Genetic Biomarkers for Statin-Induced Myopathy
Abstract
1. Introduction
2. Results
2.1. Study Population Assessment
2.2. Genetic Assessment
3. Discussion
4. Materials and Methods
4.1. Genetic Analysis
4.2. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alfirevic, A.; Neely, D.; Armitage, J.; Chinoy, H.; Cooper, R.G.; Laaksonen, R.; Carr, D.F.; Bloch, K.M.; Fahy, J.; Hanson, A.; et al. Phenotype standardization for statin-induced myotoxicity. Clin. Pharmacol. Ther. 2014, 96, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Toth, P.P.; Banach, M. Statins: Then and Now. Methodist. Debakey Cardiovasc. J. 2019, 15, 23–31. [Google Scholar] [CrossRef]
- Ward, N.C.; Watts, G.F.; Eckel, R.H. Statin Toxicity. Circ. Res. 2019, 124, 328–350. [Google Scholar] [CrossRef]
- Turner, R.M.; Pirmohamed, M. Statin-Related Myotoxicity: A Comprehensive Review of Pharmacokinetic, Pharmacogenomic and Muscle Components. J. Clin. Med. 2019, 9, 22. [Google Scholar] [CrossRef]
- Li, C.; Liu, H.; Yang, L.; Liu, R.; Yin, G.; Xie, Q. Immune-mediated necrotizing myopathy: A comprehensive review of the pathogenesis, clinical features, and treatments. J. Autoimmun. 2024, 148, 103286. [Google Scholar] [CrossRef]
- SEARCH Collaborative Group. SLCO1B1 variants and statin-induced myopathy. N. Engl. J. Med. 2009, 360, 304. [Google Scholar] [CrossRef]
- Mammen, A.L.; Gaudet, D.; Brisson, D.; Christopher-Stine, L.; Lloyd, T.E.; Leffell, M.S.; Zachary, A.A. Increased Frequency of DRB1*11:01 in Anti-HMG-CoA Reductase-Associated Autoimmune Myopathy. Arthritis Care Res. 2012, 64, 1233–1237. [Google Scholar] [CrossRef]
- Prieto-Peña, D.; Ocejo-Vinyals, J.G.; Mazariegos-Cano, J.; Pelayo-Negro, A.L.; Remuzgo-Martínez, S.; Genre, F.; García-Dorta, A.; Renuncio-García, M.; Martínez-Taboada, V.M.; García-Ibarbia, C.; et al. Epidemiological and genetic features of anti- 3-hydroxy-3-methylglutaryl-CoA reductase necrotizing myopathy: Single-center experience and literature review. Eur. J. Intern. Med. 2022, 101, 86–92. [Google Scholar] [CrossRef]
- Lundberg, I.E.; Fujimoto, M.; Vencovsky, J.; Aggarwal, R.; Holmqvist, M.; Christopher-Stine, L.; Mammen, A.L.; Miller, F.W. Idiopathic inflammatory myopathies. Nat. Rev. Dis. Primers 2021, 7, 86. [Google Scholar] [CrossRef] [PubMed]
- Mammen, A.L.; Chung, T.; Christopher-Stine, L.; Rosen, P.; Rosen, A.; Doering, K.R.; Casciola-Rosen, L.A. Autoantibodies against 3-hydroxy-3-methylglutaryl-coenzyme A reductase in patients with statin-associated autoimmune myopathy. Arthritis Rheum. 2011, 63, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, J.L.; Brown, M.S. Regulation of the mevalonate pathway. Nature 1990, 343, 425–430. [Google Scholar] [CrossRef]
- Azemawah, V.; Movahed, M.R.; Centuori, P.; Penaflor, R.; Riel, P.L.; Situ, S.; Shadmehr, M.; Hashemzadeh, M. State of the art comprehensive review of individual statins, their differences, pharmacology, and clinical implications. Cardiovasc. Drugs Ther. 2019, 33, 625–639. [Google Scholar] [CrossRef] [PubMed]
- Parker, B.A.; Capizzi, J.A.; Grimaldi, A.S.; Clarkson, P.M.; Cole, S.M.; Keadle, J.; Chipkin, S.; Pescatello, L.S.; Simpson, K.; White, C.M.; et al. Effect of statins on skeletal muscle function. Circulation 2013, 127, 96–103. [Google Scholar] [CrossRef]
