Circadian Regulation of Neuronal Membrane Capacitance—Mechanisms and Implications for Neural Computation and Behavior
Abstract
1. Introduction
2. Circadian Systems and Neuronal Biophysics
2.1. Hierarchical Organization of Circadian Clocks
2.2. Integration with Neuronal Function
3. Biophysical Foundations and Measurement
3.1. Membrane Capacitance: Definition and Determinants
3.2. Structural and Molecular Contributors
3.3. Methodological Considerations
4. Mechanisms of Circadian Capacitance Regulation
4.1. Evidence for Oscillatory Dynamics
4.2. Molecular Mechanisms
4.2.1. Transcriptional Control and Gene Expression
4.2.2. Lipid Metabolism and Membrane Remodeling
4.2.3. Ion Channel Distribution and Trafficking
4.2.4. Glial Cell Contributions and Myelin Dynamics
4.3. Developmental, Aging, and Sex Differences in Capacitance Oscillations
5. Computational and Network Consequences
5.1. Single-Cell Computation
5.1.1. Membrane Time Constant Modulation
5.1.2. Action Potential Dynamics
5.2. Synaptic Plasticity and Learning
5.3. Network-Level Effects
6. Behavioral and Cognitive Implications
6.1. Memory Formation and Consolidation
6.2. Working Memory and Executive Functions
6.3. Attention, Filtering, and Cognitive Flexibility
6.4. Sensory Processing and Perceptual Thresholds
6.5. Motor Control, Coordination, and Timing
7. Clinical Implications and Disease States
7.1. Neuropsychiatric Disorders
7.1.1. Depression and Mood Disorders
7.1.2. Schizophrenia, ADHD, and Autism Spectrum Disorders
7.2. Neurodegenerative Diseases
7.2.1. Alzheimer’s Disease
7.2.2. Parkinson’s Disease
7.2.3. Other Neurodegenerative Conditions
7.3. Epilepsy and Seizure Susceptibility
7.4. Implications for Cognitive Decline and Aging
8. Translational Perspectives and Chronomedicine
8.1. Chronotherapeutic Strategies
8.2. Personalized Medicine and Chronotype-Based Interventions
8.3. Technological and Socio-Environmental Approaches
8.4. Challenges and Future Directions
- Causal mechanisms: While correlations between Cm oscillations and behavioral/cognitive rhythms are established, causal links require systematic testing using optogenetic or chemogenetic manipulation of specific molecular pathways in defined neuronal populations.
- Cell-type specificity: The differential regulation of Cm across neuronal subtypes (e.g., excitatory vs. inhibitory, cortical vs. subcortical) and the functional consequences of this heterogeneity for circuit computation remain incompletely characterized.
- Human translation: Nearly all mechanistic data derive from rodent studies. Validation of key findings in human tissue (e.g., surgically resected brain samples, induced pluripotent stem cell-derived neurons) is essential for clinical translation.
- Measurement challenges: Development of non-invasive biomarkers reflecting neuronal Cm rhythms would enable longitudinal tracking in patients and assessment of therapeutic interventions.
- Specificity of interventions: Current chronotherapeutic approaches (light therapy, sleep manipulation) affect multiple systems simultaneously. Development of targeted interventions selectively modulating Cm regulation would enable mechanistic testing and potentially reduce side effects.
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Severín, D.; Moreno, C.; Tran, T.; Wesselborg, C.; Shirley, S.G.; Contreras, A.; Kirkwood, A.; Golowasch, J. Daily Oscillations of Neuronal Membrane Capacitance. Cell Rep. 2024, 43, 114744. [Google Scholar] [CrossRef]
- Fernández, J.M.; Bezanilla, F.; Taylor, R.E. Distribution and Kinetics of Membrane Dielectric Polarization. II. Frequency domain studies of gating currents. J. Gen. Physiol. 1982, 79, 41. [Google Scholar] [CrossRef]
- Golowasch, J.; Thomas, G.; Taylor, A.L.; Patel, A.; Pineda, A.; Khalil, C.; Nadim, F. Membrane Capacitance Measurements Revisited: Dependence of Capacitance Value on Measurement Method in Nonisopotential Neurons. J. Neurophysiol. 2009, 102, 2161. [Google Scholar] [CrossRef] [PubMed]
- Colwell, C.S. Linking Neural Activity and Molecular Oscillations in the SCN. Nat. Rev. Neurosci. 2011, 12, 553. [Google Scholar] [CrossRef] [PubMed]
- Sheeba, V.; Gu, H.; Sharma, V.K.; O’Dowd, D.K.; Holmes, T.C. Circadian- and Light-Dependent Regulation of Resting Membrane Potential and Spontaneous Action Potential Firing of Drosophila Circadian Pacemaker Neurons. J. Neurophysiol. 2007, 99, 976. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, J.S. Transcriptional Architecture of the Mammalian Circadian Clock. Nat. Rev. Genet. 2016, 18, 164. [Google Scholar] [CrossRef]
- London, M.; Häusser, M. Dendritic Computation. Annu. Rev. Neurosci. 2005, 28, 503. [Google Scholar] [CrossRef]
- Spruston, N. Pyramidal Neurons: Dendritic Structure and Synaptic Integration. Nat. Rev. Neurosci. 2008, 9, 206. [Google Scholar] [CrossRef]
- Fries, P. A Mechanism for Cognitive Dynamics: Neuronal Communication through Neuronal Coherence. Trends Cogn. Sci. 2005, 9, 474. [Google Scholar] [CrossRef]
- Buzsáki, G.; Draguhn, A. Neuronal Oscillations in Cortical Networks. Science 2004, 304, 1926. [Google Scholar] [CrossRef]
- Schmidt, C.; Collette, F.; Cajochen, C.; Peigneux, P. A Time to Think: Circadian Rhythms in Human Cognition. Cogn. Neuropsychol. 2007, 24, 755. [Google Scholar] [CrossRef]
- Partch, C.L.; Green, C.B.; Takahashi, J.S. Molecular Architecture of the Mammalian Circadian Clock. Trends Cell Biol. 2013, 24, 90. [Google Scholar] [CrossRef]
- Allada, R.; Emery, P.; Takahashi, J.S.; Rosbash, M. Stopping Time: The Genetics of Fly and Mouse Circadian Clocks. Annu. Rev. Neurosci. 2001, 24, 1091. [Google Scholar] [CrossRef]
- McClung, C.A. How Might Circadian Rhythms Control Mood? Let Me Count the Ways. Biol. Psychiatry 2013, 74, 242. [Google Scholar] [CrossRef]
- Huang, W.; Ramsey, K.M.; Marcheva, B.; Bass, J. Circadian Rhythms, Sleep, and Metabolism. J. Clin. Investig. 2011, 121, 2133. [Google Scholar] [CrossRef]
- Amzica, F.; Neckelmann, D. Membrane Capacitance of Cortical Neurons and Glia During Sleep Oscillations and Spike-Wave Seizures. J. Neurophysiol. 1999, 82, 2731. [Google Scholar] [CrossRef]
- Steriade, M.; Timofeev, I.; Grenier, F. Natural Waking and Sleep States: A View From Inside Neocortical Neurons. J. Neurophysiol. 2001, 85, 1969. [Google Scholar] [CrossRef]
- Nitabach, M.N.; Taghert, P.H. Organization of the Drosophila Circadian Control Circuit. Curr. Biol. 2008, 18, R84–R93. [Google Scholar] [CrossRef]
- Tononi, G.; Cirelli, C. Sleep and the Price of Plasticity: From Synaptic and Cellular Homeostasis to Memory Consolidation and Integration. Neuron 2014, 81, 12. [Google Scholar] [CrossRef]
- Diekelmann, S.; Born, J. The Memory Function of Sleep. Nat. Rev. Neurosci. 2010, 11, 114. [Google Scholar] [CrossRef]
- Sjöström, P.J.; Rancz, E.; Roth, A.; Häusser, M. Dendritic Excitability and Synaptic Plasticity. Physiol. Rev. 2008, 88, 769. [Google Scholar] [CrossRef]
- Pantazopoulos, H.; Gisabella, B.; Rexrode, L.; Benefield, D.; Yildiz, E.; Seltzer, P.; Valeri, J.; Chelini, G.; Reich, A.; Ardelt, M.; et al. Circadian Rhythms of Perineuronal Net Composition. eNeuro 2020, 7, ENEURO.0034-19.2020. [Google Scholar] [CrossRef]
- Bridi, M.; Zong, F.-J.; Xia, M.; Luo, N.; Tran, T.; Qiu, J.; Severín, D.; Zhang, X.; Wang, G.; Zhu, Z.; et al. Daily Oscillation of the Excitation-Inhibition Balance in Visual Cortical Circuits. Neuron 2019, 105, 621. [Google Scholar] [CrossRef]
- Roenneberg, T.; Merrow, M. The Circadian Clock and Human Health. Curr. Biol. 2016, 26, R432–R443. [Google Scholar] [CrossRef]
- Wulff, K.; Gatti, S.; Wettstein, J.G.; Foster, F. Sleep and Circadian Rhythm Disruption in Psychiatric and Neurodegenerative Disease. Nat. Rev. Neurosci. 2010, 11, 589. [Google Scholar] [CrossRef]
- Videnović, A.; Lázár, A.S.; Barker, R.A.; Overeem, S. ’The Clocks That Time Us’—Circadian Rhythms in Neurodegenerative Disorders. Nat. Rev. Neurol. 2014, 10, 683. [Google Scholar] [CrossRef]
- Tewari, B.P.; Chaunsali, L.; Campbell, S.L.; Patel, D.C.; Goode, A.E.; Sontheimer, H. Perineuronal Nets Decrease Membrane Capacitance of Peritumoral Fast Spiking Interneurons in a Model of Epilepsy. Nat. Commun. 2018, 9, 4724. [Google Scholar] [CrossRef]
- Musiek, E.S.; Holtzman, D.M. Mechanisms Linking Circadian Clocks, Sleep, and Neurodegeneration. Science 2016, 354, 1004. [Google Scholar] [CrossRef]
- Challet, É. Keeping Circadian Time with Hormones. Diabetes Obes. Metab. 2015, 17, 76. [Google Scholar] [CrossRef]
- Scheer, F.A.J.L.; Hilton, M.F.; Mantzoros, C.S.; Shea, S.A. Adverse Metabolic and Cardiovascular Consequences of Circadian Misalignment. Proc. Natl. Acad. Sci. USA 2009, 106, 4453. [Google Scholar] [CrossRef]
- Dunlap, J. Molecular Bases for Circadian Clocks. Cell 1999, 96, 271. [Google Scholar] [CrossRef]
- Hofstra, W.A.; Weerd, A.W. de How to Assess Circadian Rhythm in Humans: A Review of Literature. Epilepsy Behav. 2008, 13, 438. [Google Scholar] [CrossRef]
