Beta Interferon 1a and Laquinimod Differentially Affect Coagulation-Related Gene Expression in Multiple Sclerosis Patients: Implications for Clinical Efficacy and Side Effects
Abstract
1. Introduction
2. Results
2.1. LAQ Cohort
2.2. Modulation of Coagulation-Related Genes by LAQ
2.3. Rebif Cohort 1: Modulation of Coagulation-Related Genes by IFN-β1a (Rebif)
2.4. Correlation Between IFN-Stimulated and Coagulation-Related Genes
2.5. Rebif Cohort 2: Cross-Sectional Analysis of Rebif-Treated Versus Untreated Patients
3. Discussion
4. Materials and Methods
4.1. Study Design and Participants
4.2. Sample Processing and RNA Preparation
4.2.1. Gene Expression Profiling
4.2.2. Microarray Analysis
4.2.3. Protein Validation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aharoni, R.; Saada, R.; Eilam, R.; Hayardeny, L.; Sela, M.; Arnon, R. Oral treatment with laquinimod augments regulatory T-cells and brain-derived neurotrophic factor expression and reduces injury in the CNS of mice with experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2012, 251, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Bruck, W.; Pfortner, R.; Pham, T.; Zhang, J.; Hayardeny, L.; Piryatinsky, V.; Hanisch, U.K.; Regen, T.; van Rossum, D.; Brakelmann, L.; et al. Reduced astrocytic NF-kappaB activation by laquinimod protects from cuprizone-induced demyelination. Acta Neuropathol. 2012, 124, 411–424. [Google Scholar] [CrossRef]
- Brück, W.; Wegner, C. Insight into the mechanism of laquinimod action. J. Neurol. Sci. 2011, 306, 173–179. [Google Scholar] [CrossRef]
- Thone, J.; Ellrichmann, G.; Seubert, S.; Peruga, I.; Lee, D.H.; Conrad, R.; Hayardeny, L.; Comi, G.; Wiese, S.; Linker, R.A.; et al. Modulation of autoimmune demyelination by laquinimod via induction of brain-derived neurotrophic factor. Am. J. Pathol. 2012, 180, 267–274. [Google Scholar] [CrossRef]
- Kaye, J.; Piryatinsky, V.; Birnberg, T.; Hingaly, T.; Raymond, E.; Kashi, R.; Amit-Romach, E.; Caballero, I.S.; Towfic, F.; Ator, M.A.; et al. Laquinimod arrests experimental autoimmune encephalomyelitis by activating the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. USA 2016, 113, E6145–E6152. [Google Scholar] [CrossRef]
- Comi, G.; Jeffery, D.; Kappos, L.; Montalban, X.; Boyko, A.; Rocca, M.A.; Filippi, M.; Group, A.S. Placebo-controlled trial of oral laquinimod for multiple sclerosis. N. Engl. J. Med. 2012, 366, 1000–1009. [Google Scholar] [CrossRef]
- Comi, G.; Pulizzi, A.; Rovaris, M.; Abramsky, O.; Arbizu, T.; Boiko, A.; Gold, R.; Havrdova, E.; Komoly, S.; Selmaj, K.; et al. Effect of laquinimod on MRI-monitored disease activity in patients with relapsing-remitting multiple sclerosis: A multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 2008, 371, 2085–2092. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Rocca, M.A.; Pagani, E.; De Stefano, N.; Jeffery, D.; Kappos, L.; Montalban, X.; Boyko, A.N.; Comi, G.; Group, A.S. Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. J. Neurol. Neurosurg. Psychiatry 2014, 85, 851–858. [Google Scholar] [CrossRef]