- Allenbach, Y.; Drouot, L.; Rigolet, A.; Charuel, J.L.; Jouen, F.; Romero, N.B.; Maisonobe, T.; Dubourg, O.; Behin, A.; Laforet, P.; et al. Anti-HMGCR autoantibodies in European patients with autoimmune necrotizing myopathies: Inconstant exposure to statin. Medicine 2014, 93, 150–157. [Google Scholar] [CrossRef]
- Ge, Y.; Lu, X.; Peng, Q.; Shu, X.; Wang, G. Clinical characteristics of anti-3-hydroxy-3-methylglutaryl coenzyme a reductase antibodies in Chinese patients with idiopathic inflammatory myopathies. PLoS ONE 2015, 10, e0141616. [Google Scholar] [CrossRef]
- Allenbach, Y.; Benveniste, O.; Stenzel, W.; Boyer, O. Immune-mediated necrotizing myopathy: Clinical features and pathogenesis. Nat. Rev. Rheumatol. 2020, 16, 689–701. [Google Scholar] [CrossRef]
- Kang, E.H.; Go, D.J.; Mimori, T.; Lee, S.J.; Kwon, H.M.; Park, J.W.; Park, M.H.; Song, E.Y.; Ha, Y.-J.; Lee, E.Y.; et al. Novel susceptibility alleles in HLA region for myositis and myositis specific autoantibodies in Korean patients. Semin. Arthritis Rheum. 2019, 49, 283–287. [Google Scholar] [CrossRef]
- Limaye, V.; Bundell, C.; Hollingsworth, P.; Rojana-Udomsart, A.; Mastaglia, F.; Blumbergs, P.; Lester, S. Clinical and genetic associations of autoantibodies to 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase in patients with immune-mediated myositis and necrotizing myopathy. Muscle Nerve 2015, 52, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Robledo, M.; Torres, I.; Manrique, R.D.; Duque, M.; Gallo, J.E. Utilidad del gen SLCO1B1 como marcador de interés en la farmacogenómica de las estatinas. Rev. Colomb. Cardiol. 2019, 26, 24–30. [Google Scholar] [CrossRef]
- Gupta, L.; Nune, A.; Naveen, R.; Verma, R.; Prasad, P.; Kharbanda, R.; Rathore, U.; Rai, M.K.; Singh, M.K.; Anuja, A.K.; et al. The prevalence and clinical characteristics of anti-HMGCR (anti-3-hydroxy-3-methyl-glutaryl-coenzyme A reductase) antibodies in idiopathic inflammatory myopathy: An analysis from the MyoCite registry. Rheumatol. Int. 2022, 42, 1143–1154. [Google Scholar] [CrossRef]
- Mohassel, P.; Mammen, A.L. Anti-HMGCR myopathy. J. Neuromuscul. Dis. 2018, 5, 11–20. [Google Scholar] [CrossRef]
- Llansó, L.; Segarra-Casas, A.; Domínguez-González, C.; Malfatti, E.; Kapetanovic, S.; Rodríguez-Santiago, B.; de la Calle, O.; Blanco, R.; Dobrescu, A.; Nascimento-Osorio, A.; et al. Absence of pathogenic mutations and strong association with HLA-DRB1*11:01 in statin-naïve early-onset anti-HMGCR necrotizing myopathy. Neurol. Neuroimmunol. Neuroinflamm. 2024, 11, e200285. [Google Scholar] [CrossRef]
- Khoo, T.; Chinoy, H. Anti-HMGCR immune-mediated necrotising myopathy: Addressing the remaining issues. Autoimmun. Rev. 2023, 22, 103468. [Google Scholar] [CrossRef]
- Ohnuki, Y.; Suzuki, S.; Shiina, T.; Uruha, A.; Watanabe, Y.; Izumi, S.; Nakahara, J.; Hamanaka, K.; Takayama, K.; Suzuki, N.; et al. HLA-DRB1 alleles in immune-mediated necrotizing myopathy. Neurology 2016, 87, 1954–1955. [Google Scholar] [CrossRef]
- Fernandes, V.; Santos, M.J.; Pérez, A. Statin-related myotoxicity. Endocrinol. Nutr. 2016, 63, 239–249. [Google Scholar] [CrossRef]