- Dan, Y.; Poo, M. Spike Timing-Dependent Plasticity of Neural Circuits. Neuron 2004, 44, 23. [Google Scholar] [CrossRef]
- Debanne, D.; Inglebert, Y. Spike Timing-Dependent Plasticity and Memory. Curr. Opin. Neurobiol. 2023, 80, 102707. [Google Scholar] [CrossRef]
- Takahashi, J.S.; Hong, H.-K.; Ko, C.H.; McDearmon, E.L. The Genetics of Mammalian Circadian Order and Disorder: Implications for Physiology and Disease. Nat. Rev. Genet. 2008, 9, 764. [Google Scholar] [CrossRef]
- Bass, J.; Lazar, M.A. Circadian Time Signatures of Fitness and Disease. Science 2016, 354, 994. [Google Scholar] [CrossRef]
- Mohawk, J.A.; Green, C.B.; Takahashi, J.S. Central and Peripheral Circadian Clocks in Mammals. Annu. Rev. Neurosci. 2012, 35, 445. [Google Scholar] [CrossRef]
- Welsh, D.K.; Takahashi, J.S.; Kay, S.A. Suprachiasmatic Nucleus: Cell Autonomy and Network Properties. Annu. Rev. Physiol. 2010, 72, 551. [Google Scholar] [CrossRef]
- Liu, A.C.; Welsh, D.K.; Ko, C.H.; Tran, H.; Zhang, E.E.; Priest, A.A.; Buhr, E.D.; Singer, O.; Meeker, K.; Verma, I.M.; et al. Intercellular Coupling Confers Robustness against Mutations in the SCN Circadian Clock Network. Cell 2007, 129, 605. [Google Scholar] [CrossRef]
- Ko, C.H.; Takahashi, J.S. Molecular Components of the Mammalian Circadian Clock. Hum. Mol. Genet. 2006, 15, R271–R277. [Google Scholar] [CrossRef]
- Reppert, S.M.; Weaver, D.R. Coordination of Circadian Timing in Mammals. Nature 2002, 418, 935. [Google Scholar] [CrossRef]
- Hardin, P.E.; Hall, J.C.; Rosbash, M. Feedback of the Drosophila Period Gene Product on Circadian Cycling of Its Messenger RNA Levels. Nature 1990, 343, 536. [Google Scholar] [CrossRef] [PubMed]
- Gekakis, N.; Staknis, D.; Nguyen, H.B.; Davis, F.C.; Wilsbacher, L.D.; King, D.P.; Takahashi, J.S.; Weitz, C.J. Role of the CLOCK Protein in the Mammalian Circadian Mechanism. Science 1998, 280, 1564. [Google Scholar] [CrossRef] [PubMed]
- Kume, K.; Zylka, M.J.; Sathyanarayanan, S.; Shearman, L.P.; Weaver, D.R.; Jin, X.; Maywood, E.S.; Hastings, M.H.; Reppert, S.M. mCRY1 and mCRY2 Are Essential Components of the Negative Limb of the Circadian Clock Feedback Loop. Cell 1999, 98, 193. [Google Scholar] [CrossRef]
- Lee, C.; Etchegaray, J.-P.; Cagampang, F.R.; Loudon, A.; Reppert, S.M. Posttranslational Mechanisms Regulate the Mammalian Circadian Clock. Cell 2001, 107, 855. [Google Scholar] [CrossRef]
- Yoo, S.H.; Yamazaki, S.; Lowrey, P.L.; Shimomura, K.; Ko, C.H.; Buhr, E.D.; Siepka, S.M.; Hong, H.-K.; Oh, W.J.; Yoo, O.J.; et al. PERIOD2::LUCIFERASE Real-Time Reporting of Circadian Dynamics Reveals Persistent Circadian Oscillations in Mouse Peripheral Tissues. Proc. Natl. Acad. Sci. USA 2004, 101, 5339. [Google Scholar] [CrossRef]
- Yamazaki, S.; Numano, R.; Abe, M.; Hida, A.; Takahashi, R.; Ueda, M.; Block, G.D.; Sakaki, Y.; Menaker, M.; Tei, H. Resetting Central and Peripheral Circadian Oscillators in Transgenic Rats. Science 2000, 288, 682. [Google Scholar] [CrossRef]
- Prolo, L.M.; Takahashi, J.S.; Herzog, E.D. Circadian Rhythm Generation and Entrainment in Astrocytes. J. Neurosci. 2005, 25, 404. [Google Scholar] [CrossRef]
- Nagoshi, E.; Saini, C.; Bauer, C.; Laroche, T.; Naef, F.; Schibler, U. Circadian Gene Expression in Individual Fibroblasts. Cell 2004, 119, 693. [Google Scholar] [CrossRef]
- Balsalobre, A.; Damiola, F.; Schibler, U. A Serum Shock Induces Circadian Gene Expression in Mammalian Tissue Culture Cells. Cell 1998, 93, 929. [Google Scholar] [CrossRef]
- Dibner, C.; Schibler, U.; Albrecht, U. The Mammalian Circadian Timing System: Organization and Coordination of Central and Peripheral Clocks. Annu. Rev. Physiol. 2010, 72, 517. [Google Scholar] [CrossRef]
- Kalsbeek, A.; Palm, I.F.; Fleur, S.E.L.; Scheer, F.A.J.L.; Perreau-Lenz, S.; Ruiter, M.; Kreier, F.; Cailotto, C.; Buijs, R.M. SCN Outputs and the Hypothalamic Balance of Life. J. Biol. Rhythm. 2006, 21, 458. [Google Scholar] [CrossRef]
- Buijs, R.M.; Kalsbeek, A. Hypothalamic Integration of Central and Peripheral Clocks. Nat. Rev. Neurosci. 2001, 2, 521. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Lahens, N.F.; Ballance, H.; Hughes, M.E.; Hogenesch, J.B. A Circadian Gene Expression Atlas in Mammals: Implications for Biology and Medicine. Proc. Natl. Acad. Sci. USA 2014, 111, 16219. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Murrell, C.E.; Chu, A.; Pan, X. Circadian Regulation of Apolipoproteins in the Brain: Implications in Lipid Metabolism and Disease. Int. J. Mol. Sci. 2023, 24, 17415. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; Antoch, M.P.; Miller, B.H.; Su, A.I.; Schook, A.B.; Straume, M.; Schultz, P.G.; Kay, S.A.; Takahashi, J.S.; Hogenesch, J.B. Coordinated Transcription of Key Pathways in the Mouse by the Circadian Clock. Cell 2002, 109, 307. [Google Scholar] [CrossRef]
- Mure, L.S.; Le, H.D.; Benegiamo, G.; Chang, M.W.; Ríos, L.; Jillani, N.; Ngotho, M.; Kariuki, T.; Dkhissi-Benyahya, O.; Cooper, H.M.; et al. Diurnal Transcriptome Atlas of a Primate across Major Neural and Peripheral Tissues. Science 2018, 359, eaao0318. [Google Scholar] [CrossRef]
- Hastings, M.H.; Maywood, E.S.; Brancaccio, M. Generation of Circadian Rhythms in the Suprachiasmatic Nucleus. Nat. Rev. Neurosci. 2018, 19, 453. [Google Scholar] [CrossRef]
- Kwon, I.; Lee, J.; Chang, S.H.; Jung, N.C.; Lee, B.J.; Son, G.H.; Kim, K.; Lee, K.H. BMAL1 Shuttling Controls Transactivation and Degradation of the CLOCK/BMAL1 Heterodimer. Mol. Cell. Biol. 2006, 26, 7318. [Google Scholar] [CrossRef]
- Cheng, A.H.; Bouchard-Cannon, P.; Hegazi, S.; Lowden, C.; Fung, S.W.; Chiang, C.; Ness, R.W.; Cheng, H.M. SOX2-Dependent Transcription in Clock Neurons Promotes the Robustness of the Central Circadian Pacemaker. Cell Rep. 2019, 26, 3191. [Google Scholar] [CrossRef]
- Asher, G.; Gatfield, D.; Stratmann, M.; Reinke, H.; Dibner, C.; Kreppel, F.; Mostoslavsky, R.; Alt, F.W.; Schibler, U. SIRT1 Regulates Circadian Clock Gene Expression through PER2 Deacetylation. Cell 2008, 134, 317. [Google Scholar] [CrossRef]
- Hirayama, J.; Sahar, S.; Grimaldi, B.; Tamaru, T.; Takamatsu, K.; Nakahata, Y.; Sassone-Corsi, P. CLOCK-Mediated Acetylation of BMAL1 Controls Circadian Function. Nature 2007, 450, 1086. [Google Scholar] [CrossRef]
- Lim, C.; Allada, R. Emerging Roles for Post-Transcriptional Regulation in Circadian Clocks. Nat. Neurosci. 2013, 16, 1544. [Google Scholar] [CrossRef]
- Myung, J.; Hong, S.; DeWoskin, D.; Schutter, E.D.; Forger, D.B.; Takumi, T. GABA-Mediated Repulsive Coupling between Circadian Clock Neurons in the SCN Encodes Seasonal Time. Proc. Natl. Acad. Sci. USA 2015, 112, E3920–E3929. [Google Scholar] [CrossRef] [PubMed]
- Adamantidis, A.; Herrera, C.G.; Gent, T.C. Oscillating Circuitries in the Sleeping Brain. Nat. Rev. Neurosci. 2019, 20, 746. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.M.C.; Dragich, J.M.; Kudo, T.; Odom, I.H.; Welsh, D.K.; O’Dell, T.J.; Colwell, C.S. Expression of the Circadian Clock Gene Period2 in the Hippocampus: Possible Implications for Synaptic Plasticity and Learned Behaviour. ASN Neuro 2009, 1, AN20090020. [Google Scholar] [CrossRef]
- Gerstner, J.R.; Yin, J.C.P. Circadian Rhythms and Memory Formation. Nat. Rev. Neurosci. 2010, 11, 577. [Google Scholar] [CrossRef]
- Seibt, J.; Dumoulin, M.; Aton, S.J.; Coleman, T.; Watson, A.; Naidoo, N.; Frank, M.G. Protein Synthesis during Sleep Consolidates Cortical Plasticity In Vivo. Curr. Biol. 2012, 22, 676. [Google Scholar] [CrossRef]
- Frank, M.G.; Cantera, R. Sleep, Clocks, and Synaptic Plasticity. Trends Neurosci. 2014, 37, 491. [Google Scholar] [CrossRef]
- Eckel-Mahan, K.; Phan, T.; Han, S.; Wang, H.; Chan, G.C.-K.; Scheiner, Z.S.; Storm, D.R. Circadian Oscillation of Hippocampal MAPK Activity and cAMP: Implications for Memory Persistence. Nat. Neurosci. 2008, 11, 1074. [Google Scholar] [CrossRef]
- Golombék, D.A.; Rosenstein, R.E. Physiology of Circadian Entrainment. Physiol. Rev. 2010, 90, 1063. [Google Scholar] [CrossRef]
- Provencio, I.; Rodriguez, I.R.; Jiang, G.; Hayes, W.P.; Moreira, E.F.; Rollag, M.D. A Novel Human Opsin in the Inner Retina. J. Neurosci. 2000, 20, 600. [Google Scholar] [CrossRef]
- Hattar, S.; Liao, H.-W.; Takao, M.; Berson, D.M.; Yau, K. Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity. Science 2002, 295, 1065. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.A.; Zumbrunn, G.; Fleury-Olela, F.; Preitner, N.; Schibler, U. Rhythms of Mammalian Body Temperature Can Sustain Peripheral Circadian Clocks. Curr. Biol. 2002, 12, 1574. [Google Scholar] [CrossRef] [PubMed]
- Damiola, F.; Minh, N.L.; Preitner, N.; Kornmann, B.; Fleury-Olela, F.; Schibler, U. Restricted Feeding Uncouples Circadian Oscillators in Peripheral Tissues from the Central Pacemaker in the Suprachiasmatic Nucleus. Genes Dev. 2000, 14, 2950. [Google Scholar] [CrossRef] [PubMed]
