MicroRNA Signatures in Cardiometabolic Disorders as a Next-Generation Diagnostic Approach: Current Insight
Abstract
1. Introduction
2. Biology of microRNAs
2.1. Biogenesis
2.2. Biological Basis for Diagnostic Utility
3. Diagnostic Insights from Cardiovascular miRNAs
3.1. Acute Myocardial Infarction (AMI)
3.2. Coronary Artery Disease and Atherosclerosis
3.3. Heart Failure
4. Metabolic miRNAs in Diagnosis of Diabetes
5. Inflammatory Crosstalk and Shared miRNA Signatures in Cardiometabolic Diseases
5.1. Anti-Inflammatory Regulatory miRNAs
5.2. Pro-Inflammatory and Remodeling-Associated miRNAs
6. Clinical Translation and Diagnostic Platforms of Circulating miRNAs
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eroglu, T.; Capone, F.; Schiattarella, G.G. The evolving landscape of cardiometabolic diseases. EBioMedicine 2024, 109, 105447. [Google Scholar] [CrossRef]
- Nazir, A.A.-O.; Nazir, A.; Afzaal, U.; Aman, S.; Sadiq, S.U.R.; Akah, O.Z.; Jamal, M.S.W.; Hassan, S.Z. Advancements in Biomarkers for Early Detection and Risk Stratification of Cardiovascular Diseases-A Literature Review. Health Sci. Rep. 2025, 8, e70878. [Google Scholar] [CrossRef]
- Wronska, A. The Role of microRNA in the Development, Diagnosis, and Treatment of Cardiovascular Disease: Recent Developments. J. Pharmacol. Exp. Ther. 2022, 384, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Aleshcheva, G.; Baumeier, C.; Harms, D.; Bock, C.T.; Escher, F.; Schultheiss, H.P. MicroRNAs as novel biomarkers and potential therapeutic options for inflammatory cardiomyopathy. ESC Heart Fail. 2023, 10, 3410–3418. [Google Scholar] [CrossRef]
- Diener, C.A.-O.; Keller, A.A.-O.; Meese, E.A.-O.X. The miRNA-target interactions: An underestimated intricacy. Nucleic Acids Res. 2023, 52, 1544–1557. [Google Scholar] [CrossRef]
- Rayner, K.J.; Moore, K.J. MicroRNA control of high-density lipoprotein metabolism and function. Circ. Res. 2014, 114, 183–192. [Google Scholar] [CrossRef]
- Li, S.; Sun, W.; Zheng, H.; Tian, F. Microrna-145 accelerates the inflammatory reaction through activation of NF-κB signaling in atherosclerosis cells and mice. Biomed. Pharmacother. 2018, 103, 851–857. [Google Scholar] [CrossRef]
- Wang, D.A.-O.; Atanasov, A.A.-O. The microRNAs Regulating Vascular Smooth Muscle Cell Proliferation: A Minireview. Int. J. Mol. Sci. 2019, 20, 324. [Google Scholar] [CrossRef]
- Loggini, A.; Hornik, J.; Hornik, A. The role of microRNAs as super-early biomarkers in acute ischemic stroke: A systematic review. Clin. Neurol. Neurosurg. 2024, 244, 108416. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Tian, T.; Cai, E.L.; Yang, C.; Yang, X. miR-214 Alleviates Ischemic Stroke-Induced Neuronal Death by Targeting DAPK1 in Mice. Front. Neurosci. 2021, 15, 649982. [Google Scholar]
- Caballero-Garrido, E.; Pena-Philippides, J.C.; Lordkipanidze, T.A.-O.; Bragin, D.; Yang, Y.; Erhardt, E.B.; Roitbak, T.A.-O. In Vivo Inhibition of miR-155 Promotes Recovery after Experimental Mouse Stroke. J. Neurosci. 2015, 35, 12446–12464. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Stoica, B.A.; Loane, D.J.; Yang, M.; Abulwerdi, G.; Khan, N.; Kumar, A.; Thom, S.R.; Faden, A.I. Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. J. Neuroinflamm. 2017, 14, 47. [Google Scholar] [CrossRef]
- Hazra, J.; Vijayakumar, A.; Mahapatra, N.R. Emerging role of heat shock proteins in cardiovascular diseases. Adv. Protein Chem. Struct. Biol. 2023, 134, 271–306. [Google Scholar]
- Popat, A.; Jnaneswaran, G.; Yerukala Sathipati, S.; Sharma, P.P. MicroRNAs in cardiac arrhythmias: Mechanisms, biomarkers, and therapeutic frontiers. Heart Rhythm 2025, in press. [Google Scholar] [CrossRef]
- Xu, J.; Shao, T.; Ding, N.; Li, Y.; Li, X. miRNA-miRNA crosstalk: From genomics to phenomics. Brief. Bioinform. 2017, 18, 1002–1011. [Google Scholar] [CrossRef]
- Naderi Yeganeh, P.; Teo, Y.Y.; Karagkouni, D.; Pita-Juárez, Y.; Morgan, S.L.; Slack, F.J.; Vlachos, I.S.; Hide, W.A. PanomiR: A systems biology framework for analysis of multi-pathway targeting by miRNAs. Brief. Bioinform. 2023, 46, bbad418. [Google Scholar] [CrossRef] [PubMed]
- Bofill-De Ros, X.; Vang Ørom, U.A.-O. Recent progress in miRNA biogenesis and decay. RNA Biol. 2023, 21, 36–43. [Google Scholar] [CrossRef]