- Muntean, D.M.; Thompson, P.D.; Catapano, A.L.; Stasiolek, M.; Fabis, J.; Muntner, P.; Serban, M.C.; Banach, M. Statin-associated myopathy and the quest for biomarkers: Can we effectively predict statin-associated muscle symptoms? Drug Discov. Today 2017, 22, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Stroes, E.S.; Thompson, P.D.; Corsini, A.; Vladutiu, G.D.; Raal, F.J.; Ray, K.K.; Roden, M.; Stein, E.; Tokgözoğlu, L.; Nordestgaard, B.G.; et al. Statin-associated muscle symptoms: Impact on statin therapy—European Atherosclerosis Society consensus panel statement on assessment, aetiology and management. Eur. Heart J. 2015, 36, 1012–1022. [Google Scholar] [CrossRef] [PubMed]
- SEARCH Collaborative Group. SLCO1B1 variants and statin-induced myopathy—A genomewide study. N. Engl. J. Med. 2008, 359, 789–799. [Google Scholar] [CrossRef]
- Stewart, A. SLCO1B1 polymorphisms and statin-induced myopathy. PLoS Curr. 2013, 5. [Google Scholar] [CrossRef]
- Brunham, L.R.; Baker, S.; Mammen, A.; Mancini, G.J.; Rosenson, R.S. Role of genetics in the prediction of statin-associated muscle symptoms and optimization of statin use and adherence. Cardiovasc. Res. 2018, 114, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, K.; Sivaramakrishnan, G. Genetic Determinants of Statin-induced Myopathy: A Network Meta-analysis of Observational Studies. Curr. Rev. Clin. Exp. Pharmacol. 2025; in press. [Google Scholar] [CrossRef] [PubMed]
| Variables | Group1 Anti-HMGCR IMNM Patients (n = 11) | Group 2 Non-Immune Myotoxicity (n = 20) | Group 3 Controls (n = 31) | p (Group 1 vs. Group 2) |
|---|---|---|---|---|
| Demographic features | ||||
| Age at diagnosis (years), mean ± SD | 66.7 ± 7.9 | 58.3 ± 9.5 | 67.0 ± 10.6 | 0.018 |
| Sex (women), n (%) | 6 (54.5) | 10 (50) | 21 (72.4) | 0.81 |
| Current and former smokers, n (%) | 5 (45.5) | 13 (65) | 10 (34.5) | 0.29 |
| Hypertension, n (%) | 9 (81.8) | 8 (40) | 14 (48.3) | 0.03 |
| Type 2 Diabetes mellitus, n (%) | 9 (81.8) | 0 (0) | 2 (6.8) | <0.01 |
| Previous diagnosis of hypothyroidism requiring hormone replacement, n (%) | 4 (36.4) | 3 (15) | 3 (10.3) | 0.21 |
| Statin exposure | ||||
| Number of received statins, median [IQR] | 1 [1–2] | 2 [1–2] | 1 [1–1] | 0.23 |
| Type of statin, | ||||
| - Atorvastatin, n (%) | 11 (100) | 12 (60) | 20 (68.9) | 0.01 |
| - Rosuvastatin, n (%) | 2 (18.2) | 9 (45) | 5 (17.2) | 0.14 |
| - Simvastatin, n (%) | 1 (9.1) | 6 (30) | 7 (24.1) | 0.18 |
| - Pitavastatin, n (%) | 1 (9.1) | 7 (35) | 3 (10.3) | 0.12 |
| Time receiving statins (months), median [IQR] | 72 [24–84] | 54 [22–96] | 60 [36–84] | 0.92 |
| Clinical manifestations | ||||
| Duration of symptoms after diagnosis (months), mean ± SD | 4 [3–6] | 3.5 [2–8] | - | 0.65 |
| Myalgias, n (%) | 10 (90.9) | 11 (55) | 0 (0) | 0.04 |
| Muscle weakness | 11 (100) | 4 (20) | 0 (0) | <0.01 |
| Proximal lower limb predominance, n (%) | 9 (81.8) | 0 (0) | 0 (0) | <0.01 |
| Neck weakness, n (%) | 2 (25) | 0 (0) | 0 (0) | 0.05 |
| Dysphagia, n (%) | 2 (25) | 0 (0) | 0 (0) | 0.05 |
| Laboratory parameters | ||||
| Elevated CK, n (%) | 11 (100) | 17 (85) | 0 (0) | 0.54 |
| CK (IU/L), median [IQR] | 4276 [2294–9271] | 494 [214–828] | - | <0.01 |
| LDH (mg/dL), median [IQR] | 466 [375–876] | 216 [194–314] | - | <0.01 |
| AST (mg/dL), median [IQR] | 122 [88–272] | 38 [27–66] | - | <0.01 |
| ALT (mg/dL), median [IQR] | 160 [144–377] | 41 [27–56] | - | <0.01 |
| CRP (mg/dL), median [IQR] | 0.8 [0.6–3.0] | 0.2 [0.2–0.6] | - | <0.01 |
| ESR (mm/1st hour), median [IQR] | 27.0 [12–60] | 18 [12–20] | - | 0.09 |
| Low vitamin D levels, n/N (%) | 9/9 (100) | 12/16 (75) | 2 (6.9) | 0.26 |
