Promoter Frame Position Affects Strength and Nature of Circadian Oscillations in hPER2 Luciferase Reporters
Abstract
1. Introduction
2. Results and Discussion
2.1. Generation and Validation of hPER2 Promoter Reporter Constructs
2.2. Assessment of hPER2 Promoter Frame Effects on Oscillations and Comparisons to mPer2 Traces
3. Materials and Methods
3.1. Plasmid Construction
3.2. Cell Culture
3.3. Lentiviral Transductions
3.4. Cell Synchronization and Bioluminescence Recording
3.5. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SCN | Suprachiasmatic nucleus |
| TTFL | Transcriptional-translational feedback loop |
| BMAL1 | Brain and muscle Arnt-like-1 |
| CLOCK | Circadian locomotor output cycles kaput |
| PER | Period |
| CRY | Cryptochrome |
| ChIP | Chromatin immunoprecipitation |
| RT-PCR | Reverse transcription-polymerase chain reaction |
| T-Coffee | Tree-based consistency objective function for alignment evaluation |
| MSA | Multiple sequence alignment |
| HRE | Hypoxia response element |
| luc | Luciferase |
| TSS | Transcription start site |
| PCR | Polymerase chain reaction |
| LB | Luria broth |
| DMEM | Dulbecco’s modified eagle medium |
| FBS | Fetal bovine serum |
| PBS | Phosphate-buffered saline |
References
- Mohawk, J.A.; Takahashi, J.S. Cell Autonomy and Synchrony of Suprachiasmatic Nucleus Circadian Oscillators. Trends Neurosci. 2011, 34, 349–358. [Google Scholar] [CrossRef]
- Welsh, D.K.; Takahashi, J.S.; Kay, S.A. Suprachiasmatic Nucleus: Cell Autonomy and Network Properties. Annu. Rev. Physiol. 2010, 72, 551–577. [Google Scholar] [CrossRef] [PubMed]
- Honma, S. The Mammalian Circadian System: A Hierarchical Multi-Oscillator Structure for Generating Circadian Rhythm. J. Physiol. Sci. 2018, 68, 207–219. [Google Scholar] [CrossRef]
- Takahashi, J.S. Molecular Components of the Circadian Clock in Mammals. Diab. Obes. Metab. 2015, 17, 6–11. [Google Scholar] [CrossRef]
- Cao, X.; Yang, Y.; Selby, C.P.; Liu, Z.; Sancar, A. Molecular Mechanism of the Repressive Phase of the Mammalian Circadian Clock. Proc. Natl. Acad. Sci. USA 2021, 118, e2021174118. [Google Scholar] [CrossRef] [PubMed]
- Ye, R.; Selby, C.P.; Ozturk, N.; Annayev, Y.; Sancar, A. Biochemical Analysis of the Canonical Model for the Mammalian Circadian Clock. J. Biol. Chem. 2011, 286, 25891–25902. [Google Scholar] [CrossRef] [PubMed]
- Schmutz, I.; Ripperger, J.A.; Baeriswyl-Aebischer, S.; Albrecht, U. The Mammalian Clock Component PERIOD2 Coordinates Circadian Output by Interaction with Nuclear Receptors. Genes Dev. 2010, 24, 345–357. [Google Scholar] [CrossRef]
- Xu, H.; Gustafson, C.L.; Sammons, P.J.; Khan, S.K.; Parsley, N.C.; Ramanathan, C.; Lee, H.W.; Liu, A.C.; Partch, C.L. Cryptochrome 1 Regulates the Circadian Clock through Dynamic Interactions with the BMAL1 C-Terminus. Nat. Struct. Mol. Biol. 2015, 22, 476–484. [Google Scholar] [CrossRef]
- Yoo, S.H.; Yamazaki, S.; Lowrey, P.L.; Shimomura, K.; Ko, C.H.; Buhr, E.D.; Siepka, S.M.; Hong, H.K.; Oh, W.J.; Yoo, O.J.; et al. PERIOD2:: LUCIFERASE Real-Time Reporting of Circadian Dynamics Reveals Persistent Circadian Oscillations in Mouse Peripheral Tissues. Proc. Natl. Acad. Sci. USA 2004, 101, 5339–5346. [Google Scholar] [CrossRef]
- Lin, H.H.; Qraitem, M.; Lian, Y.; Taylor, S.R.; Farkas, M.E. Analyses of BMAL1 and PER2 Oscillations in a Model of Breast Cancer Progression Reveal Changes With Malignancy. Integr. Cancer Ther. 2019, 18, 1534735419836494. [Google Scholar] [CrossRef]