- Hynes, C.; Kakumani, P.K. Regulatory role of RNA-binding proteins in microRNA biogenesis. Front. Mol. Biosci. 2024, 11, 1374843. [Google Scholar] [CrossRef]
- Salim, U.; Kumar, A.A.-O.; Kulshreshtha, R.; Vivekanandan, P. Biogenesis, characterization, and functions of mirtrons. Wiley Interdiscip. Rev. RNA 2021, 13, e1680. [Google Scholar] [CrossRef]
- Kiyuna, L.A.; Candido, D.S.; Bechara, L.R.G.; Jesus, I.C.G.; Ramalho, L.S.; Krum, B.; Albuquerque, R.P.; Campos, J.C.; Bozi, L.H.M.; Zambelli, V.O.; et al. 4-Hydroxynonenal impairs miRNA maturation in heart failure via Dicer post-translational modification. Eur. Heart J. 2023, 44, 4696–4712. [Google Scholar] [CrossRef] [PubMed]
- Fumarulo, I.A.-O.; De Prisco, A.; Salerno, E.N.M.; Ravenna, S.A.-O.; Vaccarella, M.A.-O.; Garramone, B.A.-O.X.; Burzotta, F.A.-O.; Aspromonte, N. New Frontiers of microRNA in Heart Failure: From Clinical Risk to Therapeutic Applications. J. Clin. Med. 2025, 14, 6361. [Google Scholar] [CrossRef] [PubMed]
- Kuehbacher, A.; Urbich, C.; Fau-Zeiher, A.M.; Zeiher Am Fau-Dimmeler, S.; Dimmeler, S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ. Res. 2007, 101, 59–68. [Google Scholar] [CrossRef]
- Braun, H.; Hauke, M.; Ripperger, A.; Ihling, C.; Fuszard, M.; Eckenstaler, R.A.-O.; Benndorf, R.A.-O. Impact of DICER1 and DROSHA on the Angiogenic Capacity of Human Endothelial Cells. Int. J. Mol. Sci. 2021, 22, 9855. [Google Scholar] [CrossRef]
- Boeddinghaus, J.; Nestelberger, T.; Twerenbold, R.; Koechlin, L.; Meier, M.; Troester, V.; Wussler, D.; Badertscher, P.; Wildi, K.; Puelacher, C.; et al. High-Sensitivity Cardiac Troponin I Assay for Early Diagnosis of Acute Myocardial Infarction. Clin. Chem. 2019, 65, 893–904. [Google Scholar] [CrossRef]
- Melman, Y.F.; Shah, R.; Fau-Das, S.; Das, S. MicroRNAs in heart failure: Is the picture becoming less miRky? Circ. Heart Fail. 2014, 7, 203–214. [Google Scholar] [CrossRef]
- Wang, X.; Lu, Y.; Zhao, R.; Zhu, B.; Liu, J.; Yue, Q.; Wu, R.; Han, S.; Gao, Y.; Chen, J.; et al. Global surveillance of circulating microRNA for diagnostic and prognostic assessment of acute myocardial infarction based on the plasma small RNA sequencing. Biomark. Res. 2024, 12, 143. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, H.; Zhang, K.; Xie, J.; Yuan, C.; Jin, J.; Zhang, J.; Ma, M.; Zhang, Z. Suppression of circ_0091761 ameliorates acute myocardial infarction-induced endothelial injury through regulation of miR-1278. Hereditas 2025, 162, 169. [Google Scholar] [CrossRef]
- Liu, S.; Han, J.; Gao, S. Study on the mechanism and clinical value of miR-210-3p and miR-582-5p in acute myocardial infarction by targeting MXD1. J. Cardiothorac. Surg. 2025, 20, 282. [Google Scholar] [CrossRef]
- Guo, X.; Chen, Y.; Lu, Y.; Li, P.; Yu, H.; Diao, F.R.; Tang, W.D.; Hou, P.; Zhao, X.X.; Shi, C.A.-O. High level of circulating microRNA-142 is associated with acute myocardial infarction and reduced survival. Ir. J. Med. Sci. 2020, 189, 933–937. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Zhang, J.; Wu, X.; Zhang, L.; Liu, Q.; Xiong, R.; Wang, Y.; Li, M.; Wei, R.; Xu, X.; et al. Differential diagnosis of acute myocardial infarction based on plasma Exosomal MicroRNA. Int. J. Leg. Med. 2025; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhao, J.; Zhou, Z.; Xu, W.; Wang, S.; Sun, Q. Circulating microRNA-1 as a diagnostic biomarker for acute myocardial infarction: A meta-analysis. Cardiol. J. 2025. ahead of print. [Google Scholar] [CrossRef]
- Huang, C.; Chng, W.H.; Neupane, Y.R.; Lai, Y.; Cui, W.; Yang, M.; Wolfram, J.; Chong, S.Y.; Yu, X.; Zhang, S.; et al. Adipose stem cell-derived nanovesicles for cardioprotection: Production and identification of therapeutic components. J. Control. Release 2025, 385, 113989. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, X.; Wang, L.; Zhang, J.; Li, W.; Qin, S.; Zhang, M.; Zheng, X.; Li, Y.; Yang, S.; et al. The potential value of microRNA-409-5p-mediated negative regulation of USP7 in the diagnosis and treatment of acute myocardial infarction. BMC Cardiovasc. Disord. 2025, 25, 167. [Google Scholar] [CrossRef]
