]
- Prutki, M.; Poljak-Blazi, M.; Jakopovic, M.; Tomas, D.; Stipancic, I.; Zarkovic, N. Altered iron metabolism, transferrin receptor 1 and ferritin in patients with colon cancer. Cancer Lett. 2006, 238, 188–196. [Google Scholar] [CrossRef]
- Minhas, H.J.; Papamichael, K.; Cheifetz, A.S.; Gianotti, R.J. A primer on common supplements and dietary measures used by patients with inflammatory bowel disease. Ther. Adv. Chronic Dis. 2023, 14, 20406223231182367. [Google Scholar] [CrossRef] [PubMed]
- Baldi, S.; Tristán Asensi, M.; Pallecchi, M.; Sofi, F.; Bartolucci, G.; Amedei, A. Interplay between Lignans and Gut Microbiota: Nutritional, Functional and Methodological Aspects. Molecules 2023, 28, 343. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Jian, J.; Katz, S.; Abramson, S.B.; Huang, X. 17β-Estradiol inhibits iron hormone hepcidin through an estrogen responsive element half-site. Endocrinology 2012, 153, 3170–3178. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Zhang, S.; Wang, L.; Li, J.; Qu, G.; He, J.; Rong, H.; Ji, H.; Liu, S. Estrogen regulates iron homeostasis through governing hepatic hepcidin expression via an estrogen response element. Gene 2012, 511, 398–403. [Google Scholar] [CrossRef]
- Qian, Y.; Yin, C.; Chen, Y.; Zhang, S.; Jiang, L.; Wang, F.; Zhao, M.; Liu, S. Estrogen contributes to regulating iron metabolism through governing ferroportin signaling via an estrogen response element. Cell Signal 2015, 27, 934–942. [Google Scholar] [CrossRef]
- Khaksari, M.; Pourali, M.; Rezaei Talabon, S.; Gholizadeh Navashenaq, J.; Bashiri, H.; Amiresmaili, S. Protective effects of 17-β-estradiol on liver injury: The role of TLR4 signaling pathway and inflammatory response. Cytokine 2024, 181, 156686. [Google Scholar] [CrossRef]
- Biasiotto, G.; Zanella, I.; Predolini, F.; Archetti, I.; Cadei, M.; Monti, E.; Luzzani, M.; Pacchetti, B.; Mozzoni, P.; Andreoli, R.; et al. 7-Hydroxymatairesinol improves body weight, fat and sugar metabolism in C57BJ/6 mice on a high-fat diet. Br. J. Nutr. 2018, 120, 751–762. [Google Scholar] [CrossRef]
- Senizza, A.; Rocchetti, G.; Mosele, J.I.; Patrone, V.; Callegari, M.L.; Morelli, L.; Lucini, L. Lignans and Gut Microbiota: An Interplay Revealing Potential Health Implications. Molecules 2020, 25, 5709. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Biggin, M.D. Statistics requantitates the central dogma. Science 2015, 347, 1066–1067. [Google Scholar] [CrossRef] [PubMed]
- Battle, A.; Khan, Z.; Wang, S.H.; Mitrano, A.; Ford, M.J.; Pritchard, J.K.; Gilad, Y. Impact of regulatory variation from RNA to protein. Science 2015, 347, 664–667. [Google Scholar] [CrossRef] [PubMed]
- Gallí, A.; Bergamaschi, G.; Recalde, H.; Biasiotto, G.; Santambrogio, P.; Boggi, S.; Levi, S.; Arosio, P.; Cazzola, M. Ferroportin gene silencing induces iron retention and enhances ferritin synthesis in human macrophages. Br. J. Haematol. 2004, 127, 598–603. [Google Scholar] [CrossRef]
- Omer, M.; Omer, O.I.; Ali, M.; Mohamed, I.O. Therapeutic Potentials of Phytochemicals in the Treatment of Ulcerative Colitis: Results from Animal Model Interventional Studies. J. Am. Nutr. Assoc. 2025, 18, 1–13. [Google Scholar] [CrossRef]
- Wawrzeńczyk, A.; Napiórkowska-Baran, K.; Alska, E.; Gruszka-Koselska, A.; Szynkiewicz, E.; Sławatycki, J.; Klemenska, P.; Bartuzi, Z. Ferroptosis in Gastrointestinal Diseases: A New Frontier in Pathogenesis and Therapy. J. Clin. Med. 2025, 14, 4035. [Google Scholar] [CrossRef]
- Armitage, A.E.; Eddowes, L.A.; Gileadi, U.; Cole, S.; Spottiswoode, N.; Selvakumar, T.A.; Ho, L.P.; Townsend, A.R.; Drakesmith, H. Hepcidin regulation by innate immune and infectious stimuli. Blood 2011, 118, 4129–4139. [Google Scholar] [CrossRef]
