Regeneration of Peripheral Blood T-Cell Subpopulations in Children After Completion of Acute Lymphoblastic Leukemia Treatment
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ALL | acute lymphoblastic leukemia |
| BM | bone marrow |
| CMV | cytomegalovirus |
| EBV | Epstein–Barr virus |
| PB | peripheral blood |
References
- Drożak, P.; Bryliński, Ł.; Zawitkowska, J. A Comprehensive Overview of Recent Advances in Epigenetics in Pediatric Acute Lymphoblastic Leukemia. Cancers 2022, 14, 5384. [Google Scholar] [CrossRef]
- Malczewska, M.; Kośmider, K.; Bednarz, K.; Ostapińska, K.; Lejman, M.; Zawitkowska, J. Recent Advances in Treatment Options for Childhood Acute Lymphoblastic Leukemia. Cancers 2022, 14, 2021. [Google Scholar] [CrossRef]
- Vllahu, M.; Savarese, M.; Cantiello, I.; Munno, C.; Sarcina, R.; Stellato, P.; Leone, O.; Alfieri, M. Application of Omics Analyses in Pediatric B-Cell Acute Lymphoblastic Leukemia. Biomedicines 2025, 13, 424. [Google Scholar] [CrossRef]
- Lee, J.W.; Cho, B. Prognostic factors and treatment of pediatric acute lymphoblastic leukemia. Korean J. Pediatr. 2017, 60, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.L.; Liao, E.C.; Li, C.L.; Yen, C.Y.; Yu, S.J. Pathogenesis of pediatric B-cell acute lymphoblastic leu-kemia: Molecular pathways and disease treatments (Review). Oncol. Lett. 2020, 20, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Inaba, H.; Pui, C.H. Immunotherapy in pediatric acute lymphoblastic leukemia. Cancer Metastasis Rev. 2019, 38, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Bloom, M.; Maciaszek, J.L.; Clark, M.E.; Pui, C.H.; Nichols, K.E. Recent advances in genetic predisposition to pediatric acute lymphoblastic leukemia. Expert Rev. Hematol. 2019, 13, 55–70. [Google Scholar] [CrossRef]
- Moriyama, T.; Relling, M.V.; Yang, J.J. Inherited genetic variation in childhood acute lymphoblastic leuke-mia. Blood 2015, 125, 3988–3995. [Google Scholar] [CrossRef]
- Poele, E.M.T.; Tissing, W.J.E.; Kamps, W.A.; de Bont, E.S.J.M. Risk assessment in fever and neutropenia in children with cancer: What did we learn? Crit. Rev. Oncol. 2009, 72, 45–55. [Google Scholar] [CrossRef]
- Salem, M.L.; El-Shanshory, M.R.; El-Desouki, N.I.; Abdou, S.H.; Attia, M.A.; Zidan, A.-A.A.; Mourad, S.S. Children with acute lymphoblastic leukemia show high numbers of CD4+ and CD8+ T-cells which are reduced by conventional chemotherapy. Clin. Cancer Investig. J. 2015, 4, 603. [Google Scholar] [CrossRef]
- Sun, L.; Su, Y.; Jiao, A.; Wang, X.; Zhang, B. T cells in health and disease. Signal Transduct. Target. Ther. 2023, 8, 235. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Lurwan, M.; Halliru, S.; Salihi, A. Role of T-Helper cells (CD4+ T Cells) in human immune system against some microbial infection: A mini review. Int. J. Clin. Microbiol. Biochem. Technol. 2020, 3, 026–029. [Google Scholar] [CrossRef]