- Sorensen, P.S.; Comi, G.; Vollmer, T.L.; Montalban, X.; Kappos, L.; Dadon, Y.; Gorfine, T.; Margalit, M.; Sasson, N.; Rubinchick, S.; et al. Laquinimod Safety Profile: Pooled Analyses from the ALLEGRO and BRAVO Trials. Int. J. MS Care 2017, 19, 16–24. [Google Scholar] [CrossRef]
- Vollmer, T.L.; Sorensen, P.S.; Selmaj, K.; Zipp, F.; Havrdova, E.; Cohen, J.A.; Sasson, N.; Gilgun-Sherki, Y.; Arnold, D.L. A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis. J. Neurol. 2014, 261, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Comi, G.; Dadon, Y.; Sasson, N.; Steinerman, J.R.; Knappertz, V.; Vollmer, T.L.; Boyko, A.; Vermersch, P.; Ziemssen, T.; Montalban, X.; et al. CONCERTO: A randomized, placebo-controlled trial of oral laquinimod in relapsing-remitting multiple sclerosis. Mult. Scler. 2022, 28, 608–619. [Google Scholar] [CrossRef]
- Croze, E.; Yamaguchi, K.D.; Knappertz, V.; Reder, A.T.; Salamon, H. Interferon-beta-1b-induced short- and long-term signatures of treatment activity in multiple sclerosis. Pharmacogenom. J. 2013, 13, 443–451. [Google Scholar] [CrossRef]
- Dhib-Jalbut, S.; Marks, S. Interferon-beta mechanisms of action in multiple sclerosis. Neurology 2010, 74 (Suppl. S1), S17–S24. [Google Scholar] [CrossRef]
- Kieseier, B.C. The mechanism of action of interferon-β in relapsing multiple sclerosis. CNS Drugs 2011, 25, 491–502. [Google Scholar] [CrossRef]
- Singh, M.K.; Scott, T.F.; LaFramboise, W.A.; Hu, F.Z.; Post, J.C.; Ehrlich, G.D. Gene expression changes in peripheral blood mononuclear cells from multiple sclerosis patients undergoing beta-interferon therapy. J. Neurol. Sci. 2007, 258, 52–59. [Google Scholar] [CrossRef]
- Wandinger, K.P.; Stürzebecher, C.S.; Bielekova, B.; Detore, G.; Rosenwald, A.; Staudt, L.M.; McFarland, H.F.; Martin, R. Complex immunomodulatory effects of interferon-beta in multiple sclerosis include the upregulation of T helper 1-associated marker genes. Ann. Neurol. 2001, 50, 349–357. [Google Scholar] [CrossRef]
- Jia, H.; Thelwell, C.; Dilger, P.; Bird, C.; Daniels, S.; Wadhwa, M. Endothelial cell functions impaired by interferon in vitro: Insights into the molecular mechanism of thrombotic microangiopathy associated with interferon therapy. Thromb. Res. 2018, 163, 105–116. [Google Scholar] [CrossRef]
- Yang, X.; Cheng, X.; Tang, Y.; Qiu, X.; Wang, Z.; Fu, G.; Wu, J.; Kang, H.; Wang, J.; Wang, H.; et al. The role of type 1 interferons in coagulation induced by gram-negative bacteria. Blood 2020, 135, 1087–1100. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, D.; McGlasson, S.; Jury, A.; Williams, J.; Scolding, N.; Bellamy, C.; Gunther, C.; Ritchie, D.; Gale, D.P.; Kanwar, Y.S.; et al. Type I interferon causes thrombotic microangiopathy by a dose-dependent toxic effect on the microvasculature. Blood 2016, 128, 2824–2833. [Google Scholar] [CrossRef] [PubMed]