- Zhang, X.; Rovin, B.H. Hepcidin expression by human monocytes in response to adhesion and pro-inflammatory cytokines. Biochim. Biophys. Acta 2010, 1800, 1262–1267. [Google Scholar] [CrossRef] [PubMed]


| Genes | Untreated vs. IL-6 | Untreated vs. END | Untreated vs. IL-6+END | IL-6 vs. IL-6+END |
|---|---|---|---|---|
| HAMP | <0.0001 | 0.1525 | <0.0001 | <0.0001 |
| FTH1 | <0.0001 | 0.0011 | <0.0001 | 0.0174 |
| FTL | 0.0081 | 0.9951 | 0.0070 | 0.8874 |
| ACO1 | <0.0001 | 0.0004 | <0.0001 | 0.0149 |
| CYBRD1 | <0.0001 | <0.0001 | <0.0001 | 0.0053 |
| HFE | 0.0015 | <0.0001 | 0.0043 | 0.6591 |
| IREB2 | 0.3025 | 0.2930 | 0.4234 | 0.9870 |
| DMT1 | <0.0001 | <0.0001 | <0.0001 | 0.0081 |
| HCP1 | 0.0001 | <0.0001 | <0.0001 | 0.7772 |
| SLC40A1 | 0.0077 | 0.0907 | 0.0238 | 0.7600 |
| TFRC | 0.0001 | <0.0001 | <0.0001 | <0.0001 |
| Genes | Untreated vs. IL-6 | Untreated vs. ENL | Untreated vs. IL-6+ENL | IL-6 vs. IL-6+ENL |
|---|---|---|---|---|
| HAMP | <0.0001 | 0.9308 | 0.0063 | <0.0001 |
| FTH1 | <0.0001 | 0.0189 | 0.0007 | 0.0128 |
| FTL | <0.0001 | <0.0001 | <0.0001 | 0.3677 |
| ACO1 | <0.0001 | <0.0001 | <0.0001 | 0.0002 |
| CYBRD1 | <0.0001 | 0.3262 | <0.0001 | 0.4312 |
| HFE | 0.0450 | <0.0001 | 0.0076 | 0.2284 |
| IREB2 | 0.1607 | 0.0071 | 0.1744 | 0.9966 |
| DMT1 | 0.0002 | 0.0171 | 0.0003 | 0.9074 |
| HCP1 | <0.0001 | 0.6534 | 0.0002 | 0.5395 |
| SLC40A1 | 0.0001 | 0.2402 | <0.0001 | 0.3596 |
| TFRC | 0.0213 | <0.0001 | <0.0001 | <0.0001 |
| Gene | Primer Forward | Primer Reverse |
|---|---|---|
| FTH1 | 5′-AGCTCTACGCCTCCTACGTT-3′ | 5′-GTGGCCAGTTTGTGCAGTTC-3′ |
| ACO1 | 5′-CAACCCATTCGCACACCTTG-3′ | 5′-CGAGCAGGCTTAAATGGCAC-3′ |
| CYBRD1 | 5′-GGAGTATGGGGCGCTGATG-3′ | 5′-TCTGTAGACGATGATGGCGATG-3′ |
| HFE | 5′-CGCTTCTCCTCCTGATGCTT-3′ | 5′-AGACCAAGGTCCTGCTCTGA-3′ |
| IREB2 | 5′-TGTTGGAAGCTGCTGTACGA-3′ | 5′-CGGACAAGCAGGATGGACTT-3′ |
| HAMP | 5′-TCAAGACCCAGCAGTGGGA-3′ | 5′-CTCCTTCGCCTCTGGAACAT-3′ |
| SLC40A1 | 5′-CGACTACCTGACCTCTGCAAAA-3′ | 5′-ACATTCTGTACCACCAGCGA-3′ |
| FTL | 5′-CCAGCACCGTTTTTGTGGTT-3′ | 5′-GCCAATTCGCGGAAGAAGTG-3′ |
| TFRC | 5′-AGAACTACACCGACCCTCGT-3′ | 5′-TGCCACACAGAAGAACCTGC-3′ |
| DMT1 * | 5′-TGCATTCTGCCTTAGTCAAGTC-3′ | 5′-ACAAAGAGTGCAATGCAGGA-3′ |
| HCP1 * | 5′-CCGACCTCGGCTACAATG-3′ | 5′-CCAGTGGGAGGTAAGGGTCT-3′ |
| β TUBULIN | 5′-AGATCGGGGCCAAGTTCTGG-3′ | 5′-CTCGAGGCACGTACTTGTGA-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonuccelli, O.; Gogna, A.; Mitola, S.; Abate, G.; Ferrari, F.; Bertagna, F.; De Francesco, M.A.; Monti, E.; Bresciani, R.; Biasiotto, G. Enterolignans Improve the Expression of Iron-Related Genes in a Cellular Model of Inflammatory Bowel Disease. Int. J. Mol. Sci. 2025, 26, 11153. https://doi.org/10.3390/ijms262211153
Bonuccelli O, Gogna A, Mitola S, Abate G, Ferrari F, Bertagna F, De Francesco MA, Monti E, Bresciani R, Biasiotto G. Enterolignans Improve the Expression of Iron-Related Genes in a Cellular Model of Inflammatory Bowel Disease. International Journal of Molecular Sciences. 2025; 26(22):11153. https://doi.org/10.3390/ijms262211153
Chicago/Turabian StyleBonuccelli, Ottavia, Anna Gogna, Stefania Mitola, Giulia Abate, Fabiana Ferrari, Francesco Bertagna, Maria Antonia De Francesco, Eugenio Monti, Roberto Bresciani, and Giorgio Biasiotto. 2025. "Enterolignans Improve the Expression of Iron-Related Genes in a Cellular Model of Inflammatory Bowel Disease" International Journal of Molecular Sciences 26, no. 22: 11153. https://doi.org/10.3390/ijms262211153
APA StyleBonuccelli, O., Gogna, A., Mitola, S., Abate, G., Ferrari, F., Bertagna, F., De Francesco, M. A., Monti, E., Bresciani, R., & Biasiotto, G. (2025). Enterolignans Improve the Expression of Iron-Related Genes in a Cellular Model of Inflammatory Bowel Disease. International Journal of Molecular Sciences, 26(22), 11153. https://doi.org/10.3390/ijms262211153