- Mackall, C.L.; Fleisher, T.A.; Brown, M.R.; Andrich, M.P.; Chen, C.C.; Feuerstein, I.M.; Magrath, I.T.; Wexler, L.H.; Dimitrov, D.S.; Gress, R.E. Distinctions Between CD8+ and CD4+ T-Cell Regenerative Pathways Result in Prolonged T-Cell Subset Imbalance After Intensive Chemotherapy. Blood 1997, 89, 3700–3707. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Q.; Lim, P.Y.; Tan, A.H.-M. Gamma/delta T cells as cellular vehicles for anti-tumor immunity. Front. Immunol. 2024, 14, 1282758. [Google Scholar] [CrossRef]
- Subhi-Issa, N.; Manzano, D.T.; Rodriguez, A.P.; Ramon, S.S.; Segura, P.P.; Ocaña, A. γδ T Cells: Game Changers in Immune Cell Therapy for Cancer. Cancers 2025, 17, 1063. [Google Scholar] [CrossRef]
- van Tilburg, C.M.; van Gent, R.; Bierings, M.B.; Otto, S.A.; Sanders, E.A.M.; Nibbelke, E.E.; Gaiser, J.F.; Janssens-Korpela, P.L.; Wolfs, T.F.W.; Bloem, A.C.; et al. Immune reconstitution in children following chemotherapy for haematological malig-nancies: A long-term follow-up. Br. J. Haematol. 2010, 152, 201–210. [Google Scholar] [CrossRef]
- Haining, W.N.; Neuberg, D.S.; Keczkemethy, H.L.; Evans, J.W.; Rivoli, S.; Gelman, R.; Rosenblatt, H.M.; Shearer, W.T.; Guenaga, J.; Douek, D.C.; et al. Antigen-specific T-cell memory is preserved in children treated for acute lymphoblastic leukemia. Blood 2005, 106, 1749–1754. [Google Scholar] [CrossRef]
- Kerr, J.R. Epstein-Barr virus (EBV) reactivation and therapeutic inhibitors. J. Clin. Pathol. 2019, 72, 651–658. [Google Scholar] [CrossRef]
- Bateman, C.M.; Kesson, A.; Powys, M.; Wong, M.; Blyth, E. Cytomegalovirus infections in children with pri-mary and secondary immune deficiencies. Viruses 2021, 13, 2001. [Google Scholar] [CrossRef]
- Zhang, G.; Bai, M.; Du, H.; Yuan, Y.; Wang, Y.; Fan, W.; Zhu, H.; Wu, D.; He, P.; Xue, B. Current Advances and Challenges in CAR-T Therapy for Hematological and Solid Tumors. ImmunoTargets Ther. 2025, 14, 655–680. [Google Scholar] [CrossRef]
- Hao, Y.; Hu, T.-Y.; Zhao, M.-Z.; Zeng, X.-H.; Li, K.; Cheng, B.-H.; Liu, D.-B. The Role of Type 2 Innate Lymphoid Cells in Adenoid Hypertrophy with Allergic Rhinitis Among Children and Related Potential Therapeutic Targets. J. Inflamm. Res. 2025, 18, 8593–8605. [Google Scholar] [CrossRef]
- Oldenburg, M.; Rüchel, N.; Janssen, S.; Borkhardt, A.; Gössling, K.L. The microbiome in childhood acute lym-phoblastic leukemia. Cancers 2021, 13, 4947. [Google Scholar] [CrossRef]
- Ronan, V.; Yeasin, R.; Claud, E.C. Childhood Development and the Microbiome—The Intestinal Microbiota in Maintenance of Health and Development of Disease During Childhood Development. Gastroenterology 2020, 160, 495–506. [Google Scholar] [CrossRef]
- Todor, S.B.; Ichim, C. Microbiome Modulation in Pediatric Leukemia: Impact on Graft-Versus-Host Disease and Treatment Outcomes: A Narrative Review. Children 2025, 12, 166. [Google Scholar] [CrossRef] [PubMed]