- Ryan, T.A.J.; O’Neill, L.A.J. An Emerging Role for Type I Interferons as Critical Regulators of Blood Coagulation. Cells 2023, 12, 778. [Google Scholar] [CrossRef] [PubMed]
- Zilkha-Falb, R.; Gurevich, M.; Hayardeny, L.; Achiron, A. The role of laquinimod in modulation of the immune response in relapsing-remitting multiple sclerosis: Lessons from gene expression signatures. J. Neuroimmunol. 2015, 283, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Shaw, M.A.; Gao, Z.; McElhinney, K.E.; Thornton, S.; Flick, M.J.; Lane, A.; Degen, J.L.; Ryu, J.K.; Akassoglou, K.; Mullins, E.S. Plasminogen Deficiency Delays the Onset and Protects from Demyelination and Paralysis in Autoimmune Neuroinflammatory Disease. J. Neurosci. 2017, 37, 3776. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, M.; Miron, G.; Falb, R.Z.; Magalashvili, D.; Dolev, M.; Stern, Y.; Achiron, A. Transcriptional response to interferon beta-1a treatment in patients with secondary progressive multiple sclerosis. BMC Neurol. 2015, 15, 240. [Google Scholar] [CrossRef]
- Rothhammer, V.; Kenison, J.E.; Li, Z.; Tjon, E.; Takenaka, M.C.; Chao, C.C.; Alves de Lima, K.; Borucki, D.M.; Kaye, J.; Quintana, F.J. Aryl Hydrocarbon Receptor Activation in Astrocytes by Laquinimod Ameliorates Autoimmune Inflammation in the CNS. Neurol. Neuroimmunol. Neuroinflamm 2021, 8, e946. [Google Scholar] [CrossRef]
- Shahriar, S.; Patel, T.D.; Nakka, M.; Grimm, S.L.; Coarfa, C.; Gorelick, D.A. Functional genomic analysis of non-canonical DNA regulatory elements of the aryl hydrocarbon receptor. bioRxiv 2025. [Google Scholar] [CrossRef]
- Kung, T.; Murphy, K.A.; White, L.A. The aryl hydrocarbon receptor (AhR) pathway as a regulatory pathway for cell adhesion and matrix metabolism. Biochem. Pharmacol. 2009, 77, 536–546. [Google Scholar] [CrossRef]
- Frydrych, M.; Janeczek, M.; Małyszek, A.; Nelke, K.; Dobrzyński, M.; Lukaszewski, M. Prothrombotic Rebound After Discontinuation of Direct Oral Anticoagulants Therapy: A Systematic Review. J. Clin. Med. 2024, 13, 6606. [Google Scholar] [CrossRef] [PubMed]
- Saeed, Z.; Sirolli, V.; Bonomini, M.; Gallina, S.; Renda, G. Hallmarks for Thrombotic and Hemorrhagic Risks in Chronic Kidney Disease Patients. Int. J. Mol. Sci. 2024, 25, 8705. [Google Scholar] [CrossRef]
- Goumans, M.J.; Dijke, P.T. TGF-β Signaling in Control of Cardiovascular Function. Cold Spring Harb. Perspect. Biol. 2018, 10, a022210. [Google Scholar] [CrossRef]
- Hinz, B. The extracellular matrix and transforming growth factor-β1: Tale of a strained relationship. Matrix Biol. 2015, 47, 54–65. [Google Scholar] [CrossRef]