- Zhang, P.; Liang, T.; Chen, Y.; Wang, X.; Wu, T.; Xie, Z.; Luo, J.; Yu, Y.A.-O.X.; Yu, H.A.-O. Circulating Exosomal miRNAs as Novel Biomarkers for Stable Coronary Artery Disease. BioMed Res. Int. 2020, 2020, 3593962. [Google Scholar] [CrossRef]
- Liu, C.J.; Chen, J.J.; Wu, J.H.; Chung, Y.T.; Chen, J.W.; Liu, M.T.; Chiu, C.H.; Chang, Y.C.; Chang, S.N.; Lin, J.W.; et al. Association of exosomes in patients with compromised myocardial perfusion on functional imaging. J. Formos. Med. Assoc. 2024, 123, 968–974. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Chen, W.; Wang, P.; Fan, J.; Si, D.; Ma, Q.; Shi, J.; He, Y. Gold metallene-based ECL biosensor to detect miRNA-126 for coronary artery calcification diagnosis. Biosens. Bioelectron. 2024, 271, 116993. [Google Scholar] [CrossRef]
- Mo, P.; Tian, C.W.; Li, Q.; Teng, M.; Fang, L.; Xiong, Y.; Liu, B. Decreased plasma miR-140-3p is associated with coronary artery disease. Heliyon 2024, 10, e26960. [Google Scholar] [CrossRef] [PubMed]
- Kanašniece, E.; Daukšaite, V.; Vilne, B.; Gailīte, L.; Caunīte, L.; Ērglis, A.; Trušinskis, K. Circulating plasma microRNA expression profile: Potential minimally invasive biomarker for early detection of coronary artery disease development. Mol. Biol. Rep. 2025, 52, 927. [Google Scholar] [CrossRef]
- Choudhury, R.R.; Gupta, H.; Bhushan, S.; Singh, A.; Roy, A.; Saini, N. Role of miR-128-3p and miR-195-5p as biomarkers of coronary artery disease in Indians: A pilot study. Sci. Rep. 2024, 14, 11881. [Google Scholar] [CrossRef] [PubMed]
- Azar Bahadori, R.; Shabani, D.; Arjmandrad, E.; Kazerani, M.; Rohani, M.; Ramazani Karim, Z.; Ali-Kheyl, M.; Nosratabadi, R.; Pourghadamyari, H.; Zaemi, M.A. Circulating miRNA-106b-5p As a Potential Biomarker for Coronary Artery Disease. Int. J. Mol. Cell. Med. 2024, 13, 325. [Google Scholar]
- Makarenkov, N.A.-O.X.; Yoel, U.A.-O.; Haim, Y.; Pincu, Y.A.-O.; Bhandarkar, N.A.-O.; Shalev, A.; Shelef, I.A.-O.; Liberty, I.F.; Ben-Arie, G.; Yardeni, D.; et al. Circulating isomiRs May Be Superior Biomarkers Compared to Their Corresponding miRNAs: A Pilot Biomarker Study of Using isomiR-Ome to Detect Coronary Calcium-Based Cardiovascular Risk in Patients with NAFLD. Int. J. Mol. Sci. 2024, 25, 890. [Google Scholar] [CrossRef]
- Iusupova, A.A.-O.; Pakhtusov, N.A.-O.; Slepova, O.A.-O.; Khabarova, N.V.; Privalova, E.V.; Bure, I.V.; Nemtsova, M.V.; Belenkov, Y.A.-O. MiRNA-34a, miRNA-145, and miRNA-222 Expression, Matrix Metalloproteinases, TNF-α and VEGF in Patients with Different Phenotypes of Coronary Artery Disease. Int. J. Mol. Sci. 2024, 25, 12978. [Google Scholar] [CrossRef] [PubMed]
- Peña-Peña, M.A.-O.; Zepeda-García, Ó.A.-O.; Posadas-Sánchez, R.A.-O.; Sánchez-Muñoz, F.A.-O.; Domínguez-Pérez, M.A.-O.; Martínez-Greene, J.A.-O.X.; López-Bautista, F.A.-O.; Hernández-Díazcouder, A.A.-O.; Jiménez-Ortega, R.F.; Valencia-Cruz, A.I.; et al. A Plasma Extracellular Vesicle-Derived microRNA Signature as a Potential Biomarker for Subclinical Coronary Atherosclerosis. Int. J. Mol. Sci. 2025, 26, 8727. [Google Scholar] [CrossRef] [PubMed]
- Mir, R.A.-O.; Elfaki, I.A.-O.X.; Khullar, N.; Waza, A.A.; Jha, C.A.-O.; Mir, M.A.-O.; Nisa, S.; Mohammad, B.; Mir, T.A.; Maqbool, M.; et al. Role of Selected miRNAs as Diagnostic and Prognostic Biomarkers in Cardiovascular Diseases, Including Coronary Artery Disease, Myocardial Infarction and Atherosclerosis. J. Cardiovasc. Dev. Dis. 2021, 8, 22. [Google Scholar] [CrossRef]
- Murase, H.; Minatoguchi, S.; Heishima, K.; Yasuda, S.; Satake, A.; Yoshizumi, R.; Komaki, H.; Baba, S.; Ojio, S.; Tanaka, T.; et al. Plasma microRNA-143 and microRNA-145 levels are elevated in patients with left ventricular dysfunction. Heart Vessels 2024, 39, 867–876. [Google Scholar] [CrossRef]
- Mansour, R.M.; Hemdan, M.; Moustafa, H.A.M.; Mageed, S.S.A.; Rizk, N.I.; Ali, M.A.; Ashour, M.M.; Ashraf, A.; Doghish, Y.A.; Mohammed, O.A.; et al. Global Perspectives on Coronary Artery Disease: The Emerging Role of miRNAs. Curr. Atheroscler. Rep. 2025, 27, 66. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ma, Q.; Lin, F.A.-O. The Clinical Significance of miR-139-5p in Acute Coronary Syndrome and its Potential Effect on the Progression of Acute Coronary Syndrome. J. Cardiovasc. Transl. Res. 2025, 18, 983–992. [Google Scholar] [CrossRef]