- Ramanathan, C.; Khan, S.K.; Kathale, N.D.; Xu, H.; Liu, A.C. Monitoring Cell-Autonomous Circadian Clock Rhythms of Gene Expression Using Luciferase Bioluminescence Reporters. J. Vis. Exp. 2012, 67, 4234. [Google Scholar]
- Yang, N.; Smyllie, N.J.; Morris, H.; Gonçalves, C.F.; Dudek, M.; Pathiranage, D.; Chesham, J.E.; Adamson, A.; Spiller, D.; Zindy, E.; et al. Quantitative Live Imaging of Venus::BMAL1 in a Mouse Model Reveals Complex Dynamics of the Master Circadian Clock Regulator. PLoS Genet. 2020, 16, e1008729. [Google Scholar] [CrossRef] [PubMed]
- Smyllie, N.J.; Pilorz, V.; Boyd, J.; Meng, Q.J.; Saer, B.; Chesham, J.E.; Maywood, E.S.; Krogager, T.P.; Spiller, D.G.; Boot-Handford, R.; et al. Visualizing and Quantifying Intracellular Behavior and Abundance of the Core Circadian Clock Protein PERIOD2. Curr. Biol. 2016, 26, 1880–1886. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.A.; Bagnall, J.S.; Smyllie, N.J.; Begley, N.; Adamson, A.; Fribourgh, J.L.; Spiller, D.G.; Meng, Q.J.; Partch, C.L.; Strimmer, K.; et al. Quantification of Protein Abundance and Interaction Defines a Mechanism for Operation of the Circadian Clock. eLife 2022, 11, e73976. [Google Scholar] [CrossRef] [PubMed]
- Maywood, E.S.; Drynan, L.; Chesham, J.E.; Edwards, M.D.; Dardente, H.; Fustin, J.M.; Hazlerigg, D.G.; O’Neill, J.S.; Codner, G.F.; Smyllie, N.J.; et al. Analysis of Core Circadian Feedback Loop in Suprachiasmatic Nucleus of MCry1-Luc Transgenic Reporter Mouse. Proc. Natl. Acad. Sci. USA 2013, 110, 9547–9552. [Google Scholar] [CrossRef]
- Ono, D.; Honma, K.I.; Honma, S. Circadian and Ultradian Rhythms of Clock Gene Expression in the Suprachiasmatic Nucleus of Freely Moving Mice. Sci. Rep. 2015, 5, 12310. [Google Scholar] [CrossRef]
- Liu, A.C.; Tran, H.G.; Zhang, E.E.; Priest, A.A.; Welsh, D.K.; Kay, S.A. Redundant Function of REV-ERBα and β and Non-Essential Role for Bmal1 Cycling in Transcriptional Regulation of Intracellular Circadian Rhythms. PLoS Genet. 2008, 4, e1000023. [Google Scholar] [CrossRef]
- Smyllie, N.J.; Bagnall, J.; Koch, A.A.; Niranjan, D.; Polidarova, L.; Chesham, J.E.; Chin, J.W.; Partch, C.L.; Loudon, A.S.I.; Hastings, M.H. Cryptochrome Proteins Regulate the Circadian Intracellular Behavior and Localization of PER2 in Mouse Suprachiasmatic Nucleus Neurons. Proc. Natl. Acad. Sci. USA 2022, 119, e2113845119. [Google Scholar] [CrossRef]
- D’Alessandro, M.; Beesley, S.; Kim, J.K.; Jones, Z.; Chen, R.; Wi, J.; Kyle, K.; Vera, D.; Pagano, M.; Nowakowski, R.; et al. Stability of Wake-Sleep Cycles Requires Robust Degradation of the PERIOD Protein. Curr. Biol. 2017, 27, 3454–3467. [Google Scholar] [CrossRef]
- Lee, Y.; Chen, R.; Lee, H.M.; Lee, C. Stoichiometric Relationship among Clock Proteins Determines Robustness of Circadian Rhythms. J. Biol. Chem. 2011, 286, 7033–7042. [Google Scholar] [CrossRef]
- Yoo, S.H.; Ko, C.H.; Lowrey, P.L.; Buhr, E.D.; Song, E.J.; Chang, S.; Yoo, O.J.; Yamazaki, S.; Lee, C.; Takahashi, J.S. A Noncanonical E-Box Enhancer Drives Mouse Period2 Circadian Oscillations in Vivo. Proc. Natl. Acad. Sci. USA 2005, 102, 2608–2613. [Google Scholar] [CrossRef]
- Yamajuku, D.; Shibata, Y.; Kitazawa, M.; Katakura, T.; Urata, H.; Kojima, T.; Nakata, O.; Hashimoto, S. Identification of Functional Clock-Controlled Elements Involved in Differential Timing of Per1 and Per2 Transcription. Nucleic Acids Res. 2010, 38, 7964–7973. [Google Scholar] [CrossRef]