- Aton, S.J.; Colwell, C.S.; Harmar, A.J.; Waschek, J.A.; Herzog, E.D. Vasoactive Intestinal Polypeptide Mediates Circadian Rhythmicity and Synchrony in Mammalian Clock Neurons. Nat. Neurosci. 2005, 8, 476. [Google Scholar] [CrossRef]
- Kondratov, R.V.; Kondratova, A.A.; Gorbacheva, V.; Vykhovanets, O.; Antoch, M.P. Early Aging and Age-Related Pathologies in Mice Deficient in BMAL1, the Core Componentof the Circadian Clock. Genes Dev. 2006, 20, 1868. [Google Scholar] [CrossRef]
- Davidson, A.J.; Sellix, M.T.; Daniel, J.; Yamazaki, S.; Menaker, M.; Block, G.D. Chronic Jet-Lag Increases Mortality in Aged Mice. Curr. Biol. 2006, 16, R914–R916. [Google Scholar] [CrossRef]
- Leng, Y.; Musiek, E.S.; Hu, K.; Cappuccio, F.P.; Yaffe, K. Association between Circadian Rhythms and Neurodegenerative Diseases. Lancet Neurol. 2019, 18, 307. [Google Scholar] [CrossRef]
- Logan, R.W.; McClung, C.A. Rhythms of Life: Circadian Disruption and Brain Disorders across the Lifespan. Nat. Rev. Neurosci. 2018, 20, 49. [Google Scholar] [CrossRef]
- White, W.E.; Hooper, S.L. Contamination of Current-Clamp Measurement of Neuron Capacitance by Voltage-Dependent Phenomena. J. Neurophysiol. 2013, 110, 257. [Google Scholar] [CrossRef] [PubMed]
- Bezanilla, F.; Taylor, R.E.; Fernández, J.M. Distribution and Kinetics of Membrane Dielectric Polarization. 1. Long-Term Inactivation of Gating Currents. J. Gen. Physiol. 1982, 79, 21. [Google Scholar] [CrossRef] [PubMed]
- Chitwood, R.A.; Hubbard, A.; Jaffe, D.B. Passive Electrotonic Properties of Rat Hippocampal CA3 Interneurones. J. Physiol. 1999, 515, 743. [Google Scholar] [CrossRef] [PubMed]
- Gentet, L.J.; Stuart, G.J.; Clements, J.D. Direct Measurement of Specific Membrane Capacitance in Neurons. Biophys. J. 2000, 79, 314. [Google Scholar] [CrossRef]
- Eyal, G.; Verhoog, M.B.; Testa-Silva, G.; Deitcher, Y.; Lodder, J.C.; Benavides-Piccione, R.; Morales, J.; DeFelipe, J.; de Kock, C.P.; Mansvelder, H.D.; et al. Unique Membrane Properties and Enhanced Signal Processing in Human Neocortical Neurons. eLife 2016, 5, e16553. [Google Scholar] [CrossRef]
- Rall, W. Time Constants and Electrotonic Length of Membrane Cylinders and Neurons. Biophys. J. 1969, 9, 1483. [Google Scholar] [CrossRef]
- Castelfranco, A.M.; Hartline, D.K. The Evolution of Vertebrate and Invertebrate Myelin: A Theoretical Computational Study. J. Comput. Neurosci. 2015, 38, 521. [Google Scholar] [CrossRef]
- Rangel-Barajas, C.; Boehm, S.L.; Logrip, M.L. Altered Excitatory Transmission in Striatal Neurons after Chronic Ethanol Consumption in Selectively Bred Crossed High Alcohol-Preferring Mice. Neuropharmacology 2021, 190, 108564. [Google Scholar] [CrossRef]
- Akopian, G.; Barry, J.; Cepeda, C.; Levine, M.S. Altered Membrane Properties and Firing Patterns of External Globus Pallidus Neurons in the R6/2 Mouse Model of Huntington’s Disease. J. Neurosci. Res. 2016, 94, 1400. [Google Scholar] [CrossRef]
- Pérez-García, P.; Pardillo-Díaz, R.; Geribaldi-Doldán, N.; Gómez-Oliva, R.; Domínguez-García, S.; Castro, C.; Nunez-Abades, P.; Carrascal, L. Refinement of Active and Passive Membrane Properties of Layer V Pyramidal Neurons in Rat Primary Motor Cortex During Postnatal Development. Front. Mol. Neurosci. 2021, 14, 754393. [Google Scholar] [CrossRef]
- Curtis, H.J.; Cole, K.S. Transverse Electric Impedance of the Squid Giant Axon. J. Gen. Physiol. 1938, 21, 757. [Google Scholar] [CrossRef]
- Tran, T.; Ünal, Ç.T.; Severín, D.; Záborszky, L.; Rotstein, H.G.; Kirkwood, A.; Golowasch, J. Ionic Current Correlations Are Ubiquitous across Phyla. Sci. Rep. 2019, 9, 1687. [Google Scholar] [CrossRef] [PubMed]
- Clements, J.D.; Redman, S. Cable Properties of Cat Spinal Motoneurones Measured by Combining Voltage Clamp, Current Clamp and Intracellular Staining. J. Physiol. 1989, 409, 63. [Google Scholar] [CrossRef] [PubMed]
- Haedo, R.; Golowasch, J. Ionic Mechanism Underlying Recovery of Rhythmic Activity in Adult Isolated Neurons. J. Neurophysiol. 2006, 96, 1860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Song, B.; Bai, P.; Du, L.; Chen, L.; Xu, Y.; Zeng, T. Perineuronal Nets’ Role in Metabolism. AJP Endocrinol. Metab. 2024, 327, E411–E421. [Google Scholar] [CrossRef]
- Li, X.; Wu, X.; Lu, T.; Kuang, C.; Si, Y.; Zheng, W.; Li, Z.; Xue, Y. Perineuronal Nets in the CNS: Architects of Memory and Potential Therapeutic Target in Neuropsychiatric Disorders. Int. J. Mol. Sci. 2024, 25, 3412. [Google Scholar] [CrossRef]
- Wang, D.; Fawcett, J.W. The Perineuronal Net and the Control of CNS Plasticity. Cell Tissue Res. 2012, 349, 147. [Google Scholar] [CrossRef]
- Fawcett, J.W.; Oohashi, T.; Pizzorusso, T. The Roles of Perineuronal Nets and the Perinodal Extracellular Matrix in Neuronal Function. Nat. Rev. Neurosci. 2019, 20, 451. [Google Scholar] [CrossRef]
- Miyata, S.; Komatsu, Y.; Yoshimura, Y.; Taya, C.; Kitagawa, H. Persistent Cortical Plasticity by Upregulation of Chondroitin 6-Sulfation. Nat. Neurosci. 2012, 15, 414. [Google Scholar] [CrossRef]
- Brückner, G.; Brauer, K.; Härtig, W.; Wolff, J.R.; Rickmann, M.; Derouiche, A.; Delpech, B.; Girard, N.; Oertel, W.H.; Reichenbach, A. Perineuronal Nets Provide a Polyanionic, Glia-associated Form of Microenvironment around Certain Neurons in Many Parts of the Rat Brain. Glia 1993, 8, 183. [Google Scholar] [CrossRef]
- Briones, B.A.; Pisano, T.J.; Pitcher, M.N.; Haye, A.E.; Diethorn, E.J.; Engel, E.A.; Cameron, H.A.; Gould, E. Adult-born Granule Cell Mossy Fibers Preferentially Target Parvalbumin-positive Interneurons Surrounded by Perineuronal Nets. Hippocampus 2021, 31, 375. [Google Scholar] [CrossRef]
- Spijker, S.; Koskinen, M.-K.; Riga, D. Incubation of Depression: ECM Assembly and Parvalbumin Interneurons after Stress. Neurosci. Biobehav. Rev. 2020, 118, 65. [Google Scholar] [CrossRef]
- Carstens, K.E.; Lustberg, D.J.; Shaughnessy, E.K.; McCann, K.E.; Alexander, G.M.; Dudek, S.M. Perineuronal Net Degradation Rescues CA2 Plasticity in a Mouse Model of Rett Syndrome. J. Clin. Investig. 2021, 131, e137221. [Google Scholar] [CrossRef]
- Marty, A.; Neher, E. Tight-Seal Whole-Cell Recording. In Springer eBooks; Springer Nature: New York, NY, USA, 1995; p. 31. [Google Scholar]
- Neher, E.; Marty, A. Discrete Changes of Cell Membrane Capacitance Observed under Conditions of Enhanced Secretion in Bovine Adrenal Chromaffin Cells. Proc. Natl. Acad. Sci. USA 1982, 79, 6712. [Google Scholar] [CrossRef] [PubMed]
- Gillis, K.D. Techniques for Membrane Capacitance Measurements. In Springer eBooks; Springer Nature: New York, NY, USA, 1995; p. 155. [Google Scholar]
- Fernández, J.M.; Neher, E.; Gomperts, B.D. Capacitance Measurements Reveal Stepwise Fusion Events in Degranulating Mast Cells. Nature 1984, 312, 453. [Google Scholar] [CrossRef] [PubMed]
- Sherman, A.; Rinzel, J.; Keizer, J. Emergence of Organized Bursting in Clusters of Pancreatic Beta-Cells by Channel Sharing. Biophys. J. 1988, 54, 411. [Google Scholar] [CrossRef] [PubMed]
- Boric, K.; Muñoz, P.; Gallagher, M.; Kirkwood, A. Potential Adaptive Function for Altered Long-Term Potentiation Mechanisms in Aging Hippocampus. J. Neurosci. 2008, 28, 8034. [Google Scholar] [CrossRef]
- Weiler, S.; Guggiana-Nilo, D.; Bonhoeffer, T.; Hübener, M.; Rose, T.; Scheuß, V. Functional and Structural Features of L2/3 Pyramidal Cells Continuously Covary with Pial Depth in Mouse Visual Cortex. Cereb. Cortex 2022, 33, 3715. [Google Scholar] [CrossRef]
- Rudy, B.; Fishell, G.; Lee, S.; Hjerling-Leffler, J. Three Groups of Interneurons Account for Nearly 100% of Neocortical GABAergic Neurons. Dev. Neurobiol. 2010, 71, 45. [Google Scholar] [CrossRef]
- Hu, H.; Gan, J.; Jónás, P. Fast-Spiking, Parvalbumin + GABAergic Interneurons: From Cellular Design to Microcircuit Function. Science 2014, 345, 1255263. [Google Scholar] [CrossRef]
- Bartos, M.; Vida, I.; Jónás, P. Synaptic Mechanisms of Synchronized Gamma Oscillations in Inhibitory Interneuron Networks. Nat. Rev. Neurosci. 2006, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Nusser, Z.; Kay, L.M.; Laurent, G.; Homanics, G.E.; Módy, I. Disruption of GABAA Receptors on GABAergic Interneurons Leads to Increased Oscillatory Power in the Olfactory Bulb Network. J. Neurophysiol. 2001, 86, 2823. [Google Scholar] [CrossRef]
- Ascoli, G.A.; Alonso-Nanclares, L.; Anderson, S.A.; Barrionuevo, G.; Benavides-Piccione, R.; Burkhalter, A.; Buzsáki, G.; Cauli, B.; DeFelipe, J.; Fairén, A.; et al. Petilla Terminology: Nomenclature of Features of GABAergic Interneurons of the Cerebral Cortex. Nat. Rev. Neurosci. 2008, 9, 557. [Google Scholar] [CrossRef]
- Markram, H.; Toledo-Rodriguez, M.; Wang, Y.; Gupta, A.; Silberberg, G.; Wu, C. Interneurons of the Neocortical Inhibitory System. Nat. Rev. Neurosci. 2004, 5, 793. [Google Scholar] [CrossRef] [PubMed]