- Kared, H.; Martelli, S.; Ng, T.P.; Pender, S.L.F.; Larbi, A. CD57 in human natural killer cells and T-lymphocytes. Cancer Immunol. Immunother. 2016, 65, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Strioga, M.; Pasukoniene, V.; Characiejus, D. CD8+ CD28− and CD8+ CD57+ T cells and their role in health and disease. Immunology 2011, 134, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.J.; Murphy, K.E.; Kunkel, E.J.; Brightling, C.E.; Soler, D.; Shen, Z.; Boisvert, J.; Greenberg, H.B.; Vierra, M.A.; Goodman, S.B.; et al. CCR7 Expression and Memory T Cell Diversity in Humans. J. Immunol. 2001, 166, 877–884. [Google Scholar] [CrossRef]
- Mehta, R.S.; Rezvani, K. Immune reconstitution post allogeneic transplant and the impact of immune recov-ery on the risk of infection. Virulence 2016, 7, 901–916. [Google Scholar] [CrossRef]
- Gress, R.E.; Emerson, S.G.; Drobyski, W.R. Immune Reconstitution: How It Should Work, What’s Broken, and Why It Matters. Biol. Blood Marrow Transplant. 2010, 16 (Suppl. S1), S133–S137. [Google Scholar] [CrossRef]
- Derwich, K.; Wachowiak, J.; Zając-Spychała, O.; Balcerska, A.; Balwierz, W.; Chybicka, A.; Kowalczyk, J.R.; Matysiak, M.; Jackowska, T.; Sońta-Jakimczyk, D.; et al. Long-term results in children with standard risk acute lymphoblastic leukaemia treated with 5.0 g/m2 versus 3.0 g/m2 methotrexate i.v. according to the modified ALL-BFM 90 protocol. The report of Polish paediatric Leukemia/lymphoma study group. Memo-Mag. Eur. Med. Oncol. 2011, 4, 184–189. [Google Scholar] [CrossRef]
- Kowalczyk, J.R.; Zawitkowska, J.; Lejman, M.; Drabko, K.; Samardakiewicz, M.; Matysiak, M.; Romiszewski, M.; Balwierz, W.; Ćwiklińska, M.; Kazanowska, B.; et al. Long-term treatment results of Polish pediatric and adolescent patients enrolled in the ALL IC-BFM 2002 trial. Am. J. Hematol. 2019, 94, E307–E310. [Google Scholar] [CrossRef]
- Zawitkowska, J.; Lejman, M.; Romiszewski, M.; Matysiak, M.; Ćwiklińska, M.; Balwierz, W.; Owoc-Lempach, J.; Kazanowska, B.; Derwich, K.; Wachowiak, J.; et al. Results of two consecutive treatment protocols in Polish children with acute lymphoblastic leukemia. Sci. Rep. 2020, 10, 20168. [Google Scholar] [CrossRef]
- Kalina, T.; Flores-Montero, J.; van der Velden, V.H.J.; Martin-Ayuso, M.; Böttcher, S.; Ritgen, M.; Almeida, J.; Lhermitte, L.; Asnafi, V.; Mendonça, A.; et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping pro-tocols. Leukemia 2012, 26, 1986–2010. [Google Scholar] [CrossRef]
| Population | Study Group [G/l] Median (IQR) | Control Group [G/l] Median (IQR) | p |
|---|---|---|---|
| Leukocytes | 5.87 (3.85–8.03) | 7.45 (4.86–10.09) | <0.05 |
| Total Lymphocytes | 3.48 (1.54–5.42) | 2.20 (1.74–2.62) | 0.004 |
| B cells | 0.55 (0.35–0.71) | 0.37 (0.30–0.48) | 0.2 |
| T cells | 2.45 (2.15–2.59) | 1.87 (1.73–2.02) | 0.24 |
| Granulocytes | 3.52 (0.85–6.19) | 3.89 (3.08–4.33) | 0.003 |
| Monocytes | 0.72 (0.63–0.96) | 0.58 (0.40–0.70) | 0.09 |
| Population | Study Group [G/l] Median (IQR) | Control Group [G/l] Median (IQR) | p |
|---|---|---|---|