| Elevated TSH, n (%) | 4 (36) | 3 (15) | 0 (0) | 0.17 |
| Variables | Group 1 Anti-HMGCR IMNM Patients (n = 11) | Group 2 Non-Immune Myotoxicity (n = 20) | Group 3 Controls (n = 29) | p * |
|---|---|---|---|---|
| HLA-DRB1*11 Allele Frequencies | ||||
| HLA-DRB1*11, n (%) | 9 (81.8) | 5 (25) | 5 (17.2) | <0.01 |
| *11:01, n (%) | 8 (72.7) | 2 (10) | 3 (10.3) | <0.01 |
| *11:02, n (%) | 0 (0) | 1 (5) | 1 (3.5) | 0.73 |
| *11:04, n (%) | 1 (9.1) | 2 (10) | 1 (3.5) | 0.90 |
| SLCO1B1 rs4149056 | ||||
| TT | 9 (81.8) | 11 (55) | 20 (64.5) | - |
| TC | 2 (18.2) | 7 (35) | 11 (35.5) | 0.24 |
| CC | 0 (0) | 2 (10) | 0 (0) | - |
| T | 20 (90.9) | 29 (72.5) | 51 (82.3) | - |
| C | 2 (9.1) | 11 (27.5) | 11 (17.7) | 0.09 |
| Patients with Non-Immune Mediated Myotoxicity vs. Controls | Patients with Anti-HMGCR IMNM vs. Controls | Patients with Anti-HMGCR IMNM vs. Patients with Non-Immune Myotoxicity | ||||
|---|---|---|---|---|---|---|
| OR [95% CI] | p | OR [95% CI] | p | OR [95% CI] | p | |
| HLA-DRB1*11 | 1.73 [0.33–8.84] | 0.44 | 23.4 [3.13–256.11] | <0.01 | 13.5 [1.73–153.21] | <0.01 |
| *11:01 | 1.04 [0.08–10.00] | 0.97 | 24.89 [3.27–213.99] | <0.01 | 24.0 [2.57–293.86] | <0.01 |
| *11:02 | 1.58 [0.02–128.00] | 0.75 | - | 0.56 | - | 0.46 |
| *11:04 | 3.33 [0.16–203.06] | 0.32 | 3.00 [0.03–243.15] | 0.43 | 0.90 [0.014–19.48] | 0.93 |
| Patients with Myotoxicity vs. Controls | Patients with Anti-HMGCR IMNM vs. Controls | Patients with Anti-HMGCR IMNM vs. Patients with Myotoxicity | ||||
|---|---|---|---|---|---|---|
| OR [95% CI] | p | OR [95% CI] | p | OR [95% CI] | p | |
| TT | Ref. | - | Ref. | - | Ref. | - |
| TC | 1.16 [0.2–4.4] | 0.81 | 0.4 [0.04–2.5] | 0.29 | 2.86 [0.39–33.8] | 0.24 |
| CC | - | 0.07 | - | - | - | 0.22 |
| T | Ref. | - | Ref. | - | Ref. | - |
| C | 1.76 [0.60–5.0] | 0.24 | 0.46 [0.05–2.4] | 0.34 | 3.79 [0.69–38] | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prieto-Peña, D.; Urriago-Gil, J.D.; Ocejo-Vinyals, G.; García-Ibarbia, C.; Salmon-González, Z.; Martin-Millán, M.; Corrales-Selaya, C.; Pulito-Cueto, V.; López-Mejías, R.; Blanco, R.; et al. Genetic Biomarkers for Statin-Induced Myopathy. Int. J. Mol. Sci. 2025, 26, 11144. https://doi.org/10.3390/ijms262211144
Prieto-Peña D, Urriago-Gil JD, Ocejo-Vinyals G, García-Ibarbia C, Salmon-González Z, Martin-Millán M, Corrales-Selaya C, Pulito-Cueto V, López-Mejías R, Blanco R, et al. Genetic Biomarkers for Statin-Induced Myopathy. International Journal of Molecular Sciences. 2025; 26(22):11144. https://doi.org/10.3390/ijms262211144
Chicago/Turabian StylePrieto-Peña, Diana, Juan David Urriago-Gil, Gonzalo Ocejo-Vinyals, Carmen García-Ibarbia, Zaida Salmon-González, Marta Martin-Millán, Cristina Corrales-Selaya, Verónica Pulito-Cueto, Raquel López-Mejías, Ricardo Blanco, and et al. 2025. "Genetic Biomarkers for Statin-Induced Myopathy" International Journal of Molecular Sciences 26, no. 22: 11144. https://doi.org/10.3390/ijms262211144
APA StylePrieto-Peña, D., Urriago-Gil, J. D., Ocejo-Vinyals, G., García-Ibarbia, C., Salmon-González, Z., Martin-Millán, M., Corrales-Selaya, C., Pulito-Cueto, V., López-Mejías, R., Blanco, R., & Hernandez, J. L. (2025). Genetic Biomarkers for Statin-Induced Myopathy. International Journal of Molecular Sciences, 26(22), 11144. https://doi.org/10.3390/ijms262211144