- Scala, F.; Kobak, D.; Bernabucci, M.; Bernaerts, Y.; Cadwell, C.R.; Castro, J.R.; Hartmanis, L.; Jiang, X.; Laturnus, S.; Miranda, E.; et al. Phenotypic Variation of Transcriptomic Cell Types in Mouse Motor Cortex. Nature 2020, 598, 144. [Google Scholar] [CrossRef] [PubMed]
- Gouwens, N.W.; Sorensen, S.A.; Berg, J.; Lee, C.; Jarsky, T.; Ting, J.T.; Sunkin, S.M.; Feng, D.; Anastassiou, C.A.; Barkan, E.; et al. Classification of Electrophysiological and Morphological Neuron Types in the Mouse Visual Cortex. Nat. Neurosci. 2019, 22, 1182. [Google Scholar] [CrossRef]
- Perin, R.; Telefont, M.; Markram, H. Computing the Size and Number of Neuronal Clusters in Local Circuits. Front. Neuroanat. 2013, 7, 20598. [Google Scholar] [CrossRef]
- Kodandaramaiah, S.B.; Franzesi, G.T.; Chow, B.Y.; Boyden, E.S.; Forest, C.R. Automated Whole-Cell Patch-Clamp Electrophysiology of Neurons in Vivo. Nat. Methods 2012, 9, 585. [Google Scholar] [CrossRef]
- Petsakou, A.; Sapsis, T.P.; Blau, J. Circadian Rhythms in Rho1 Activity Regulate Neuronal Plasticity and Network Hierarchy. Cell 2015, 162, 823. [Google Scholar] [CrossRef]
- Vaughen, J.P.; Theisen, E.; Rivas-Serna, I.M.; Berger, A.B.; Kalakuntla, P.; Anreiter, I.; Mazurak, V.C.; Rodriguez, T.P.; Mast, J.D.; Hartl, T.A.; et al. Glial Control of Sphingolipid Levels Sculpts Diurnal Remodeling in a Circadian Circuit. Neuron 2022, 110, 3186. [Google Scholar] [CrossRef]
- Ruggiero, A.; Katsenelson, M.; Slutsky, I. Mitochondria: New Players in Homeostatic Regulation of Firing Rate Set Points. Trends Neurosci. 2021, 44, 605. [Google Scholar] [CrossRef]
- Sato, T.K.; Panda, S.; Miraglia, L.; Reyes, T.M.; Rudic, R.D.; McNamara, P.; Naik, K.A.; FitzGerald, G.A.; Kay, S.A.; Hogenesch, J.B. A Functional Genomics Strategy Reveals Rora as a Component of the Mammalian Circadian Clock. Neuron 2004, 43, 527. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, B.; Emmett, M.J.; Damle, M.; Sun, Z.; Feng, D.; Armour, S.M.; Remsberg, J.R.; Jager, J.; Soccio, R.E.; et al. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science 2015, 348, 1488–1492. [Google Scholar] [CrossRef] [PubMed]
- Asher, G.; Sassone-Corsi, P. Time for Food: The Intimate Interplay between Nutrition, Metabolism, and the Circadian Clock. Cell 2015, 161, 84. [Google Scholar] [CrossRef] [PubMed]
- Colwell, C.S. Circadian Modulation of Calcium Levels in Cells in the Suprachiasmatic Nucleus. Eur. J. Neurosci. 2000, 12, 571. [Google Scholar] [CrossRef] [PubMed]
- Kudo, T.; Loh, D.H.; Truong, D.; Wu, Y.; Colwell, C.S. Circadian Dysfunction in a Mouse Model of Parkinson’s Disease. Exp. Neurol. 2011, 232, 66. [Google Scholar] [CrossRef]
- Itri, J.N.; Michel, S.; Vansteensel, M.J.; Meijer, J.H.; Colwell, C.S. Fast Delayed Rectifier Potassium Current Is Required for Circadian Neural Activity. Nat. Neurosci. 2005, 8, 650. [Google Scholar] [CrossRef]
- Belle, M.D.C.; Diekman, C.O.; Forger, D.B.; Piggins, H.D. Daily Electrical Silencing in the Mammalian Circadian Clock. Science 2009, 326, 281. [Google Scholar] [CrossRef]
- Aviram, R.; Adamovich, Y.; Asher, G. Circadian Organelles: Rhythms at All Scales. Cells 2021, 10, 2447. [Google Scholar] [CrossRef]
- Musiek, E.S.; Bhimasani, M.; Zangrilli, M.A.; Morris, J.C.; Holtzman, D.M.; Ju, Y.S. Circadian Rest-Activity Pattern Changes in Aging and Preclinical Alzheimer Disease. JAMA Neurol. 2018, 75, 582. [Google Scholar] [CrossRef]
- Hussain, Y.; Dar, M.U.D.; Pan, X. Circadian Influences on Brain Lipid Metabolism and Neurodegenerative Diseases. Metabolites 2024, 14, 723. [Google Scholar] [CrossRef]
- Adamovich, Y.; Rousso-Noori, L.; Zwighaft, Z.; Neufeld-Cohen, A.; Golik, M.; Kraut-Cohen, J.; Wang, M.; Han, X.; Asher, G. Circadian Clocks and Feeding Time Regulate the Oscillations and Levels of Hepatic Triglycerides. Cell Metab. 2014, 19, 319. [Google Scholar] [CrossRef] [PubMed]
- Shimba, S.; Ishii, N.; Ohta, Y.; Ohno, T.; Watabe, Y.; Hayashi, M.; Wada, T.; Aoyagi, T.; Tezuka, M. Brain and Muscle Arnt-like Protein-1 (BMAL1), a Component of the Molecular Clock, Regulates Adipogenesis. Proc. Natl. Acad. Sci. USA 2005, 102, 12071. [Google Scholar] [CrossRef] [PubMed]
- Fustin, J.; Doi, M.; Yamaguchi, Y.; Hayashi, H.; Nishimura, S.; Yoshida, M.; Isagawa, T.; Morioka, M.; Kakeya, H.; Manabe, I.; et al. RNA-Methylation-Dependent RNA Processing Controls the Speed of the Circadian Clock. Cell 2013, 155, 793. [Google Scholar] [CrossRef] [PubMed]
- Martelot, G.L.; Claudel, T.; Gatfield, D.; Schaad, O.; Kornmann, B.; Sasso, G.L.; Moschetta, A.; Schibler, U. REV-ERBα Participates in Circadian SREBP Signaling and Bile Acid Homeostasis. PLoS Biol. 2009, 7, e1000181. [Google Scholar] [CrossRef]
- Gnocchi, D.; Pedrelli, M.; Hurt-Camejo, E.; Parini, P. Lipids around the Clock: Focus on Circadian Rhythms and Lipid Metabolism. Biology 2015, 4, 104. [Google Scholar] [CrossRef]
- Milev, N.; Rhee, S.-G.; Reddy, A.B. Cellular Timekeeping: It’s Redox o’Clock. Cold Spring Harb. Perspect. Biol. 2017, 10, a027698. [Google Scholar] [CrossRef]
- Krishnaiah, S.; Wu, G.; Altman, B.J.; Growe, J.; Rhoades, S.D.; Coldren, F.; Venkataraman, A.; Olarerin-George, A.O.; Francey, L.J.; Mukherjee, S.; et al. Clock Regulation of Metabolites Reveals Coupling between Transcription and Metabolism. Cell Metab. 2017, 25, 961. [Google Scholar] [CrossRef]
- Musiek, E.S.; Xiong, D.D.; Holtzman, D.M. Sleep, Circadian Rhythms, and the Pathogenesis of Alzheimer Disease. Exp. Mol. Med. 2015, 47, e148. [Google Scholar] [CrossRef]
- Chaix, A.; Zarrinpar, A.; Miu, P.; Panda, S. Time-Restricted Feeding Is a Preventative and Therapeutic Intervention against Diverse Nutritional Challenges. Cell Metab. 2014, 20, 991. [Google Scholar] [CrossRef]
- Ko, G.Y.P.; Shi, L.; Ko, M.L. Circadian Regulation of Ion Channels and Their Functions. J. Neurochem. 2009, 110, 1150. [Google Scholar] [CrossRef]
- Zakon, H.H.; McAnelly, L.; Smith, G.T.; Dunlap, K.D.; Lopreato, G.F.; Oestreich, J.; Few, W.P. Plasticity of the Electric Organ Discharge: Implications for the Regulation of Ionic Currents. J. Exp. Biol. 1999, 202, 1409. [Google Scholar] [CrossRef]
- Mahoney, C.E.; Cogswell, A.C.; Koralnik, I.J.; Scammell, T.E. The Neurobiological Basis of Narcolepsy. Nat. Rev. Neurosci. 2018, 20, 83. [Google Scholar] [CrossRef]
- Paul, J.R.; McKeown, A.; Davis, J.A.; Totsch, S.K.; Mintz, E.; Kraft, T.W.; Cowell, R.M.; Gamble, K.L. Glycogen Synthase Kinase 3 Regulates Photic Signaling in the Suprachiasmatic Nucleus. Eur. J. Neurosci. 2017, 45, 1102. [Google Scholar] [CrossRef]
- Hanada, T.; Weitzer, S.; Mair, B.; Bernreuther, C.; Wainger, B.J.; Ichida, J.K.; Hanada, R.; Orthofer, M.; Cronin, S.J.F.; Komnenovic, V.; et al. CLP1 Links tRNA Metabolism to Progressive Motor-Neuron Loss. Nature 2013, 495, 474. [Google Scholar] [CrossRef]
- Mizrak, D.; Ruben, M.D.; Myers, G.N.; Rhrissorrakrai, K.; Gunsalus, K.C.; Blau, J. Electrical Activity Can Impose Time of Day on the Circadian Transcriptome of Pacemaker Neurons. Curr. Biol. 2012, 22, 1871. [Google Scholar] [CrossRef]
- Harrisingh, M.C.; Wu, Y.; Lnenicka, G.A.; Nitabach, M.N. Intracellular Ca2+ Regulates Free-Running Circadian Clock OscillationIn Vivo. J. Neurosci. 2007, 27, 12489. [Google Scholar] [CrossRef] [PubMed]
- Kon, N.; Yoshikawa, T.; Honma, S.; Yamagata, Y.; Yoshitane, H.; Shimizu, K.; Sugiyama, Y.; Hara, C.; Kameshita, I.; Honma, K.; et al. CaMKII Is Essential for the Cellular Clock and Coupling between Morning and Evening Behavioral Rhythms. Genes Dev. 2014, 28, 1101. [Google Scholar] [CrossRef] [PubMed]
- Kurien, P.; Hsu, P.; de Leon, J.G.; Wu, D.; McMahon, T.; Shi, G.; Xu, Y.; Lipzen, A.; Pennacchio, L.; Jones, C.R.; et al. TIMELESS Mutation Alters Phase Responsiveness and Causes Advanced Sleep Phase. Proc. Natl. Acad. Sci. USA 2019, 116, 12045. [Google Scholar] [CrossRef] [PubMed]
- Mieda, M.; Sakurai, T. Bmal1in the Nervous System Is Essential for Normal Adaptation of Circadian Locomotor Activity and Food Intake to Periodic Feeding. J. Neurosci. 2011, 31, 15391. [Google Scholar] [CrossRef]
- Misonou, H.; Mohapatra, D.P.; Park, E.W.; Leung, V.C.M.; Zhen, D.; Misonou, K.; Anderson, A.E.; Trimmer, J.S. Regulation of Ion Channel Localization and Phosphorylation by Neuronal Activity. Nat. Neurosci. 2004, 7, 711. [Google Scholar] [CrossRef] [PubMed]
- Grubb, M.S.; Burrone, J. Activity-Dependent Relocation of the Axon Initial Segment Fine-Tunes Neuronal Excitability. Nature 2010, 465, 1070. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M.; Sugiyama, T.; Wallace, C.S.; Gompf, H.S.; Yoshioka, T.; Miyawaki, A.; Allen, C.N. Circadian Dynamics of Cytosolic and Nuclear Ca2+ in Single Suprachiasmatic Nucleus Neurons. Neuron 2003, 38, 253. [Google Scholar] [CrossRef]
- Jackson, A.C.; Yao, G.L.; Bean, B.P. Mechanism of Spontaneous Firing in Dorsomedial Suprachiasmatic Nucleus Neurons. J. Neurosci. 2004, 24, 7985. [Google Scholar] [CrossRef]