- Zhao, N.; Na, K.; Sun, W.; Shi, H.; Zhang, X.; Liu, B.; Han, Y. Plasma microRNA-210 is associated with VEGF-A and EphrinA3 and relates to coronary collateral circulation in patients with coronary heart disease: A cross-sectional study. BMC Cardiovasc. Disord. 2025, 25, 547. [Google Scholar] [CrossRef]
- Liu, Y.; Zhong, C.; Chen, S.; Xue, Y.; Wei, Z.; Dong, L.; Kang, L. Circulating exosomal mir-16-2-3p is associated with coronary microvascular dysfunction in diabetes through regulating the fatty acid degradation of endothelial cells. Cardiovasc. Diabetol. 2024, 23, 60. [Google Scholar] [CrossRef]
- Sangali, P.; Abdullahi, S.; Nosrati, M.; Khosravi-Asrami, O.F.; Mahrooz, A.A.-O.; Bagheri, A. Altered expression of miR-375 and miR-541 in type 2 diabetes patients with and without coronary artery disease (CAD): The potential of miR-375 as a CAD biomarker. J. Diabetes Metab. Disord. 2024, 23, 1101–1106. [Google Scholar] [CrossRef]
- Zhou, B.; Gan, L.; Zhou, P.; Yang, T.; Tang, F.; Jin, P.; Jin, P.; Chen, J. LINC00426 promotes the progression of atherosclerosis by regulating miR-873-5p/SRRM2 axis. Cytokine 2025, 191, 156938. [Google Scholar] [CrossRef] [PubMed]
- Parvan, R.; Rolim, N.; Gevaert, A.B.; Cataliotti, A.; van Craenenbroeck, E.M.; Adams, V.; Wisløff, U.; Silva, G.A.-O. Multi-microRNA diagnostic panel for heart failure with preserved ejection fraction in preclinical and clinical settings. ESC Heart Fail. 2025, 12, 3028–3041. [Google Scholar] [CrossRef] [PubMed]
- Parvan, R.; Becker, V.; Hosseinpour, M.; Moradi, Y.; Louch, W.E.; Cataliotti, A.; Devaux, Y.; Frisk, M.; Silva, G.J.J. Prognostic and predictive microRNA panels for heart failure patients with reduced or preserved ejection fraction: A meta-analysis of Kaplan-Meier-based individual patient data. BMC Med. 2025, 23, 409. [Google Scholar] [CrossRef]
- Evin, L.; Sigutova, R.; Sulc, P.; Kufova, E.; Branny, M.; Vaclavik, J.; Stejskal, D. Serum levels of miR-21, miR-23a, miR-142-5p, and miR-126 in chronic failure with reduced ejection fraction: A case-control study. Front. Cardiovasc. Med. 2025, 12, 1529451. [Google Scholar] [CrossRef]
- Mylavarapu, M.; Kodali, L.S.M.; Vempati, R.; Nagarajan, J.S.; Vyas, A.; Desai, R. Circulating microRNAs in predicting fibrosis in hypertrophic cardiomyopathy: A systematic review. World J. Cardiol. 2025, 17, 106123. [Google Scholar] [CrossRef]
- Alcibahy, Y.; Darwish, R.; Abu-Sharia, G.; Maes, Q.; Elgamassy, O. Circulating microRNAs as biomarkers for ischemic heart disease: A systematic review and gene set enrichment analysis. Front. Med. 2025, 12, 1545023. [Google Scholar] [CrossRef]
- Grimaldi, A.A.-O.; D’Assante, R.A.-O.X.; Fiore, F.A.-O.; Marcella, S.A.-O.; Paolillo, S.; Cacciatore, F.; Mercurio, V.A.-O.; Bossone, E.A.-O.; Cittadini, A.; Tocchetti, C.A.-O.X.; et al. Circulating miR-10b-5p, miR-193a-3p, and miR-1-3p Are Deregulated in Patients with Heart Failure and Correlate with Hormonal Deficiencies. Int. J. Mol. Sci. 2025, 26, 5225. [Google Scholar] [CrossRef]
- Alcala-Diaz, J.F.; Camargo, A.; Vals-Delgado, C.; Leon-Acuña, A.; Garcia-Fernandez, H.; Arenas-de Larriva, A.P.; Perez-Cardelo, M.; Mora-Ortiz, M.A.-O.; Perez-Martinez, P.; Delgado-Lista, J.; et al. MiRNAs as biomarkers of nutritional therapy to achieve T2DM remission in patients with coronary heart disease: From the CORDIOPREV study. Nutr. Diabetes 2025, 15, 7. [Google Scholar] [CrossRef]
- Szydełko, J.; Czop, M.; Petniak, A.; Lenart-Lipińska, M.; Kocki, J.; Zapolski, T.; Matyjaszek-Matuszek, B. Identification of plasma miR-4505, miR-4743-5p and miR-4750-3p as novel diagnostic biomarkers for coronary artery disease in patients with type 2 diabetes mellitus: A case-control study. Cardiovasc. Diabetol. 2024, 23, 278. [Google Scholar] [CrossRef]