| TCRαβ+ T cells | 1.80 (1.75–1.84) | 1.69 (1.61–1.71) | 0.43 |
| TCRγδ+ T cells | 0.23 (0.19–0.29) | 0.11 (0.08–0.18) | 0.002 |
| CD4+ T cells | 0.98 (0.90–1.17) | 0.97 (0.89–1.11) | 0.35 |
| CD8+ T cells | 0.84 (0.57–0.90) | 0.63 (0.55–0.72) | 0.04 |
| CD4+CD8+ T cells | 0.22 (0.06–0.39) | 0.14 (0.03–0.24) | 0.001 |
| CD4+/CD8+ ratio | 1.21 (1.04–2.06) | 1.47 (1.22–1.97) | 0.02 |
| Population | Study Group [G/l] Median (IQR) | Control Group [G/l] Median (IQR) | p |
|---|---|---|---|
| Naïve T cells | |||
| CD45RA+ T cells | 0.19 (1.08–1.30) | 1.10 (0.97–1.21) | 0.28 |
| CD45RA+CD4+ T cells | 0.55 (0.46–0.68) | 0.56 (0.45–0.64) | 0.51 |
| CD45RA+CD8+ T cells | 0.52 (0.41–0.64) | 0.43 (0.35–0.53) | 0.06 |
| CD45RA+CD27+ T cells | 1.06 (0.90–1.20) | 1.03 (0.84–1.17) | 0.25 |
| Memory T cells | |||
| CD45RO+ T cells | 1.03 (0.88–1.11) | 0.78 (0.64–0.90) | 0.003 |
| CD45RO+CD4+ T cells | 0.51 (0.41–0.67) | 0.49 (0.39–0.58) | 0.06 |
| CD45RO+CD8+ T cells | 0.29 (0.25–0.40) | 0.20 (0.16–0.26) | 0.0006 |
| CD45RO+CD27+ T cells | 0.85 (0.72–1.04) | 0.67 (0.57–0.76) | 0.003 |
| CD45RO+CD28+ T cells | 0.57 (0.43–0.74) | 0.51 (0.46–0.63) | 0.57 |
| Population | Study [G/l] Mean ± SD | Control group [G/l] Mean ± SD | p |
|---|---|---|---|
| Activated T cells | |||
| CD25+ T cells | 0.17 ± 0.08 | 0.15 ± 0.09 | 0.16 |
| CD25+CD8+ T cells | 0.04 ± 0.04 | 0.04 ± 0.08 | 0.03 |
| HLA-DR+ T cells | 0.32 ± 0.19 | 0.18 ± 0.11 | 0.00003 |
| HLA-DR+CD8+ T cells | 0.18 ± 0.15 | 0.1 ± 0.09 | 0.001 |
| CD69+ T cells | 0.1 ± 0.1 | 0.15 ± 0.09 | 0.001 |
| HLA-DR+CD69+ T cells | 0.04 ± 0.04 | 0.03 ± 0.04 | 0.09 |
| HLA-DR+CD57+ T cells | 0.09 ± 0.07 | 0.04 ± 0.04 | 0.01 |
| Regulatory T cells | |||
| CD25+CD4+ T cells | 0.12 ± 0.06 | 0.11 ± 0.05 | 0.68 |
| Population | Study Group [G/l] Median (IQR) | Control Group [G/l] Median (IQR) | p |
|---|---|---|---|
| Vα24+ T cells | 0.01 (0.008–0.013) | 0.01 (0.01–0.01) | 0.38 |
| Vα24+CD8+ T cells | 0.004 (0.02–0.004) | 0.002 (0.001–0.003) | 0.04 |
| Vα24+CD4+ T cells | 0.01 (0.005–0.01) | 0.01 (0.004–0.01) | 0.47 |
| Vβ11+ T cells | 0.02 (0.01–0.02) | 0.01 (0.01–0.02) | 0.1 |
| Vβ11+CD8+ T cells | 0.006 (0.003–0.01) | 0.01 (0.004–0.01) | 0.16 |
| Vβ11+CD4+ T cells | 0.01 (0.01–0.01) | 0.01 (0.01–0.01) | 0.29 |
| Perforin+ T cells | 0.02 (0.01–0.06) | 0.05 (0.01–0.12) | 0.26 |
| Perforin+CD8+ T cells | 0.02 (0.003–0.04) | 0.03 (0.01–0.07) | 0.5 |
| CD56+ T cells | 0.04 (0.02–0.07) | 0.05 (0.03–0.07) | 0.41 |
| CD56+CD8+ T cells | 0.02 (0.01–0.03) | 0.03 (0.01–0.05) | 0.23 |
| CD16+ T cells | 0.02 (0.01–0.03) | 0.01 (0.01–0.03) | 0.83 |
| CD16+CD8+ T cells | 0.01 (0.01–0.01) | 0.01 (0.003–0.01) | 0.43 |
| CD94+ T cells | 0.14 (0.12–0.20) | 0.10 (0.08–0.13) | 0.79 |
| CD57+ T cells | 0.22 (0.16–0.31) | 0.15 (0.13–0.20) | 0.001 |
| Population | Study Group [G/l] Median (IQR) | Control Group [G/l] Median (IQR) | p |
|---|---|---|---|
| CCR7+ T cells | 0.59 (0.49–0.83) | 0.06 (0.03–0.24) | <0.05 |