- Niu, R.; Guo, X.; Wang, J.; Yang, X. The Hidden Rhythms of Epilepsy: Exploring Biological Clocks and Epileptic Seizure Dynamics. Acta Epileptol. 2025, 7, 1. [Google Scholar] [CrossRef]
- Belle, M.D.C.; Diekman, C.O. Neuronal Oscillations on an Ultra-slow Timescale: Daily Rhythms in Electrical Activity and Gene Expression in the Mammalian Master Circadian Clockwork. Eur. J. Neurosci. 2018, 48, 2696. [Google Scholar] [CrossRef]
- Barca-Mayo, O.; Pons-Espinal, M.; Follert, P.; Armirotti, A.; Berdondini, L.; Tonelli, D.D.P. Astrocyte Deletion of Bmal1 Alters Daily Locomotor Activity and Cognitive Functions via GABA Signalling. Nat. Commun. 2017, 8, 14336. [Google Scholar] [CrossRef]
- Marino, G.M.; Arble, D.M. Peripheral Clock Disruption and Metabolic Disease: Moving beyond the Anatomy to a Functional Approach. Front. Endocrinol. 2023, 14, 1182506. [Google Scholar] [CrossRef]
- Ono, D.; Honma, K.; Honma, S. Circadian and Ultradian Rhythms of Clock Gene Expression in the Suprachiasmatic Nucleus of Freely Moving Mice. Sci. Rep. 2015, 5, 12310. [Google Scholar] [CrossRef]
- Yang, T.; Tang, Y.; Liu, X.; Gong, S.; Yao, E. Microglia Synchronizes with the Circadian Rhythm of the Glymphatic System and Modulates Glymphatic System Function. IUBMB Life 2024, 76, 1209–1222. [Google Scholar] [CrossRef]
- Fields, R.D. A New Mechanism of Nervous System Plasticity: Activity-Dependent Myelination. Nat. Rev. Neurosci. 2015, 16, 756. [Google Scholar] [CrossRef] [PubMed]
- Gibson, E.M.; Purger, D.; Mount, C.; Goldstein, A.; Lin, G.L.; Wood, L.; Inema, I.; Miller, S.E.; Bieri, G.; Zuchero, J.B.; et al. Neuronal Activity Promotes Oligodendrogenesis and Adaptive Myelination in the Mammalian Brain. Science 2014, 344, 1252304. [Google Scholar] [CrossRef] [PubMed]
- Arancibia-Cárcamo, I.L.; Ford, M.C.; Cossell, L.; Ishida, K.; Tohyama, K.; Attwell, D. Node of Ranvier Length as a Potential Regulator of Myelinated Axon Conduction Speed. eLife 2017, 6, e23329. [Google Scholar] [CrossRef]
- Pajevic, S.; Basser, P.J.; Fields, R.D. Role of Myelin Plasticity in Oscillations and Synchrony of Neuronal Activity. Neuroscience 2013, 276, 135. [Google Scholar] [CrossRef]
- Xie, L.; Kang, H.; Xu, Q.; Chen, M.; Liao, Y.; Thiyagarajan, M.; O’Donnell, J.; Christensen, D.J.; Nicholson, C.; Iliff, J.J.; et al. Sleep Drives Metabolite Clearance from the Adult Brain. Science 2013, 342, 373. [Google Scholar] [CrossRef]
- Halassa, M.M.; Fellin, T.; Takano, H.; Dong, J.-H.; Haydon, P.G. Synaptic Islands Defined by the Territory of a Single Astrocyte. J. Neurosci. 2007, 27, 6473. [Google Scholar] [CrossRef]
- Haydon, P.G.; Nedergaard, M. How Do Astrocytes Participate in Neural Plasticity? Cold Spring Harb. Perspect. Biol. 2014, 7, a020438. [Google Scholar] [CrossRef]
- Lalo, U.; Palygin, O.; Rasooli-Nejad, S.; Andrew, J.; Haydon, P.G.; Pankratov, Y. Exocytosis of ATP From Astrocytes Modulates Phasic and Tonic Inhibition in the Neocortex. PLoS Biol. 2014, 12, e1001747. [Google Scholar] [CrossRef]
- Bellesi, M.; de Vivo, L.; Tononi, G.; Cirelli, C. Effects of Sleep and Wake on Astrocytes: Clues from Molecular and Ultrastructural Studies. BMC Biol. 2015, 13, 66. [Google Scholar] [CrossRef]
- Dityatev, A.; Schachner, M.; Sonderegger, P. The Dual Role of the Extracellular Matrix in Synaptic Plasticity and Homeostasis. Nat. Rev. Neurosci. 2010, 11, 735. [Google Scholar] [CrossRef]
- Farajnia, S.; Deboer, T.; Rohling, J.H.T.; Meijer, J.H.; Michel, S. Aging of the Suprachiasmatic Clock. Neurosci. 2013, 20, 44. [Google Scholar] [CrossRef] [PubMed]
- Rosbash, M. A 50-Year Personal Journey: Location, Gene Expression, and Circadian Rhythms. Cold Spring Harb. Perspect. Biol. 2017, 9, a032516. [Google Scholar] [CrossRef] [PubMed]
- Sládek, M.; Sumová, A.; Kovačíková, Z.; Bendová, Z.; Laurinová, K.; Illnerová, H. Insight into Molecular Core Clock Mechanism of Embryonic and Early Postnatal Rat Suprachiasmatic Nucleus. Proc. Natl. Acad. Sci. USA 2004, 101, 6231. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, N.C. Electrical Activity in Early Neuronal Development. Nature 2006, 444, 707. [Google Scholar] [CrossRef]
- Ohta, H.; Yamazaki, S.; McMahon, D.G. Constant Light Desynchronizes Mammalian Clock Neurons. Nat. Neurosci. 2005, 8, 267. [Google Scholar] [CrossRef]
- Reppert, S.M.; Weaver, D.R. Molecular Analysis of Mammalian Circadian Rhythms. Annu. Rev. Physiol. 2001, 63, 647. [Google Scholar] [CrossRef]
- Erzurumlu, R.S.; Gaspar, P. Development and Critical Period Plasticity of the Barrel Cortex. Eur. J. Neurosci. 2012, 35, 1540. [Google Scholar] [CrossRef]
- Monk, T.H.; Buysse, D.J.; Reynolds, C.F.; Kupfer, D.J.; Houck, P.R. Circadian Temperature Rhythms of Older People. Exp. Gerontol. 1995, 30, 455. [Google Scholar] [CrossRef]
- Valentinuzzi, V.S.; Scarbrough, K.; Takahashi, J.S.; Turek, F.W. Effects of Aging on the Circadian Rhythm of Wheel-Running Activity in C57BL/6 Mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1997, 273, R1957–R1964. [Google Scholar] [CrossRef]
- Yan, L.; Silver, R. Neuroendocrine Underpinnings of Sex Differences in Circadian Timing Systems. J. Steroid Biochem. Mol. Biol. 2015, 160, 118. [Google Scholar] [CrossRef]
- Kuljis, D.; Loh, D.H.; Truong, D.; Vosko, A.M.; Ong, M.L.; McClusky, R.; Arnold, A.P.; Colwell, C.S. Gonadal- and Sex-Chromosome-Dependent Sex Differences in the Circadian System. Endocrinology 2013, 154, 1501. [Google Scholar] [CrossRef]
- Barth, C.; Villringer, A.; Sacher, J. Sex Hormones Affect Neurotransmitters and Shape the Adult Female Brain during Hormonal Transition Periods. Front. Neurosci. 2015, 9, 37. [Google Scholar] [CrossRef]
- McEwen, B.S.; Milner, T.A. Understanding the Broad Influence of Sex Hormones and Sex Differences in the Brain. J. Neurosci. Res. 2016, 95, 24. [Google Scholar] [CrossRef]
- Morin, L.P.; Fitzgerald, K.; Zucker, I. Estradiol Shortens the Period of Hamster Circadian Rhythms. Science 1977, 196, 305. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.J.; Nakamura, W.; Yamazaki, S.; Kudo, T.; Cutler, T.; Colwell, C.S.; Block, G.D. Age-Related Decline in Circadian Output. J. Neurosci. 2011, 31, 10201. [Google Scholar] [CrossRef]
- Arnold, A.P. A General Theory of Sexual Differentiation. J. Neurosci. Res. 2016, 95, 291. [Google Scholar] [CrossRef]
- Arnold, A.P. The Organizational–Activational Hypothesis as the Foundation for a Unified Theory of Sexual Differentiation of All Mammalian Tissues. Horm. Behav. 2009, 55, 570. [Google Scholar] [CrossRef]
- Tan, D.-X.; Manchester, L.C.; Fuentes-Broto, L.; Paredes, S.D.; Reiter, R.J. Significance and Application of Melatonin in the Regulation of Brown Adipose Tissue Metabolism: Relation to Human Obesity. Obes. Rev. 2011, 12, 167. [Google Scholar] [CrossRef]
- Iwahana, E.; Karatsoreos, I.N.; Shibata, S.; Silver, R. Gonadectomy Reveals Sex Differences in Circadian Rhythms and Suprachiasmatic Nucleus Androgen Receptors in Mice. Horm. Behav. 2007, 53, 422. [Google Scholar] [CrossRef]
- Fries, P. Rhythms for Cognition: Communication through Coherence. Neuron 2015, 88, 220. [Google Scholar] [CrossRef]
- Rall, W. Core Conductor Theory and Cable Properties of Neurons. Compr. Physiol. 1977, 39, 39–97. [Google Scholar] [CrossRef]
- Martin, A.R. The Effect of Membrane Capacitance on Non-Linear Summation of Synaptic Potentials. J. Theor. Biol. 1976, 59, 179. [Google Scholar] [CrossRef]
- König, P.; Engel, A.K.; Singer, W. Integrator or Coincidence Detector? The Role of the Cortical Neuron Revisited. Trends Neurosci. 1996, 19, 130. [Google Scholar] [CrossRef] [PubMed]
- Softky, W.; Koch, C. The Highly Irregular Firing of Cortical Cells Is Inconsistent with Temporal Integration of Random EPSPs. J. Neurosci. 1993, 13, 334. [Google Scholar] [CrossRef]
- Courdurier, M.; Medina, L.E.; Paduro, E. Analysis of Neural Activation in Time-Dependent Membrane Capacitance Models. J. Math. Biol. 2025, 90, 58. [Google Scholar] [CrossRef]
- Hodgkin, A.L.; Huxley, A.F. A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve. J. Physiol. 1952, 117, 500. [Google Scholar] [CrossRef]
- Jaffe, D.B.; Carnevale, N.T. Passive normalization of synaptic integration influenced by dendritic architecture. J. Neurophysiol. 1999, 82, 3268–3285. [Google Scholar] [CrossRef]
- Mainen, Z.F.; Sejnowski, T.J. Reliability of Spike Timing in Neocortical Neurons. Science 1995, 268, 1503. [Google Scholar] [CrossRef]
- Tiesinga, P.; Fellous, J.; Sejnowski, T.J. Regulation of Spike Timing in Visual Cortical Circuits. Nat. Rev. Neurosci. 2008, 9, 97. [Google Scholar] [CrossRef]
- Kayser, C.; Montemurro, M.A.; Logothetis, N.K.; Panzeri, S. Spike-Phase Coding Boosts and Stabilizes Information Carried by Spatial and Temporal Spike Patterns. Neuron 2009, 61, 597. [Google Scholar] [CrossRef]
- van Rossum, M.C.W.; Bi, G.Q.; Turrigiano, G.G. Stable Hebbian Learning from Spike Timing-Dependent Plasticity. J. Neurosci. 2000, 20, 8812. [Google Scholar] [CrossRef]