- Ferrone, M.; Ciccarelli, M.; Varzideh, F.; Kansakar, U.; Guerra, G.; Cerasuolo, F.A.; Buonaiuto, A.; Fiordelisi, A.; Venga, E.; Esposito, M.; et al. Endothelial microRNAs in INOCA patients with diabetes mellitus. Cardiovasc. Diabetol. 2024, 23, 268. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, A.; Asahara, S.I.; Inoue, H.; Goto, A.; Seike, M.; Kido, N.; Suzuki, H.; Kanno, A.; Kimura-Koyanagi, M.; Uto, K.; et al. miR378a-3p in serum extracellular vesicles is associated with pancreatic beta-cell mass in diabetic states. Res. Commun. 2025, 750, 151367. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, M.; Deng, Q. Circulating miR-4454 as a potential biomarker for the diagnosis of T2DM and the prediction value of comorbidity and complications in T2DM. BMC Endocr. Disord. 2025, 25, 144. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Zhang, Y.; Fang, X.; Zhang, Y.; Miao, R.; Yao, Y.; Guan, H.; Tian, J. Discovering diabetes complications-related microRNAs: Meta-analyses and pathway modeling approach. BMC Med. Genom. 2025, 18, 86. [Google Scholar] [CrossRef]
- Hamdy, S.M.; Ibrahim, H.A.; Abdelaleem, O.A.-O.; Shaker, O.G.; Hussein, S.K.; Massoud, S.; Sayed, O.N. MALAT1 SNP (rs619586) shows a protective effect against type 1 diabetes mellitus, while the miR-146a SNP (rs57095329) is linked to an increased risk of developing the disease. Mol. Biol. Rep. 2025, 52, 340. [Google Scholar] [CrossRef]
- Joglekar, M.A.-O.; Wong, W.K.M.; Kunte, P.S.; Hardikar, H.P.; Kulkarni, R.A.-O.; Ahmed, I.A.-O.; Farr, R.A.-O.; Pham, N.H.T.; Coles, M.; Kaur, S.A.-O.; et al. A microRNA-based dynamic risk score for type 1 diabetes. Nat. Med. 2025, 31, 2622–2631. [Google Scholar] [CrossRef]
- Jiménez-Lucena, R.; Camargo, A.; Alcalá-Diaz, J.F.; Romero-Baldonado, C.; Luque, R.M.; van Ommen, B.; Delgado-Lista, J.; Ordovás, J.M.; Pérez-Martínez, P.; Rangel-Zúñiga, O.A.; et al. A plasma circulating miRNAs profile predicts type 2 diabetes mellitus and prediabetes: From the CORDIOPREV study. Exp. Mol. Med. 2018, 50, 1–12. [Google Scholar] [CrossRef]
- Swolin-Eide, D.A.-O.; Forsander, G.A.-O.; Pundziute Lyckå, A.A.-O.; Novak, D.A.-O.; Grillari, J.A.-O.; Diendorfer, A.A.-O.; Hackl, M.A.-O.; Magnusson, P.A.-O. Circulating microRNAs in young individuals with long-duration type 1 diabetes in comparison with healthy controls. Sci. Rep. 2023, 13, 11634. [Google Scholar] [CrossRef]
- Ait-Aissa, K.A.-O.; Nguyen, Q.M.; Gabani, M.; Kassan, A.; Kumar, S.; Choi, S.K.; Gonzalez, A.A.; Khataei, T.; Sahyoun, A.M.; Chen, C.; et al. MicroRNAs and obesity-induced endothelial dysfunction: Key paradigms in molecular therapy. Cardiovasc. Diabetol. 2020, 19, 136. [Google Scholar] [CrossRef]
- He, F.; Guan, W. The role of miR-21 as a biomarker and therapeutic target in cardiovascular disease. Clin. Chim. Acta 2025, 574, 120304. [Google Scholar] [CrossRef] [PubMed]
- Zapata-Martínez, L.; Águila, S.; de Los Reyes-García, A.M.; Carrillo-Tornel, S.; Lozano, M.L.; González-Conejero, R.; Martínez, C. Inflammatory microRNAs in cardiovascular pathology: Another brick in the wall. Front. Immunol. 2023, 14, 1196104. [Google Scholar] [CrossRef]
- Ardinal, A.A.-O.; Wiyono, A.A.-O.; Estiko, R.A.-O. Unveiling the therapeutic potential of miR-146a: Targeting innate inflammation in atherosclerosis. J. Cell. Mol. Med. 2024, 28, e70121. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.T.; Zhu, J.; Wang, Y.C.; Shao, C.L.; Li, X.Y.; Lu, P.P.; Huang, M.Y.; Mou, F.F.; Guo, H.D.; Ji, G. Targeting delivery of miR-146a via IMTP modified milk exosomes exerted cardioprotective effects by inhibiting NF-κB signaling pathway after myocardial ischemia-reperfusion injury. J. Nanobiotechnol. 2024, 22, 382. [Google Scholar] [CrossRef]
- Wang, Y.A.-O.; Yu, J.; Ou, C.; Zhao, Y.; Chen, L.; Cai, W.; Wang, H.; Huang, S.; Hu, J.; Sun, G.; et al. miRNA-146a-5p Inhibits Hypoxia-Induced Myocardial Fibrosis Through EndMT. Cardiovasc. Toxicol. 2024, 24, 133–145. [Google Scholar] [CrossRef]
- Villagrán-Silva, F.A.-O.; Loren, P.A.-O.; Sandoval, C.A.-O.; Lanas, F.; Salazar, L.A.-O. Circulating microRNAs as Potential Biomarkers of Overweight and Obesity in Adults: A Narrative Review. Genes 2025, 16, 349. [Google Scholar] [CrossRef]
- Al-Rawaf, H.A.; Gabr, S.A.; Alghadir, T.; Alghadir, F.; Iqbal, A.; Alghadir, A.H. Correlation between circulating microRNAs and vascular biomarkers in type 2 diabetes based upon physical activity: A biochemical analytic study. BMC Endocr. Disord. 2025, 25, 55. [Google Scholar] [CrossRef]
- Luo, M.; Zhao, F.; Cheng, H.; Su, M.; Wang, Y. Macrophage polarization: An important role in inflammatory diseases. Front. Immunol. 2024, 15, 1352946. [Google Scholar] [CrossRef]