- Ramanathan, C.; Liu, A.C. Developing Mammalian Cellular Clock Models Using Firefly Luciferase Reporter. Methods Mol. Biol. 2018, 1755, 49–64. [Google Scholar]
- Nakajima, Y.; Yamazaki, T.; Nishii, S.; Noguchi, T.; Hoshino, H.; Niwa, K.; Viviani, V.R.; Ohmiya, Y. Enhanced Beetle Luciferase for High-Resolution Bioluminescence Imaging. PLoS ONE 2010, 5, e10011. [Google Scholar] [CrossRef]
- Chhe, K.; Hegde, M.S.; Taylor, S.R.; Farkas, M.E. Circadian Effects of Melatonin Receptor-Targeting Molecules In Vitro. Int. J. Mol. Sci. 2024, 25, 13508. [Google Scholar] [CrossRef]
- Lin, H.H.; Robertson, K.L.; Bisbee, H.A.; Farkas, M.E. Oncogenic and Circadian Effects of Small Molecules Directly and Indirectly Targeting the Core Circadian Clock. Integr. Cancer Ther. 2020, 19, 1534735420924094. [Google Scholar] [CrossRef] [PubMed]
- Lellupitiyage Don, S.S.; Lin, H.H.; Furtado, J.J.; Qraitem, M.; Taylor, S.R.; Farkas, M.E. Circadian Oscillations Persist in Low Malignancy Breast Cancer Cells. Cell Cycle 2019, 18, 2447–2453. [Google Scholar] [CrossRef] [PubMed]
- Altman, B.J.; Hsieh, A.L.; Sengupta, A.; Krishnanaiah, S.Y.; Stine, Z.E.; Walton, Z.E.; Gouw, A.M.; Venkataraman, A.; Li, B.; Goraksha-Hicks, P.; et al. MYC Disrupts the Circadian Clock and Metabolism in Cancer Cells. Cell Metab. 2015, 22, 1009–1019. [Google Scholar] [CrossRef]
- Zhang, E.E.; Liu, A.C.; Hirota, T.; Miraglia, L.J.; Welch, G.; Pongsawakul, P.Y.; Liu, X.; Atwood, A.; Huss, J.W.; Janes, J.; et al. A Genome-Wide RNAi Screen for Modifiers of the Circadian Clock in Human Cells. Cell 2009, 139, 199–210. [Google Scholar] [CrossRef]
- Hirota, T.; Lee, J.W.; St. John, P.C.; Sawa, M.; Iwaisako, K.; Noguchi, T.; Pongsawakul, P.Y.; Sonntag, T.; Welsh, D.K.; Brenner, D.A.; et al. Identification of Small Molecule Activators of Cryptochrome. Science 2012, 337, 1094–1097. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.H.; Robertson, K.L.; Lellupitiyage Don, S.S.; Taylor, S.R.; Farkas, M.E. Chemical Modulation of Circadian Rhythms and Assessment of Cellular Behavior via Indirubin and Derivatives. Methods Enzymol. 2020, 639, 115–140. [Google Scholar]
- Burns, J.N.; Jenkins, A.K.; Xue, X.; Petersen, K.A.; Ketchesin, K.D.; Perez, M.S.; Vadnie, C.A.; Scott, M.R.; Seney, M.L.; Tseng, G.C.; et al. Comparative Transcriptomic Rhythms in the Mouse and Human Prefrontal Cortex. Front. Neurosci. 2024, 18, 1524615. [Google Scholar] [CrossRef]
- Goity, A.; Dovzhenok, A.; Lim, S.; Honh, C.; Loros, J.; Dunlap, J.C.; Larrondo, L.F. Trancriptional Rewiring of an Evolutionarily Conserved Circadian Clock. EMBO J. 2024, 43, 2015–2034. [Google Scholar] [CrossRef] [PubMed]
- Maier, B.; Wendt, S.; Vanselow, J.T.; Wallaeh, T.; Reischl, S.; Oehmke, S.; Sehlosser, A.; Kramer, A. A Large-Scale Functional RNAi Screen Reveals a Role for CK2 in the Mammalian Circadian Clock. Genes. Dev. 2009, 23, 708–718. [Google Scholar] [CrossRef]
- Crosby, P.; Hamnett, R.; Putker, M.; Hoyle, N.P.; Reed, M.; Karam, C.J.; Maywood, E.S.; Stangherlin, A.; Chesham, J.E.; Hayter, E.A.; et al. Insulin/IGF-1 Drives PERIOD Synthesis to Entrain Circadian Rhythms with Feeding Time. Cell 2019, 177, 896–909.e20. [Google Scholar] [CrossRef]
- Xu, Y.; Toh, K.L.; Jones, C.R.; Shin, J.Y.; Fu, Y.H.; Ptáček, L.J. Modeling of a Human Circadian Mutation Yields Insights into Clock Regulation by PER2. Cell 2007, 128, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Vakili, H.; Jin, Y.; Cattini, P.A. Evidence for a Circadian Effect on the Reduction of Human Growth Hormone Gene Expression in Response to Excess Caloric Intake. J. Biol. Chem. 2016, 291, 13823–13833. [Google Scholar] [CrossRef] [PubMed]