- Larkum, M.E.; Zhu, J.; Sakmann, B. A New Cellular Mechanism for Coupling Inputs Arriving at Different Cortical Layers. Nature 1999, 398, 338. [Google Scholar] [CrossRef]
- Markram, H.; Lübke, J.; Frotscher, M.; Sakmann, B. Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs. Science 1997, 275, 213. [Google Scholar] [CrossRef]
- Bi, G.; Poo, M. Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type. J. Neurosci. 1998, 18, 10464. [Google Scholar] [CrossRef] [PubMed]
- Caporale, N.; Dan, Y. Spike Timing–Dependent Plasticity: A Hebbian Learning Rule. Annu. Rev. Neurosci. 2008, 31, 25. [Google Scholar] [CrossRef]
- Gerstner, W.; Kempter, R.; van Hemmen, J.L.; Wagner, H. A Neuronal Learning Rule for Sub-Millisecond Temporal Coding. Nature 1996, 383, 76. [Google Scholar] [CrossRef]
- Abraham, W.C.; Bear, M.F. Metaplasticity: The Plasticity of Synaptic Plasticity. Trends Neurosci. 1996, 19, 126. [Google Scholar] [CrossRef]
- Niles, W.D.; Levis, R.A.; Cohen, F.S. Planar Bilayer Membranes Made from Phospholipid Monolayers Form by a Thinning Process. Biophys. J. 1988, 53, 327. [Google Scholar] [CrossRef]
- Hulme, S.R.; Jones, O.D.; Abraham, W.C. Emerging Roles of Metaplasticity in Behaviour and Disease. Trends Neurosci. 2013, 36, 353. [Google Scholar] [CrossRef]
- Cooke, S.F.; Bliss, T.V.P. Plasticity in the Human Central Nervous System. Brain 2006, 129, 1659. [Google Scholar] [CrossRef]
- Hensch, T.K. Critical Period Regulation. Annu. Rev. Neurosci. 2004, 27, 549. [Google Scholar] [CrossRef]
- Frank, M.G. Circadian Regulation of Synaptic Plasticity. Biology 2016, 5, 31. [Google Scholar] [CrossRef]
- Buzsáki, G.; Logothetis, N.K.; Singer, W. Scaling Brain Size, Keeping Timing: Evolutionary Preservation of Brain Rhythms. Neuron 2013, 80, 751. [Google Scholar] [CrossRef]
- Wang, X. Neurophysiological and Computational Principles of Cortical Rhythms in Cognition. Physiol. Rev. 2010, 90, 1195. [Google Scholar] [CrossRef]
- Hankins, M.W.; Peirson, S.N.; Foster, F. Melanopsin: An Exciting Photopigment. Trends Neurosci. 2007, 31, 27. [Google Scholar] [CrossRef] [PubMed]
- Singer, W. Synchronization of Cortical Activity and Its Putative Role in Information Processing and Learning. Annu. Rev. Physiol. 1993, 55, 349. [Google Scholar] [CrossRef] [PubMed]
- Sejnowski, T.J.; Paulsen, O. Network Oscillations: Emerging Computational Principles. J. Neurosci. 2006, 26, 1673. [Google Scholar] [CrossRef] [PubMed]
- Traub, R.D.; Whittington, M.A.; Stanford, I.M.; Jefferys, J.G.R. A Mechanism for Generation of Long-Range Synchronous Fast Oscillations in the Cortex. Nature 1996, 383, 621. [Google Scholar] [CrossRef]
- Varela, F.J.; Lachaux, J.-P.; Rodríguez, E.; Martinerie, J. The Brainweb: Phase Synchronization and Large-Scale Integration. Nat. Rev. Neurosci. 2001, 2, 229. [Google Scholar] [CrossRef]
- Womelsdorf, T.; Schoffelen, J.; Oostenveld, R.; Singer, W.; Desimone, R.; Engel, A.K.; Fries, P. Modulation of Neuronal Interactions Through Neuronal Synchronization. Science 2007, 316, 1609. [Google Scholar] [CrossRef]
- Rouhinen, S.; Panula, J.; Palva, J.M.; Palva, S. Load Dependence of β and γ Oscillations Predicts Individual Capacity of Visual Attention. J. Neurosci. 2013, 33, 19023. [Google Scholar] [CrossRef] [PubMed]
- Salinas, E.; Sejnowski, T.J. Impact of Correlated Synaptic Input on Output Firing Rate and Variability in Simple Neuronal Models. J. Neurosci. 2000, 20, 6193. [Google Scholar] [CrossRef] [PubMed]
- Zohary, E.; Shadlen, M.N.; Newsome, W.T. Correlated Neuronal Discharge Rate and Its Implications for Psychophysical Performance. Nature 1994, 370, 140. [Google Scholar] [CrossRef]
- Faisal, A.A.; Selen, L.P.J.; Wolpert, D.M. Noise in the Nervous System. Nat. Rev. Neurosci. 2008, 9, 292. [Google Scholar] [CrossRef]
- Shadlen, M.N.; Newsome, W.T. The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding. J. Neurosci. 1998, 18, 3870. [Google Scholar] [CrossRef]
- Yizhar, O.; Fenno, L.E.; Prigge, M.; Schneider, F.; Davidson, T.J.; O’Shea, D.J.; Sohal, V.S.; Goshen, I.; Finkelstein, J.; Paz, J.T.; et al. Neocortical Excitation/Inhibition Balance in Information Processing and Social Dysfunction. Nature 2011, 477, 171. [Google Scholar] [CrossRef]
- Fritschy, J. E/I Balance and GABAA Receptor Plasticity. Front. Mol. Neurosci. 2008, 1, 5. [Google Scholar] [CrossRef]
- Rasch, B.; Born, J. About Sleep’s Role in Memory. Physiol. Rev. 2013, 93, 681. [Google Scholar] [CrossRef]
- Staresina, B.P.; Bergmann, T.O.; Bonnefond, M.; van der Meij, R.; Jensen, O.; Deuker, L.; Elger, C.E.; Axmacher, N.; Fell, J. Hierarchical Nesting of Slow Oscillations, Spindles and Ripples in the Human Hippocampus during Sleep. Nat. Neurosci. 2015, 18, 1679. [Google Scholar] [CrossRef]
- Staresina, B.P.; Niediek, J.; Borger, V.; Surges, R.; Mormann, F. How coupled slow oscillations, spindles and ripples coordinate neuronal processing and communication during human sleep. Nat. Neurosci. 2023, 26, 1429–1437. [Google Scholar] [CrossRef]
- Muehlroth, B.E.; Rasch, B.; Werkle-Bergner, M. Episodic Memory Consolidation during Sleep in Healthy Aging. Sleep Med. Rev. 2020, 52, 101304. [Google Scholar] [CrossRef]
- Mander, B.A.; Marks, S.; Vogel, J.W.; Rao, V.R.; Lu, B.; Saletin, J.; Ancoli-Israel, S.; Jagust, W.J.; Walker, M.P. β-Amyloid Disrupts Human NREM Slow Waves and Related Hippocampus-Dependent Memory Consolidation. Nat. Neurosci. 2015, 18, 1051. [Google Scholar] [CrossRef] [PubMed]
- Helfrich, R.F.; Mander, B.A.; Jagust, W.J.; Knight, R.T.; Walker, M.P. Old Brains Come Uncoupled in Sleep: Slow Wave-Spindle Synchrony, Brain Atrophy, and Forgetting. Neuron 2017, 97, 221. [Google Scholar] [CrossRef] [PubMed]
- Buzsáki, G. Two-Stage Model of Memory Trace Formation: A Role for “Noisy” Brain States. Neuroscience 1989, 31, 551. [Google Scholar] [CrossRef] [PubMed]
- Vyazovskiy, V.V.; Cirelli, C.; Pfister-Genskow, M.; Faraguna, U.; Tononi, G. Molecular and Electrophysiological Evidence for Net Synaptic Potentiation in Wake and Depression in Sleep. Nat. Neurosci. 2008, 11, 200. [Google Scholar] [CrossRef]
- Tononi, G.; Cirelli, C. Sleep Function and Synaptic Homeostasis. Sleep Med. Rev. 2005, 10, 49. [Google Scholar] [CrossRef]
- Frank, M.G. Erasing Synapses in Sleep: Is It Time to Be SHY? Neural Plast. 2012, 2012, 1. [Google Scholar] [CrossRef]
- Chellappa, S.L.; Gordijn, M.C.M.; Cajochen, C. Can Light Make Us Bright? Effects of Light on Cognition and Sleep. Prog. Brain Res. 2011, 190, 119–133. [Google Scholar] [CrossRef]
- Rolls, A.; Colas, D.; Adamantidis, A.; Carter, M.; Lanre-Amos, T.; Heller, H.C.; Lecea, L. de Optogenetic Disruption of Sleep Continuity Impairs Memory Consolidation. Proc. Natl. Acad. Sci. USA 2011, 108, 13305. [Google Scholar] [CrossRef]
- Bellfy, L.; Smies, C.W.; Bernhardt, A.R.; Bodinayake, K.K.; Sebastian, A.; Stuart, E.M.; Wright, D.S.; Lo, C.-Y.; Murakami, S.; Boyd, H.M.; et al. The Clock Gene Per1 May Exert Diurnal Control over Hippocampal Memory Consolidation. Neuropsychopharmacology 2023, 48, 1789. [Google Scholar] [CrossRef]
- Lyons, L.C.; Roman, G. Circadian Modulation of Short-Term Memory in Drosophila. Learn. Mem. 2008, 16, 19. [Google Scholar] [CrossRef]
- Wardlaw, S.M.; Phan, T.; Saraf, A.; Chen, X.; Storm, D.R. Genetic Disruption of the Core Circadian Clock Impairs Hippocampus-Dependent Memory. Learn. Mem. 2014, 21, 417. [Google Scholar] [CrossRef] [PubMed]
- Valdez, P.; Ramírez, C.; García, A. Circadian Rhythms in Cognitive Performance: Implications for Neuropsychological Assessment. ChronoPhysiology Ther. 2012, 2, 81–92. [Google Scholar] [CrossRef]
- Blatter, K.; Cajochen, C. Circadian Rhythms in Cognitive Performance: Methodological Constraints, Protocols, Theoretical Underpinnings. Physiol. Behav. 2006, 90, 196. [Google Scholar] [CrossRef]
- Hahn, C.; Cowell, J.M.; Wiprzycka, U.J.; Goldstein, D.; Ralph, M.R.; Hasher, L.; Zelazo, P.D. Circadian Rhythms in Executive Function during the Transition to Adolescence: The Effect of Synchrony between Chronotype and Time of Day. Dev. Sci. 2012, 15, 408. [Google Scholar] [CrossRef]
- Matchock, R.L.; Mordkoff, J.T. Chronotype and Time-of-Day Influences on the Alerting, Orienting, and Executive Components of Attention. Exp. Brain Res. 2008, 192, 189. [Google Scholar] [CrossRef]
- May, C.P.; Hasher, L. Synchrony Effects in Inhibitory Control over Thought and Action. J. Exp. Psychol. Hum. Percept. Perform. 1998, 24, 363. [Google Scholar] [CrossRef]
- Goldstein, D.; Hahn, C.; Hasher, L.; Wiprzycka, U.J.; Zelazo, P.D. Time of Day, Intellectual Performance, and Behavioral Problems in Morning versus Evening Type Adolescents: Is There a Synchrony Effect? Personal. Individ. Differ. 2006, 42, 431. [Google Scholar] [CrossRef]
- Constantinidis, C.; Klingberg, T. The Neuroscience of Working Memory Capacity and Training. Nat. Rev. Neurosci. 2016, 17, 438. [Google Scholar] [CrossRef]