- Smith, J.; Rai, V. Novel Factors Regulating Proliferation, Migration, and Differentiation of Fibroblasts, Keratinocytes, and Vascular Smooth Muscle Cells during Wound Healing. Biomedicines 2024, 12, 1939. [Google Scholar] [CrossRef]
- Sillen, M.; Declerck, P.J. Targeting PAI-1 in Cardiovascular Disease: Structural Insights Into PAI-1 Functionality and Inhibition. Front. Cardiovasc. Med. 2020, 7, 622473. [Google Scholar] [CrossRef]
- Tofler, G.H.; Massaro, J.; O’Donnell, C.J.; Wilson, P.W.F.; Vasan, R.S.; Sutherland, P.A.; Meigs, J.B.; Levy, D.; D’Agostino, R.B., Sr. Plasminogen activator inhibitor and the risk of cardiovascular disease: The Framingham Heart Study. Thromb. Res. 2016, 140, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Luttun, A.; Lupu, F.; Storkebaum, E.; Hoylaerts, M.F.; Moons, L.; Crawley, J.; Bono, F.; Poole, A.R.; Tipping, P.; Herbert, J.M.; et al. Lack of plasminogen activator inhibitor-1 promotes growth and abnormal matrix remodeling of advanced atherosclerotic plaques in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 499–505. [Google Scholar] [CrossRef]
- Dassah, M.; Deora, A.B.; He, K.; Hajjar, K.A. The endothelial cell annexin A2 system and vascular fibrinolysis. Gen. Physiol. Biophys. 2009, 28, F20–F28. [Google Scholar] [PubMed]
- Humphreys, S.J.; Whyte, C.S.; Mutch, N.J. “Super” SERPINs-A stabilizing force against fibrinolysis in thromboinflammatory conditions. Front. Cardiovasc. Med. 2023, 10, 1146833. [Google Scholar] [CrossRef]
- Oliver, J.J.; Webb, D.J.; Newby, D.E. Stimulated tissue plasminogen activator release as a marker of endothelial function in humans. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2470–2479. [Google Scholar] [CrossRef] [PubMed]
- Makris, M.; Leach, M.; Beauchamp, N.J.; Daly, M.E.; Cooper, P.C.; Hampton, K.K.; Bayliss, P.; Peake, I.R.; Miller, G.J.; Preston, F.E. Genetic analysis, phenotypic diagnosis, and risk of venous thrombosis in families with inherited deficiencies of protein S. Blood 2000, 95, 1935–1941. [Google Scholar] [CrossRef]
- Sakata, Y.; Aoki, N. Significance of cross-linking of alpha 2-plasmin inhibitor to fibrin in inhibition of fibrinolysis and in hemostasis. J. Clin. Investig. 1982, 69, 536–542. [Google Scholar] [CrossRef]
- Soltani, F.; Welman, M.; Samani, S.E.; Pacis, A.; Lordkipanidzé, M.; Kaartinen, M.T. Factor XIII-A Transglutaminase Contributes to Neutrophil Extracellular Trap (NET)-mediated Fibrin(ogen) Network Formation and Crosslinking. Thromb. Haemost. 2024, 125, 1099–1114. [Google Scholar] [CrossRef]
- Jones Buie, J.N.; Oates, J.C. Role of interferon alpha in endothelial dysfunction: Insights into endothelial nitric oxide synthase-related mechanisms. Am. J. Med. Sci. 2014, 348, 168–175. [Google Scholar] [CrossRef] [PubMed]