- Blaževitš, O.; Bolshette, N.; Vecchio, D.; Guijarro, A.; Croci, O.; Campaner, S.; Grimaldi, B. MYC-Associated Factor MAX Is a Regulator of the Circadian Clock. Int. J. Mol. Sci. 2020, 21, 2294. [Google Scholar] [CrossRef]
- Fang, M.; Kang, H.G.; Park, Y.; Estrella, B.; Zarbl, H. In Vitro Bioluminescence Assay to Characterize Circadian Rhythm in Mammary Epithelial Cells. J. Vis. Exp. 2017, 127, 55832. [Google Scholar]
- Madeira, F.; Madhusoodanan, N.; Lee, J.; Eusebi, A.; Niewielska, A.; Tivey, A.R.N.; Lopez, R.; Butcher, S. The EMBL-EBI Job Dispatcher Sequence Analysis Tools Framework in 2024. Nucleic. Acids. Res. 2024, 52, W521–W525. [Google Scholar] [CrossRef]
- Nakahata, Y.; Yoshida, M.; Takano, A.; Soma, H.; Yamamoto, T.; Yasuda, A.; Nakatsu, T.; Takumi, T. A Direct Repeat of E-Box-like Elements Is Required for Cell-Autonomous Circadian Rhythm of Clock Genes. BMC Mol. Biol. 2008, 9, 1. [Google Scholar] [CrossRef]
- Zhuang, Y.; Li, Z.; Xiong, S.; Sun, C.; Li, B.; Wu, S.A.; Lyu, J.; Shi, X.; Yang, L.; Chen, Y.; et al. Circadian Clocks Are Modulated by Compartmentalized Oscillating Translation. Cell 2023, 186, 3245–3260.e23. [Google Scholar] [CrossRef]
- Lellupitiyage Don, S.S.; Robertson, K.L.; Lin, H.H.; Labriola, C.; Harrington, M.E.; Taylor, S.R.; Farkas, M.E. Nobiletin Affects Circadian Rhythms and Oncogenic Characteristics in a Cell-Dependent Manner. PLoS ONE 2020, 15, e0236315. [Google Scholar] [CrossRef] [PubMed]
- Akashi, M.; Ichise, T.; Mamine, T.; Takumi, T. Molecular Mechanism of Cell-Autonomous Circadian Gene Expression of Period2, a Crucial Regulator of the Mammalian Circadian Clock. Mol. Biol. Cell 2006, 17, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Alexeyev, M.F.; Fayzulin, R.; Shokolenko, I.N.; Pastukh, V. A Retro-Lentiviral System for Doxycycline-Inducible Gene Expression and Gene Knockdown in Cells with Limited Proliferative Capacity. Mol. Biol. Rep. 2010, 37, 1987–1991. [Google Scholar] [CrossRef]
- Wilkins, A.K.; Barton, P.I.; Tidor, B. The Per2 Negative Feedback Loop Sets the Period in the Mammalian Circadian Clock Mechanism. PLoS Comput. Biol. 2007, 3, e242. [Google Scholar] [CrossRef] [PubMed]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalyanaraman, B.; Villafana, G.; Taylor, S.R.; Farkas, M.E. Promoter Frame Position Affects Strength and Nature of Circadian Oscillations in hPER2 Luciferase Reporters. Int. J. Mol. Sci. 2025, 26, 10785. https://doi.org/10.3390/ijms262110785
Kalyanaraman B, Villafana G, Taylor SR, Farkas ME. Promoter Frame Position Affects Strength and Nature of Circadian Oscillations in hPER2 Luciferase Reporters. International Journal of Molecular Sciences. 2025; 26(21):10785. https://doi.org/10.3390/ijms262110785
Chicago/Turabian StyleKalyanaraman, Bhavna, Gabrielle Villafana, Stephanie R. Taylor, and Michelle E. Farkas. 2025. "Promoter Frame Position Affects Strength and Nature of Circadian Oscillations in hPER2 Luciferase Reporters" International Journal of Molecular Sciences 26, no. 21: 10785. https://doi.org/10.3390/ijms262110785
APA StyleKalyanaraman, B., Villafana, G., Taylor, S. R., & Farkas, M. E. (2025). Promoter Frame Position Affects Strength and Nature of Circadian Oscillations in hPER2 Luciferase Reporters. International Journal of Molecular Sciences, 26(21), 10785. https://doi.org/10.3390/ijms262110785