- Gager, G.M.; Eyileten, C.; Postuła, M.A.-O.; Nowak, A.A.-O.; Gąsecka, A.A.-O.; Jilma, B.A.-O.; Siller-Matula, J.A.-O. Expression Patterns of MiR-125a and MiR-223 and Their Association with Diabetes Mellitus and Survival in Patients with Non-ST-Segment Elevation Acute Coronary Syndrome. Biomedicines 2023, 11, 1118. [Google Scholar] [CrossRef] [PubMed]
- Blevins, H.M.; Xu, Y.; Biby, S.; Zhang, S. The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases. Front. Aging Neurosci. 2022, 14, 879021. [Google Scholar] [CrossRef]
- Rayat Pisheh, H.A.-O.; Sani, M.A.-O. Mesenchymal stem cells derived exosomes: A new era in cardiac regeneration. Stem Cell Res. Ther. 2025, 16, 16. [Google Scholar] [CrossRef] [PubMed]
- Letonja, J.A.-O.; Petrovič, D.A.-O. A Review of MicroRNAs and lncRNAs in Atherosclerosis as Well as Some Major Inflammatory Conditions Affecting Atherosclerosis. Biomedicines 2024, 12, 1322. [Google Scholar] [CrossRef]
- Zhu, H.; Leung, S.W. MicroRNA biomarkers of type 2 diabetes: Evidence synthesis from meta-analyses and pathway modelling. Diabetologia 2022, 66, 288–299. [Google Scholar] [CrossRef]
- Hu, F.; Liu, L.; Liu, Z.; Cao, M.; Li, G.; Zhang, X. Meta-analysis of the characteristic expression of circulating microRNA in type 2 diabetes mellitus with acute ischemic cerebrovascular disease. Front. Endocrinol. 2023, 14, 1129860. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.; Peng, B.; Zhang, G.; Fu, X.; Tian, J.; Tian, Y. MicroRNAs in diabetic macroangiopathy. Cardiovasc. Diabetol. 2024, 23, 344. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhu, M.; Schober, A. Macrophage MicroRNAs as Therapeutic Targets for Atherosclerosis, Metabolic Syndrome, and Cancer. Int. J. Mol. Sci. 2018, 19, 1756. [Google Scholar] [CrossRef]
- Zhang, R.L.; Wang, W.M.; Li, J.Q.; Li, R.W.; Zhang, J.; Wu, Y.; Liu, Y. The role of miR-155 in cardiovascular diseases: Potential diagnostic and therapeutic targets. Int. J. Cardiol. Cardiovasc. Risk Prev. 2024, 24, 200355. [Google Scholar] [CrossRef]
- Fitzsimons, S.; Oggero, S.; Bruen, R.; McCarthy, C.; Strowitzki, M.J.; Mahon, N.G.; Ryan, N.; Brennan, E.P.; Barry, M.; Perretti, M.; et al. microRNA-155 Is Decreased During Atherosclerosis Regression and Is Increased in Urinary Extracellular Vesicles During Atherosclerosis Progression. Front. Immunol. 2020, 11, 576516. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Hu, J.; Zhang, A.; Li, F.; Li, X. miR-155 induces endothelial cell apoptosis and inflammatory response in atherosclerosis by regulating Bmal1. Exp. Ther. Med. 2020, 20, 128. [Google Scholar] [CrossRef]
- Cerda, A.A.-O.; Amaral, A.A.; de Oliveira, R.; Moraes, T.I.; Braga, A.A.; Graciano-Saldarriaga, M.E.; Fajardo, C.M.; Hirata, T.A.-O.; Bonezi, V.; Campos-Salazar, A.B.; et al. Peripheral Blood miRome Identified miR-155 as Potential Biomarker of MetS and Cardiometabolic Risk in Obese Patients. Int. J. Mol. Sci. 2021, 22, 1468. [Google Scholar] [CrossRef]
- Khalaji, A.A.-O.; Mehrtabar, S.; Jabraeilipour, A.; Doustar, N.; Rahmani Youshanlouei, H.; Tahavvori, A.; Fattahi, P.; Alavi, S.M.A.; Taha, S.R.; Fazlollahpour-Naghibi, A.; et al. Inhibitory effect of microRNA-21 on pathways and mechanisms involved in cardiac fibrosis development. Ther. Adv. Cardiovasc. Dis. 2024, 18, 17539447241253134. [Google Scholar] [CrossRef]
- Li, X.; Meng, C.; Han, F.; Yang, J.; Wang, J.; Zhu, Y.; Cui, X.; Zuo, M.; Xu, J.; Chang, B. Vildagliptin Attenuates Myocardial Dysfunction and Restores Autophagy via miR-21/SPRY1/ERK in Diabetic Mice Heart. Front. Pharmacol. 2021, 12, 634365. [Google Scholar] [CrossRef]
- Xu, X.; Hong, P.; Wang, Z.; Tang, Z.; Li, K. MicroRNAs in Transforming Growth Factor-Beta Signaling Pathway Associated with Fibrosis Involving Different Systems of the Human Body. Front. Mol. Biosci. 2021, 8, 707461. [Google Scholar] [CrossRef]
- Li, D.; Mao, C.; Zhou, E.; You, J.; Gao, E.; Han, Z.; Fan, Y.; He, Q.; Wang, C. MicroRNA-21 Mediates a Positive Feedback on Angiotensin II-Induced Myofibroblast Transformation. J. Inflamm. Res. 2020, 13, 1007–1020. [Google Scholar] [CrossRef] [PubMed]