- de Jong, H.J.I.; Kingwell, E.; Shirani, A.; Cohen Tervaert, J.W.; Hupperts, R.; Zhao, Y.; Zhu, F.; Evans, C.; van der Kop, M.L.; Traboulsee, A.; et al. Evaluating the safety of β-interferons in MS: A series of nested case-control studies. Neurology 2017, 88, 2310–2320. [Google Scholar] [CrossRef] [PubMed]
- Gérardin, C.; Bihan, K.; Salem, J.E.; Khachatryan, H.; Gerotziafas, G.; Fain, O.; Mekinian, A. Drug-induced antiphospholipid syndrome: Analysis of the WHO international database. Autoimmun. Rev. 2022, 21, 103060. [Google Scholar] [CrossRef] [PubMed]




| Gene Symbol | Gene Name | 1 Month p-Value (FDR) | 1 Month Log2FC | 6 Months p-Value (FDR) | 6 Months Log2FC |
|---|---|---|---|---|---|
| F2 | Coagulation factor II (thrombin) | 8.2 × 10−3 | −1.14 | 5.4 × 10−3 | −1.17 |
| BDKRB2 | Bradykinin receptor B2 | 7.0 × 10−3 | −1.14 | _ | _ |
| PROS1 | Protein S | 9.1 × 10−3 | −1.96 | ||
| F10 | Coagulation factor X | _ | _ | 4.5 × 10−3 | −1.16 |
| F11 | Coagulation factor XI | _ | _ | 4.4 × 10−3 | −1.19 |
| FGA | Fibrinogen alpha chain | _ | _ | 6.3 × 10−3 | −1.11 |
| GPIIb/III3 | Fibrinogen receptor | _ | _ | 1.1 × 10−3 | −1.24 |
| TFPI | Tissue factor pathway inhibitor | _ | _ | 6.4 × 10−3 | −1.16 |
| CPB2 | Carboxypeptidase B2 | _ | _ | 4.2 × 10−3 | −1.13 |
| PLAT | Tissue plasminogen activator | _ | _ | 5.3 × 10−3 | −1.16 |
| SERPINE1 | Plasminogen activator inhibitor-1 | _ | _ | 1.8 × 10−3 | −1.22 |
| PRSS1/3 | Serine proteases | _ | _ | 3.6 × 10−3 | −1.23 |
| Gene Symbol | Gene Name | p Value (FDR) | Log2FC |
|---|---|---|---|
| RHOB | ras homolog family member B | 4.80 × 10−3 | 1.33 |
| SERPINA1 | serpin peptidase inhibitor, clade A, member 1 | 1.80 × 10−3 | 1.23 |
| ANXA2 | annexin A2 | 3.20 × 10−3 | 1.12 |
| ITPK1 | inositol-tetrakisphosphate 1-kinase | 7.00 × 10−3 | 1.07 |
| ARHGEF3 | Rho guanine nucleotide exchange factor (GEF) 3 | 2.20 × 10−3 | 1.07 |
| THBD | thrombomodulin | 1.70 × 10−3 | 1.1 |
| NRAS | neuroblastoma RAS viral (v-ras) oncogene homolog | 9.40 × 10−3 | 1.05 |
| EGFR | epidermal growth factor receptor | 1.00 × 10−2 | 1.03 |
| MAPK11 | mitogen-activated protein kinase 11 | 1.70 × 10−3 | 1 |
| PLCB2 | phospholipase C, beta 2 | 2.00 × 10−3 | 1.02 |
| HNRNPA1 | heterogeneous nuclear ribonucleoprotein A1 | 1.20 × 10−2 | −1.1 |
| GNG7 | guanine nucleotide-binding protein (G protein), gamma 7 | 9.70 × 10−4 | 1.07 |
| F2R | coagulation factor II (thrombin) receptor (PAR1) | 1.60 × 10−2 | −1.1 |
| EGF | epidermal growth factor | 8.50 × 10−3 | −1.1 |
| PROS1 | protein S (alpha) | 7.40 × 10−3 | −1.18 |
| MYLK | myosin light chain kinase | 3.90 × 10−3 | −1.24 |
| MYL9 | myosin, light chain 9, regulatory | 5.60 × 10−3 | −1.33 |
| F13A1 | coagulation factor XIII, A1 polypeptide | 8.13 × 10−3 | −1.39 |
| Gene Symbol | r | Lower CI | Upper CI | p-Value | p-Value (FDR) | Gene Title |
|---|---|---|---|---|---|---|
| Correlation with OAS1 | ||||||
| SRC | 0.96 | 0.87 | 0.99 | 5.59 × 10−7 | 1.03 × 10−4 | SRC proto-oncogene |