| CCR7+CD45RO+ T cells | 0.10 (0.07–0.13) | 0.02 (0.02–0.01) | 0.001 |
| CCR7+CD28+ T cells | 0.59 (0.49–0.82) | 0.05 (0.03–0.24) | <0.05 |
| CXCR4+ T cells | 0.78 (0.62–0.96) | 0.38 0.25–0.72) | 0.12 |
| CXCR4+CD4+ T cells | 0.25 (0.16–0.41) | 0.13 (0.09–0.25) | 0.32 |
| CXCR4+CD8+ T cells | 0.42 (0.34–0.66) | 0.19 (0.10–0.38) | 0.01 |
| CXCR4+CCR5+ T cells | 0.10 (0.03–0.20) | 0.07 (0.01–0.13) | 0.62 |
| CCR5+ T cells | 0.34 (0.22–0.45) | 0.33 (0.21–0.47) | 0.27 |
| CCR5+CD8+ T cells | 0.16 (0.10–0.21) | 0.16 (0.11–0.29) | 0.22 |
| CCR5+CD4+ T cells | 0.07 (0.04–0.12) | 0.08 (0.05–0.14) | 0.16 |
| CCR4+ T cells | 0.23 (0.21–0.29) | 0.18 (0.11–0.31) | 0.13 |
| CCR4+CD8+ T cells | 0.06 (0.03–0.11) | 0.03 (0.01–0.08) | 0.05 |
| CCR4+CD4+ T cells | 0.17 (0.15–0.21) | 0.15 (0.10–0.18) | 0.06 |
| CXCR3+ T cells | 0.98 (0.93–1.13) | 0.81 (0.73–0.92) | 0.1 |
| CXCR3+CD8+ T cells | 0.55 (0.47–0.64) | 0.43 (0.37–0.51) | 0.36 |
| CXCR3+CCR5+ T cells | 0.27 (0.17–0.36) | 0.24 (0.17–0.32) | 0.5 |
| CXCR3+CXCR4+ T cells | 0.39 (0.30–0.54) | 0.17 (0.08–0.32) | 0.04 |
| FITC | PE | PerCPCy5.5 | PE-Cy7 | APC | APC-Cy7 | |
|---|---|---|---|---|---|---|
| 1 | CD3 | CD16+CD56 | CD45 | -- | CD19 | -- |
| 2 | CD15 | CD13 | CD45 | CD16 | CD11b | CD14 |
| 3 | CD2 | CD56 | CD3 | CD7 | CD5 | CD8 |
| 4 | CD27 | CD45RA | CD3 | CD4 | CD45RO | CD8 |
| 5 | CD28 | CCR7 | CD3 | CD8 | CD45RO | CD27 |
| 6 | TCRαβ | TCRγδ | CD3 | CD8 | CD25 | CD4 |
| 7 | CD94 | CD16 | CD3 | CD56 | CD8 | CD2 |
| 8 | CD57 | Perforin | CD3 | CD16 | HLA-DR | CD8 |
| 9 | CD57 | CD38 | CD3 | CD69 | HLA-DR | CD8 |
| 10 | Vα24 | Vβ11 | CD3 | CD56 | CD4 | CD8 |
| 11 | CD4 | CXCR3 | CD3 | CCR5 | CXCR4 | CD8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perkowski, B.; Słota, Ł.; Lasia, A.; Szczepański, T.; Sędek, Ł. Regeneration of Peripheral Blood T-Cell Subpopulations in Children After Completion of Acute Lymphoblastic Leukemia Treatment. Int. J. Mol. Sci. 2025, 26, 11107. https://doi.org/10.3390/ijms262211107
Perkowski B, Słota Ł, Lasia A, Szczepański T, Sędek Ł. Regeneration of Peripheral Blood T-Cell Subpopulations in Children After Completion of Acute Lymphoblastic Leukemia Treatment. International Journal of Molecular Sciences. 2025; 26(22):11107. https://doi.org/10.3390/ijms262211107
Chicago/Turabian StylePerkowski, Bartosz, Łukasz Słota, Aleksandra Lasia, Tomasz Szczepański, and Łukasz Sędek. 2025. "Regeneration of Peripheral Blood T-Cell Subpopulations in Children After Completion of Acute Lymphoblastic Leukemia Treatment" International Journal of Molecular Sciences 26, no. 22: 11107. https://doi.org/10.3390/ijms262211107
APA StylePerkowski, B., Słota, Ł., Lasia, A., Szczepański, T., & Sędek, Ł. (2025). Regeneration of Peripheral Blood T-Cell Subpopulations in Children After Completion of Acute Lymphoblastic Leukemia Treatment. International Journal of Molecular Sciences, 26(22), 11107. https://doi.org/10.3390/ijms262211107