- Wenlan, L.; Zhongyuan, X.; Shaoqing, L.; Liying, Z.; Bo, Z.; Min, L. MiR-34a-5p mediates sevoflurane preconditioning induced inhibition of hypoxia/reoxygenation injury through STX1A in cardiomyocytes. Biomed. Pharmacother. 2018, 102, 153–159. [Google Scholar] [CrossRef]
- Lei, Z.; Fang, J.; Deddens, J.C.; Metz, C.H.G.; van Eeuwijk, E.C.M.; El Azzouzi, H.; Doevendans, P.A.; Sluijter, J.P.G. Loss of miR-132/212 Has No Long-Term Beneficial Effect on Cardiac Function After Permanent Coronary Occlusion in Mice. Front. Physiol. 2020, 11, 590. [Google Scholar] [CrossRef]
- Baker, A.H.; Giacca, M. Antagonism of miRNA in heart failure: First evidence in human. Eur. Heart J. 2021, 42, 189–191. [Google Scholar] [CrossRef]
- Surina; Fontanella, R.A.; Scisciola, L.; Marfella, R.; Paolisso, G.; Barbieri, M. Corrigendum: miR-21 in Human Cardiomyopathies. Front. Cardiovasc. Med. 2021, 8, 767064, Correction in Front. Cardiovasc. Med. 2022, 9, 913429. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Xu, M.; Tian, X.; Cai, S.; Zeng, S. Research advances in the detection of miRNA. J. Pharm. Anal. 2019, 9, 217–226. [Google Scholar] [CrossRef]
- Siddika, T.; Heinemann, I.U. Bringing MicroRNAs to Light: Methods for MicroRNA Quantification and Visualization in Live Cells. Front. Bioeng. Biotechnol. 2021, 8, 619583. [Google Scholar] [CrossRef]
- Bernardi, S.; Cavalleri, A.; Mutti, S.; Garuffo, L.; Farina, M.; Leoni, A.; Iurlo, A.; Bucelli, C.; Toffoletti, E.; Di Giusto, S.; et al. Digital PCR (dPCR) is able to anticipate the achievement of stable deep molecular response in adult chronic myeloid leukemia patients: Results of the DEMONSTRATE study. Ann. Hematol. 2024, 104, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.F.; Cheng, H.; Goh, K.K.; Zou, R. Preanalytic Methodological Considerations and Sample Quality Control of Circulating miRNAs. J. Mol. Diagn. 2023, 25, 438–453. [Google Scholar] [CrossRef]
- Qian, L.; Zhao, Q.; Yu, P.; Lü, J.; Guo, Y.; Gong, X.; Ding, Y.; Yu, S.; Fan, L.; Fan, H.; et al. Diagnostic potential of a circulating miRNA model associated with therapeutic effect in heart failure. J. Transl. Med. 2022, 20, 267. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Pathak, A.K.; Kural, S.; Kumar, L.; Bhardwaj, M.G.; Yadav, M.; Trivedi, S.; Das, P.; Gupta, M.; Jain, G. Integrating miRNA profiling and machine learning for improved prostate cancer diagnosis. Sci. Rep. 2025, 15, 30477. [Google Scholar] [CrossRef] [PubMed]

| Key Property | Description (Mechanism & Key Features) | Clinical Utility & Impact |
|---|---|---|
| Stability | RNase-resistant; protected by Extracellular Vesicles (Exosomes), Microvesicles, or association with proteins like Argonaute-2 | Enables reliable, non-invasive “liquid biopsy” (plasma/serum) with high tolerance for handling variability (e.g., freeze–thaw cycles) |
| Tissue Specificity | Expression profiles are highly unique to the cell/organ of origin., e.g., Myocardial-specific (miR-208a, miR-499), Endothelial (miR-126) | Allows precise localization of injury or disease state (e.g., distinguishing cardiac stress from hepatic dysfunction) |
| Temporal Kinetics | Rapid release into circulation (within hours) following acute stress or injury (both active secretion and passive release) | Provides potential for ultra-early diagnosis in acute events (e.g., AMI, preceding Troponin peak) and tracking disease progression over time |
| Mechanistic Relevance | Core post-transcriptional regulators of key processes: inflammation, fibrosis, lipid metabolism, endothelial function, cardiac remodeling | Offers functional insights into disease pathogenesis, facilitating patient stratification and the identification of therapeutic targets |
| Networking Capability | One miRNA regulates multiple genes; easily analyzed in Multi-miRNA Panels (Signatures) for a comprehensive view | Significantly boosts diagnostic accuracy and prognostic power compared to single-protein markers, aiding in complex risk stratification |
| Disease | miRNA(s) | Regulation | Diagnostic Accuracy (AUC) | Reference |
|---|---|---|---|---|
| AMI | miR-210-3p + miR-582-5p (combined panel) | ↓ Downregulated | AUC > 0.80 | [28] |
| AMI | miR-1 | ↑ Upregulated | Sensitivity 78%, Specificity 85% (meta-analysis) | [31] |
| CAD | 7-miRNA panel (miR-10b-5p, miR-29c-3p, miR-486-3p + others) | Mixed | AUC = 0.9924 | [38] |