| SERPINA1 | 0.94 | 0.79 | 0.98 | 6.24 × 10−6 | 5.77 × 10−4 | serpin peptidase inhibitor, clade A, member 1 |
| F2RL2 | 0.90 | 0.67 | 0.97 | 7.46 × 10−5 | 3.26 × 10−3 | coagulation factor II (thrombin) receptor-like 2 |
| CREB1 | 0.89 | 0.66 | 0.97 | 8.61 × 10−5 | 3.26 × 10−3 | cAMP-responsive element binding protein 1 |
| MAPK1 | 0.89 | 0.66 | 0.97 | 8.80 × 10−5 | 3.26 × 10−3 | mitogen-activated protein kinase 1 |
| ANXA2 | 0.87 | 0.59 | 0.96 | 2.47 × 10−4 | 7.63 × 10−3 | annexin A2 |
| RHOC | 0.83 | 0.49 | 0.95 | 8.00 × 10−4 | 1.88 × 10−2 | ras homolog family member C |
| CREB1 | 0.83 | 0.48 | 0.95 | 8.90 × 10−4 | 1.88 × 10−2 | cAMP-responsive element binding protein 1 |
| NRAS | 0.83 | 0.48 | 0.95 | 9.14 × 10−4 | 1.88 × 10−2 | neuroblastoma RAS viral (v-ras) oncogene |
| Correlation with IFI44L | ||||||
| MMP13 | −0.91 | −0.97 | −0.71 | 3.86 × 10−5 | 5.38 × 10−3 | matrix metallopeptidase 13 |
| TFPI | −0.90 | −0.97 | −0.66 | 7.86 × 10−5 | 5.38 × 10−3 | lipoprotein-associated coagulation inhibitor |
| TBP | −0.89 | −0.97 | −0.66 | 8.72 × 10−5 | 5.38 × 10−3 | TATA box binding protein |
| GATA4 | 0.88 | 0.61 | 0.97 | 1.74 × 10−4 | 8.03 × 10−3 | GATA binding protein 4 |
| PLCB2 | −0.84 | −0.95 | −0.52 | 5.71 × 10−4 | 2.11 × 10−2 | phospholipase C, beta 2 |
| Gene Symbol | Gene Title | p-Value | p Value (FDR) | Log2FC |
|---|---|---|---|---|
| ANXA2 | annexin A2 | 8.04 × 10−8 | 1.06 × 10−5 | 1.18 |
| ARHGEF11 | Rho guanine nucleotide exchange factor 11 | 6.69 × 10−6 | 2.45 × 10−4 | 1.06 |
| ARHGEF12 | Rho guanine nucleotide exchange factor (GEF) 12 | 2.77 × 10−3 | 2.02 × 10−2 | −1.06 |
| ARHGEF18 | Rho/Rac guanine nucleotide exchange factor 18 | 1.45 × 10−4 | 1.24 × 10−2 | −1.06 |
| ARHGEF2 | Rho/Rac guanine nucleotide exchange factor 2 | 1.29 × 10−4 | 2.09 × 10−3 | 1.06 |
| EGFR | epidermal growth factor receptor | 1.36 × 10−4 | 2.19 × 10−3 | 1.02 |
| F13A1 | coagulation factor XIII, A1 polypeptide | 1.01 × 10−2 | 5.00 × 10−2 | −1.17 |
| F2R | coagulation factor II (thrombin) receptor | 1.00 × 10−2 | 4.99 × 10−2 | −1.06 |
| F2RL1 | coagulation factor II (thrombin) receptor-like 1 | 3.94 × 10−3 | 2.63 × 10−2 | 1.06 |
| F5 | coagulation factor V (proaccelerin, labile factor) | 3.37 × 10−4 | 4.25 × 10−3 | 1.08 |
| GATA1 | GATA binding protein 1 (globin transcription factor 1) | 8.80 × 10−3 | 4.69 × 10−2 | −1.02 |
| GNB1 | guanine nucleotide-binding protein, beta polypeptide 1 | 6.70 × 10−3 | 3.87 × 10−2 | 1.05 |
| GNG5 | guanine nucleotide-binding protein (G protein), gamma 5 | 4.89 × 10−7 | 3.69 × 10−5 | 1.10 |
| GNG7 | guanine nucleotide-binding protein (G protein), gamma 7 | 5.86 × 10−5 | 1.16 × 10−3 | −1.06 |
| GRB2 | growth factor receptor-bound protein 2 | 1.02 × 10−3 | 9.68 × 10−3 | 1.07 |
| HNRNPA1 | heterogeneous nuclear ribonucleoprotein A1 | 4.42 × 10−5 | 9.31 × 10−4 | −1.08 |
| ITPK1 | inositol-tetrakisphosphate 1-kinase | 2.40 × 10−3 | 1.81 × 10−2 | 1.06 |