- Wang, X. Synaptic Reverberation Underlying Mnemonic Persistent Activity. Trends Neurosci. 2001, 24, 455. [Google Scholar] [CrossRef]
- Compte, A. Synaptic Mechanisms and Network Dynamics Underlying Spatial Working Memory in a Cortical Network Model. Cereb. Cortex 2000, 10, 910. [Google Scholar] [CrossRef]
- Horne, J.A.; Östberg, O. Individual Differences in Human Circadian Rhythms. Biol. Psychol. 1977, 5, 179. [Google Scholar] [CrossRef] [PubMed]
- Folkard, S.; Monk, T.H.; Lobban, M.C. Short and Long-Term Adjustment of Circadian Rhythms in ‘ Permanent ’ Night Nurses. Ergonomics 1978, 21, 785. [Google Scholar] [CrossRef] [PubMed]
- Adán, A.; Archer, S.; Hidalgo, M.P.L.; Milia, L.D.; Natale, V.; Randler, C. Circadian Typology: A Comprehensive Review. Chronobiol. Int. 2012, 29, 1153. [Google Scholar] [CrossRef]
- Killgore, W.D.S.; Kent, H.C.; Knight, S.A.; Alkozei, A. Changes in Morning Salivary Melatonin Correlate with Prefrontal Responses during Working Memory Performance. NeuroReport 2018, 29, 488. [Google Scholar] [CrossRef]
- Eggenberger, P.; Bürgisser, M.; Rossi, R.M.; Annaheim, S. Body Temperature Is Associated With Cognitive Performance in Older Adults With and Without Mild Cognitive Impairment: A Cross-Sectional Analysis. Front. Aging Neurosci. 2021, 13, 585904. [Google Scholar] [CrossRef]
- Molzof, H.E.; Prapanjaroensin, A.; Patel, V.H.; Mokashi, M.V.; Gamble, K.L.; Patrician, P.A. Misaligned Core Body Temperature Rhythms Impact Cognitive Performance of Hospital Shift Work Nurses. Neurobiol. Learn. Mem. 2019, 160, 151. [Google Scholar] [CrossRef]
- Carrier, J.; Monk, T.H. Circadian Rhythms of Performance: New Trends. Chronobiol. Int. 2000, 17, 719. [Google Scholar] [CrossRef]
- Corbetta, M.; Shulman, G.L. Control of Goal-Directed and Stimulus-Driven Attention in the Brain. Nat. Rev. Neurosci. 2002, 3, 201. [Google Scholar] [CrossRef]
- Aston-Jones, G.; Chen, S.; Zhu, Y.; Oshinsky, M.L. A Neural Circuit for Circadian Regulation of Arousal. Nat. Neurosci. 2001, 4, 732. [Google Scholar] [CrossRef]
- Petersen, S.E.; Posner, M.I. The Attention System of the Human Brain: 20 Years After. Annu. Rev. Neurosci. 2012, 35, 73. [Google Scholar] [CrossRef] [PubMed]
- Posner, M.I.; Rothbart, M.K. Research on Attention Networks as a Model for the Integration of Psychological Science. Annu. Rev. Psychol. 2006, 58, 1. [Google Scholar] [CrossRef] [PubMed]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.; Howerter, A.; Wager, T.D. The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. Cogn. Psychol. 2000, 41, 49. [Google Scholar] [CrossRef]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2012, 64, 135. [Google Scholar] [CrossRef]
- Cole, M.W.; Schneider, W. The Cognitive Control Network: Integrated Cortical Regions with Dissociable Functions. NeuroImage 2007, 37, 343. [Google Scholar] [CrossRef]
- Braß, M. The Role of the Frontal Cortex in Task Preparation. Cereb. Cortex 2002, 12, 908. [Google Scholar] [CrossRef]
- Hasher, L.; Zacks, R.T.; May, C.P. Inhibitory Control, Circadian Arousal, and Age. In The MIT Press eBooks; The MIT Press: Cambridge, MA, USA, 1999; p. 653. [Google Scholar]
- Gazzaley, A.; Nobre, A.C. Top-down Modulation: Bridging Selective Attention and Working Memory. Trends Cogn. Sci. 2011, 16, 129. [Google Scholar] [CrossRef]
- Miller, E.K.; Cohen, J.D. An Integrative Theory of Prefrontal Cortex Function. Annu. Rev. Neurosci. 2001, 24, 167. [Google Scholar] [CrossRef]
- Kerkhof, G.A.; Dongen, H.P.A.V. Morning-Type and Evening-Type Individuals Differ in the Phase Position of Their Endogenous Circadian Oscillator. Neurosci. Lett. 1996, 218, 153. [Google Scholar] [CrossRef]
- Horne, J.; Brass, C.; PETITT, A.N. Circadian Performance Differences between Morning and Evening ‘Types. ’ Ergonomics 1980, 23, 29. [Google Scholar] [CrossRef]
- Cordani, L.; Tagliazucchi, E.; Vetter, C.; Hassemer, C.; Roenneberg, T.; Stehle, J.H.; Kell, C.A. Endogenous Modulation of Human Visual Cortex Activity Improves Perception at Twilight. Nat. Commun. 2018, 9, 1274. [Google Scholar] [CrossRef]
- Shannon, B.; Dosenbach, R.A.; Su, Y.; Vlassenko, A.G.; Larson-Prior, L.J.; Nolan, T.S.; Snyder, A.Z.; Raichle, M.E. Morning-Evening Variation in Human Brain Metabolism and Memory Circuits. J. Neurophysiol. 2012, 109, 1444. [Google Scholar] [CrossRef] [PubMed]
- Paul, J.R.; Davis, J.A.; Goode, L.K.; Becker, B.K.; Fusilier, A.; Meador-Woodruff, A.; Gamble, K.L. Circadian regulation of membrane physiology in neural oscillators throughout the brain. Eur. J. Neurosci. 2020, 51, 109–138. [Google Scholar] [CrossRef] [PubMed]
- Lucas, R.J.; Peirson, S.N.; Berson, D.M.; Brown, T.M.; Cooper, H.M.; Czeisler, C.A.; Figueiro, M.G.; Gamlin, P.D.; Lockley, S.W.; O’Hagan, J.; et al. Measuring and Using Light in the Melanopsin Age. Trends Neurosci. 2013, 37, 1. [Google Scholar] [CrossRef]
- Münch, M.; Kawasaki, A. Intrinsically Photosensitive Retinal Ganglion Cells. Curr. Opin. Neurol. 2013, 26, 45. [Google Scholar] [CrossRef]
- Chen, R.; Yan, Y.; Xiang, C. Circadian Light Therapy and Light Dose for Depressed Young People: A Systematic Review and Meta-Analysis. Front. Public Health 2024, 11, 1257093. [Google Scholar] [CrossRef]
- Rüger, M.; Gordijn, M.C.M.; Beersma, D.G.M.; de Vries, B.; Daan, S. Time-of-Day-Dependent Effects of Bright Light Exposure on Human Psychophysiology: Comparison of Daytime and Nighttime Exposure. AJP Regul. Integr. Comp. Physiol. 2005, 290, R1413–R1420. [Google Scholar] [CrossRef]
- Münch, M.; Bromundt, V. Light and Chronobiology: Implications for Health and Disease. Dialogues Clin. Neurosci. 2012, 14, 448. [Google Scholar] [CrossRef]
- Berson, D. Strange Vision: Ganglion Cells as Circadian Photoreceptors. Trends Neurosci. 2003, 26, 314. [Google Scholar] [CrossRef]
- Jackson, C.R.; Ruan, G.-X.; Aseem, F.; Abey, J.; Gamble, K.; Stanwood, G.; Palmiter, R.D.; Iuvone, P.M.; McMahon, D.G. Retinal Dopamine Mediates Multiple Dimensions of Light-Adapted Vision. J. Neurosci. 2012, 32, 9359. [Google Scholar] [CrossRef]
- Zatorre, R.J.; Belin, P.; Penhune, V.B. Structure and Function of Auditory Cortex: Music and Speech. Trends Cogn. Sci. 2002, 6, 37. [Google Scholar] [CrossRef]
- Kraus, N.; McGee, T.; Carrell, T.D.; Sharma, A.; Micco, A.G.; Nicol, T. Speech-Evoked Cortical Potentials in Children. J. Am. Acad. Audiol. 1993, 4, 238. [Google Scholar]
- Phillips, D.R.; Hall, S.E.; Harrington, I.A.; Taylor, T. “Central” Auditory Gap Detection: A Spatial Case. J. Acoust. Soc. Am. 1998, 103, 2064. [Google Scholar] [CrossRef] [PubMed]
- Mutti, C.; Malagutti, G.; Maraglino, V.; Misirocchi, F.; Zilioli, A.; Rausa, F.; Pizzarotti, S.; Spallazzi, M.; Rosenzweig, I.; Parrino, L. Sleep Pathologies and Eating Disorders: A Crossroad for Neurology, Psychiatry and Nutrition. Nutrients 2023, 15, 4488. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, N.R.; Geyer, M.A.; Braff, D. Neural Circuit Regulation of Prepulse Inhibition of Startle in the Rat: Current Knowledge and Future Challenges. Psychopharmacology 2001, 156, 194. [Google Scholar] [CrossRef]
- Braff, D.; Geyer, M.A.; Swerdlow, N.R. Human Studies of Prepulse Inhibition of Startle: Normal Subjects, Patient Groups, and Pharmacological Studies. Psychopharmacology 2001, 156, 234. [Google Scholar] [CrossRef]
- Valsamis, B.; Schmid, S. Habituation and Prepulse Inhibition of Acoustic Startle in Rodents. J. Vis. Exp. 2011, 55, e3446. [Google Scholar] [CrossRef]
- Geyer, M.A.; Krebs-Thomson, K.; Braff, D.; Swerdlow, N.R. Pharmacological Studies of Prepulse Inhibition Models of Sensorimotor Gating Deficits in Schizophrenia: A Decade in Review. Psychopharmacology 2001, 156, 117. [Google Scholar] [CrossRef]
- Castelli, L.; Macdonald, J.; Innominato, P.F.; Galasso, L. Editorial: Circadian Rhythm, Athletic Performance, and Physical Activity. Front. Physiol. 2024, 15, 1466152. [Google Scholar] [CrossRef]
- Atkinson, G.; Reilly, T. Circadian Variation in Sports Performance. Sports Med. 1996, 21, 292. [Google Scholar] [CrossRef]
- Drust, B.; Waterhouse, J.; Atkinson, G.; Edwards, B.; Reilly, T. Circadian Rhythms in Sports Performance—An Update. Chronobiol. Int. 2005, 22, 21. [Google Scholar] [CrossRef] [PubMed]
- Chtourou, H.; Souissi, N. The Effect of Training at a Specific Time of Day. J. Strength Cond. Res. 2012, 26, 1984. [Google Scholar] [CrossRef] [PubMed]
- Teo, W.; Newton, M.; McGuigan, M.R. Circadian Rhythms in Exercise Performance: Implications for Hormonal and Muscular Adaptation. J. Sports Sci. Med. 2011, 10, 600–606. [Google Scholar] [PubMed]
- Martin, A.; Carpentier, A.; Guissard, N.; Hoecke, J.V.; Duchateau, J. Effect of Time of Day on Force Variation in a Human Muscle. Muscle Nerve 1999, 22, 1380. [Google Scholar] [CrossRef]
- Guette, M.; Gondin, J.; Martin, A. Time-of-Day Effect on the Torque and Neuromuscular Properties of Dominant and Non-Dominant Quadriceps Femoris. Chronobiol. Int. 2005, 22, 541. [Google Scholar] [CrossRef]