| CAD | miR-106b-5p | ↓ Downregulated | AUC = 0.8975 | [40] |
| T2DM-associated CAD | hsa-miR-4505, hsa-miR-4743-5p, hsa-miR-4750-3p (panel) | ↑ Upregulated | AUC = 0.959 | [59] |
| Diabetes (T2DM) | miR-375 | ↑ Upregulated | AUC = 0.74 | [50] |
| Type 1 Diabetes (T1DM) | Machine learning panel (50 miRNAs, key miR-27b-3p) | Mixed | AUC = 0.84 | [65] |
| miRNA | Molecular Mechanisms | Biological Effects | Clinical Implications | References |
|---|---|---|---|---|
| miR-146a | ↓ TRAF6, ↓ IRAK1 → NF-κB inhibition; ↓ NOX4; ↑ eNOS | ↓ Pro-inflammatory cytokines; ↓ macrophage apoptosis; ↑ endothelial function; ↓ oxidative stress; cardioprotection | Protection against atherosclerosis; improved post-MI recovery; better glycemic control; biomarker of metabolic health | [71,72,73,74,75] |
| miR-223 | Modulates T-helper cell differentiation; macrophage polarization (M1 → M2); ↓ NLRP3 inflammasome; | ↓ Inflammation; ↓ fibrosis; ↑ angiogenesis; ↓ procoagulant activity; plaque stabilization | Protective in atherosclerosis and diabetic cardiomyopathy; reduced myocardial injury in NSTE-ACS; biomarker of plaque stability; ↓ levels in T2DM progression | [77,78,79,80,81] |
| miR-126 | Regulates endothelial growth and angiogenesis; modulates VCAM-1 and adhesion molecules; growth factor signaling | Maintains vascular homeostasis; ↓ leukocyte recruitment; ↓ chronic inflammation | Reduced levels in T2D, CAD, hypertension; biomarker of early vascular impairment; therapeutic target in endothelial dysfunction | [82,83] |
| miR-155 | Targets Bmal1; HBP1 → ↑ ROS; activates NF-κB, ERK, STAT3; regulates macrophage inflammatory signaling | ↑ Inflammation; ↑ apoptosis; ↑ lipid accumulation; ↑ oxidative stress | Promotes atherosclerosis and MetS; correlates with insulin resistance and dyslipidemia; biomarker of plaque progression | [84,85,86,87,88] |
| miR-21 | miR-21/SPRY1/ERK/mTOR pathway; miR-21/TGF-β1/Smad7 axis | ↑ Fibroblast activation; ↑ ECM deposition; ↓ autophagy; ↑ hypertrophy | Drives cardiac fibrosis and remodeling in DCM and aging; circulating marker in CVD; therapeutic target for anti-fibrotic strategies | [96] |
| [90,91,92] | ||||
| miR-34a | Targets syntaxin 1A, SIRT1; activates senescence and apoptosis pathways | ↑ Cardiomyocyte apoptosis; ↑ pathological hypertrophy; ↑ ECM dysregulation; ↑ cellular senescence | Promotes ventricular remodeling post-MI; biomarker of stress-induced cardiac injury | [93] |
| miR-132 | Targets FOXO3, SERCA2A; impairs calcium handling; ↑ hypertrophic signaling | ↑ Hypertrophy; ↓ autophagy; ↑ contractile dysfunction; adverse remodeling | Upregulated in heart failure; inhibition improves cardiac function; therapeutic candidate against pathological remodeling | [94,95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iside, C.; Picone, F.; Di Pietro, P.; Abate, A.C.; Prete, V.; Damato, A.; Venturini, E.; Akeel, S.; Petralia, S.; Vecchione, C.; et al. MicroRNA Signatures in Cardiometabolic Disorders as a Next-Generation Diagnostic Approach: Current Insight. Int. J. Mol. Sci. 2025, 26, 10769. https://doi.org/10.3390/ijms262110769
Iside C, Picone F, Di Pietro P, Abate AC, Prete V, Damato A, Venturini E, Akeel S, Petralia S, Vecchione C, et al. MicroRNA Signatures in Cardiometabolic Disorders as a Next-Generation Diagnostic Approach: Current Insight. International Journal of Molecular Sciences. 2025; 26(21):10769. https://doi.org/10.3390/ijms262110769
Chicago/Turabian StyleIside, Concetta, Francesca Picone, Paola Di Pietro, Angela Carmelita Abate, Valeria Prete, Antonio Damato, Eleonora Venturini, Saad Akeel, Salvatore Petralia, Carmine Vecchione, and et al. 2025. "MicroRNA Signatures in Cardiometabolic Disorders as a Next-Generation Diagnostic Approach: Current Insight" International Journal of Molecular Sciences 26, no. 21: 10769. https://doi.org/10.3390/ijms262110769
APA StyleIside, C., Picone, F., Di Pietro, P., Abate, A. C., Prete, V., Damato, A., Venturini, E., Akeel, S., Petralia, S., Vecchione, C., & Carrizzo, A. (2025). MicroRNA Signatures in Cardiometabolic Disorders as a Next-Generation Diagnostic Approach: Current Insight. International Journal of Molecular Sciences, 26(21), 10769. https://doi.org/10.3390/ijms262110769