| MAP2K1 | mitogen-activated protein kinase kinase 1 | 5.03 × 10−5 | 1.03 × 10−3 | 1.05 |
| MAPK13 | mitogen-activated protein kinase 13 | 6.11 × 10−3 | 3.63 × 10−2 | −1.02 |
| MAPK14 | mitogen-activated protein kinase 14 | 6.68 × 10−4 | 7.05 × 10−3 | 1.05 |
| MMP13 | matrix metallopeptidase 13 | 3.80 × 10−3 | 2.56 × 10−2 | 1.02 |
| NRAS | neuroblastoma RAS viral (v-ras) oncogene homolog | 1.32 × 10−3 | 1.16 × 10−2 | 1.05 |
| PLCB2 | phospholipase C, beta 2 | 1.52 × 10−6 | 8.58 × 10−5 | 1.02 |
| PRKCA | protein kinase C, alpha | 3.63 × 10−3 | 2.48 × 10−2 | −1.07 |
| PRKCD | protein kinase C, delta | 1.56 × 10−5 | 4.38 × 10−4 | 1.15 |
| PRKCE | protein kinase C, epsilon | 4.65 × 10−3 | 2.97 × 10−2 | 1.02 |
| PRKCI | protein kinase C, iota | 3.27 × 10−3 | 2.29 × 10−2 | 1.02 |
| PRKCZ | protein kinase C, zeta | 4.33 × 10−5 | 9.15 × 10−4 | −1.05 |
| RHOB | ras homolog family member B | 6.69 × 10−7 | 4.67 × 10−5 | 1.33 |
| ROCK1 | Rho-associated, coiled-coil containing protein kinase 1 | 1.48 × 10−4 | 2.32 × 10−3 | 1.05 |
| SERPINA1 | serpin peptidase inhibitor, clade A | 1.46 × 10−5 | 4.19 × 10−4 | 1.23 |
| SOS1 | SOS Ras/Rac guanine nucleotide exchange factor 1 | 5.79 × 10−3 | 3.49 × 10−2 | 1.04 |
| SRC | SRC proto-oncogene, non-receptor tyrosine kinase | 8.21 × 10−4 | 8.23 × 10−3 | 1.06 |
| TBP | TATA box binding protein | 5.44 × 10−3 | 3.33 × 10−2 | 1.03 |
| THBD | thrombomodulin | 2.90 × 10−3 | 2.10 × 10−2 | 1.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurevich, M.; Zilkha-Falb, R.; Chapman, J.; Drori, T. Beta Interferon 1a and Laquinimod Differentially Affect Coagulation-Related Gene Expression in Multiple Sclerosis Patients: Implications for Clinical Efficacy and Side Effects. Int. J. Mol. Sci. 2025, 26, 11106. https://doi.org/10.3390/ijms262211106
Gurevich M, Zilkha-Falb R, Chapman J, Drori T. Beta Interferon 1a and Laquinimod Differentially Affect Coagulation-Related Gene Expression in Multiple Sclerosis Patients: Implications for Clinical Efficacy and Side Effects. International Journal of Molecular Sciences. 2025; 26(22):11106. https://doi.org/10.3390/ijms262211106
Chicago/Turabian StyleGurevich, Michael, Rina Zilkha-Falb, Joab Chapman, and Tali Drori. 2025. "Beta Interferon 1a and Laquinimod Differentially Affect Coagulation-Related Gene Expression in Multiple Sclerosis Patients: Implications for Clinical Efficacy and Side Effects" International Journal of Molecular Sciences 26, no. 22: 11106. https://doi.org/10.3390/ijms262211106
APA StyleGurevich, M., Zilkha-Falb, R., Chapman, J., & Drori, T. (2025). Beta Interferon 1a and Laquinimod Differentially Affect Coagulation-Related Gene Expression in Multiple Sclerosis Patients: Implications for Clinical Efficacy and Side Effects. International Journal of Molecular Sciences, 26(22), 11106. https://doi.org/10.3390/ijms262211106