- Monk, T.H.; Leng, V.C.; Folkard, S.; Weitzman, E.D. Circadian Rhythms in Subjective Alertness and Core Body Temperature. Chronobiology 1983, 10, 49. [Google Scholar]
- Takahashi, T.; Sasaki, M.; Itoh, H.; Sano, H.; Yamadera, W.; Ozone, M.; Obuchi, K.; Nishimura, H.; Matsunaga, N. Re-entrainment of Circadian Rhythm of Plasma Melatonin on an 8-h Eastward Flight. Psychiatry Clin. Neurosci. 1999, 53, 257. [Google Scholar] [CrossRef]
- Martín-López, J.; Pérez-López, A.; Varillas-Delgado, D.; López-Samanes, Á. Influence of Time-of-Day on Neuromuscular Performance in Team Sport Athletes: A Systematic Review and Meta-Analysis. Front. Sports Act. Living 2025, 6, 1466050. [Google Scholar] [CrossRef]
- Walker, M.P.; Brakefield, T.; Morgan, A.; Hobson, J.A.; Stickgold, R. Practice with Sleep Makes Perfect. Neuron 2002, 35, 205. [Google Scholar] [CrossRef]
- Gudberg, C.; Wulff, K.; Johansen-Berg, H. Sleep-Dependent Motor Memory Consolidation in Older Adults Depends on Task Demands. Neurobiol. Aging 2014, 36, 1409. [Google Scholar] [CrossRef]
- Dan, Y.; Poo, M. Spike Timing-Dependent Plasticity: From Synapse to Perception. Physiol. Rev. 2006, 86, 1033. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, M.G.; Rathleff, M.S.; Læssøe, U.; Caserotti, P.; Nielsen, O.B.F.; Aagaard, P. Time-of-Day Influences Postural Balance in Older Adults. Gait Posture 2012, 35, 653. [Google Scholar] [CrossRef] [PubMed]
- Gribble, P.A.; Tucker, W.S.; White, P.A. Time-of-Day Influences on Static and Dynamic Postural Control. J. Athl. Train. 2007, 42, 35. [Google Scholar]
- Horak, F.B. Postural Orientation and Equilibrium: What Do We Need to Know about Neural Control of Balance to Prevent Falls? Age Ageing 2006, 35, ii7–ii11. [Google Scholar] [CrossRef]
- Stone, K.L.; Ancoli-Israel, S.; Blackwell, T.; Ensrud, K.E.; Cauley, J.A.; Redline, S.; Hillier, T.A.; Schneider, J.L.; Claman, D.M.; Cummings, S.R. Actigraphy-Measured Sleep Characteristics and Risk of Falls in Older Women. Arch. Intern. Med. 2008, 168, 1768. [Google Scholar] [CrossRef]
- Campbell, S.S.; Murphy, P.J.; Stauble, T.N. Effects of a Nap on Nighttime Sleep and Waking Function in Older Subjects. J. Am. Geriatr. Soc. 2004, 53, 48. [Google Scholar] [CrossRef]
- Bunney, B.G.; Bunney, W.E. Mechanisms of Rapid Antidepressant Effects of Sleep Deprivation Therapy: Clock Genes and Circadian Rhythms. Biol. Psychiatry 2012, 73, 1164. [Google Scholar] [CrossRef]
- Steiger, A.; Kimura, M. Wake and Sleep EEG Provide Biomarkers in Depression. J. Psychiatr. Res. 2009, 44, 242. [Google Scholar] [CrossRef]
- Aini, N.; Chen, R.; Chu, H.; Chang, C.; Lin, H.; Jen, H.; Liu, D.; Lee, T.; Chou, K. The Effects of Light Therapy on Sleep, Depression, Neuropsychiatric Behaviors, and Cognition Among People Living With Dementia: A Meta-Analysis of Randomized Controlled Trials. Am. J. Geriatr. Psychiatry 2023, 32, 681. [Google Scholar] [CrossRef]
- Riemann, D.; Berger, T.; Voderholzer, U. Sleep and Depression—Results from Psychobiological Studies: An Overview. Biol. Psychol. 2001, 57, 67. [Google Scholar] [CrossRef] [PubMed]
- Steiger, A. Sleep and the Hypothalamo–Pituitary–Adrenocortical System. Sleep Med. Rev. 2002, 6, 125. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, J.; Challet, É. Brain Clocks: From the Suprachiasmatic Nuclei to a Cerebral Network. Neurosci. 2009, 15, 477. [Google Scholar] [CrossRef] [PubMed]
- Hampp, G.; Ripperger, J.A.; Houben, T.; Schmutz, I.; Blex, C.; Perreau-Lenz, S.; Brunk, I.; Spanagel, R.; Ahnert-Hilger, G.; Meijer, J.H.; et al. Regulation of Monoamine Oxidase A by Circadian-Clock Components Implies Clock Influence on Mood. Curr. Biol. 2008, 18, 678. [Google Scholar] [CrossRef]
- Milhiet, V.; Boudebesse, C.; Bellivier, F.; Drouot, X.; Henry, C.; Leboyer, M.; Étain, B. Circadian Abnormalities as Markers of Susceptibility in Bipolar Disorders. Front. Biosci. Sch. 2014, 6, 120–137. [Google Scholar]
- Gonzalez, R. The Relationship Between Bipolar Disorder and Biological Rhythms. J. Clin. Psychiatry 2014, 75, e323–e331. [Google Scholar] [CrossRef]
- Roybal, K.T.; Theobold, D.; Graham, A.; DiNieri, J.A.; Russo, S.J.; Krishnan, V.; Chakravarty, S.; Peevey, J.; Oehrlein, N.; Birnbaum, S.G.; et al. Mania-like Behavior Induced by Disruption of CLOCK. Proc. Natl. Acad. Sci. USA 2007, 104, 6406. [Google Scholar] [CrossRef]
- Mansour, H.; Monk, T.H.; Nimgaonkar, V.L. Circadian Genes and Bipolar Disorder. Ann. Med. 2005, 37, 196. [Google Scholar] [CrossRef]
- McClung, C.A. Circadian Genes, Rhythms and the Biology of Mood Disorders. Pharmacol. Ther. 2007, 114, 222. [Google Scholar] [CrossRef]
- Golden, R.N.; Gaynes, B.N.; Ekstrom, R.D.; Hamer, R.M.; Jacobsen, F.M.; Suppes, T.; Wisner, K.L.; Nemeroff, C.B. The Efficacy of Light Therapy in the Treatment of Mood Disorders: A Review and Meta-Analysis of the Evidence. Am. J. Psychiatry 2005, 162, 656. [Google Scholar] [CrossRef]
- Sit, D.; McGowan, J.; Wiltrout, C.; Diler, R.S.; Dills, J.L.; Luther, J.F.; Yang, A.; Ciolino, J.D.; Seltman, H.; Wisniewski, S.R.; et al. Adjunctive Bright Light Therapy for Bipolar Depression: A Randomized Double-Blind Placebo-Controlled Trial. Am. J. Psychiatry 2017, 175, 131. [Google Scholar] [CrossRef]
- Wirz-Justice, A.; Benedetti, F.; Berger, T.; Lam, R.W.; Martiny, K.; Terman, M.; Wu, J.C. Chronotherapeutics (Light and Wake Therapy) in Affective Disorders. Psychol. Med. 2005, 35, 939. [Google Scholar] [CrossRef]
- Cohrs, S. Sleep Disturbances in Patients with Schizophrenia. CNS Drugs 2008, 22, 939. [Google Scholar] [CrossRef]
- Wulff, K.; Dijk, D.; Middleton, B.; Foster, F.; Joyce, E.M. Sleep and Circadian Rhythm Disruption in Schizophrenia. Br. J. Psychiatry 2011, 200, 308. [Google Scholar] [CrossRef]
- Takaesu, Y.; Inoue, Y.; Murakoshi, A.; Komada, Y.; Otsuka, A.; Futenma, K.; Inoue, T. Prevalence of Circadian Rhythm Sleep-Wake Disorders and Associated Factors in Euthymic Patients with Bipolar Disorder. PLoS ONE 2016, 11, e0159578. [Google Scholar] [CrossRef]
- Li, J.Z.; Bunney, B.G.; Meng, F.; Hagenauer, M.H.; Walsh, D.; Vawter, M.P.; Evans, S.J.; Choudary, P.V.; Cartagena, P.; Barchas, J.D.; et al. Circadian Patterns of Gene Expression in the Human Brain and Disruption in Major Depressive Disorder. Proc. Natl. Acad. Sci. USA 2013, 110, 9950. [Google Scholar] [CrossRef]
- Johansson, A.; Owe-Larsson, B.; Hetta, J.; Lundkvist, G.B. Altered Circadian Clock Gene Expression in Patients with Schizophrenia. Schizophr. Res. 2016, 174, 17. [Google Scholar] [CrossRef]
- Swerdlow, N.R.; Light, G.A.; Cadenhead, K.S.; Sprock, J.; Hsieh, M.H.; Braff, D. Startle Gating Deficits in a Large Cohort of Patients With Schizophrenia. Arch. Gen. Psychiatry 2006, 63, 1325–1335. [Google Scholar] [CrossRef]
- Bijlenga, D.; van der Heijden, K.B.; Breuk, M.; Someren, E.J.W.V.; Lie, M.E.H.; Boonstra, A.; Swaab, H.; Kooij, J.J.S. Associations Between Sleep Characteristics, Seasonal Depressive Symptoms, Lifestyle, and ADHD Symptoms in Adults. J. Atten. Disord. 2011, 17, 261. [Google Scholar] [CrossRef] [PubMed]
- van der Heijden, K.B.; Smits, M.G.; Someren, E.J.W.V.; Ridderinkhof, K.R.; Gunning, W.B. Effect of Melatonin on Sleep, Behavior, and Cognition in ADHD and Chronic Sleep-Onset Insomnia. J. Am. Acad. Child Adolesc. Psychiatry 2007, 46, 233. [Google Scholar] [CrossRef] [PubMed]
- Baird, A.L.; Coogan, A.N.; Siddiqui, A.; Donev, R.; Thome, J. Adult Attention-Deficit Hyperactivity Disorder Is Associated with Alterations in Circadian Rhythms at the Behavioural, Endocrine and Molecular Levels. Mol. Psychiatry 2011, 17, 988. [Google Scholar] [CrossRef]
- Xu, X.; Breen, G.; Chen, C.; Huang, Y.; Wu, Y.; Asherson, P. Association Study between a Polymorphism at the 3’-Untranslated Region of CLOCK Gene and Attention Deficit Hyperactivity Disorder. Behav. Brain Funct. 2010, 6, 48. [Google Scholar] [CrossRef]
- Kissling, C.; Retz, W.; Wiemann, S.; Coogan, A.N.; Clement, R.M.; Hünnerkopf, R.; Conner, A.C.; Freitag, C.M.; Rösler, M.; Thome, J. A Polymorphism at the 3′-untranslated Region of the CLOCK Gene Is Associated with Adult Attention-deficit Hyperactivity Disorder. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2007, 147B, 333–338. [Google Scholar] [CrossRef]
- Richdale, A.L.; Schreck, K.A. Sleep Problems in Autism Spectrum Disorders: Prevalence, Nature, & Possible Biopsychosocial Aetiologies. Sleep Med. Rev. 2009, 13, 403. [Google Scholar] [CrossRef]
- Cortesi, F.; Giannotti, F.; Ivanenko, A.; Johnson, K. Sleep in Children with Autistic Spectrum Disorder. Sleep Med. 2010, 11, 659. [Google Scholar] [CrossRef]
- Nicholas, B.; Rudrasingham, V.; Nash, S.M.B.; Kirov, G.; Owen, M.J.; Wimpory, D. Association of Per1 and Npas2 with Autistic Disorder: Support for the Clock Genes/Social Timing Hypothesis. Mol. Psychiatry 2007, 12, 581. [Google Scholar] [CrossRef]
- Veatch, O.J.; Keenan, B.T.; Gehrman, P.R.; Malow, B.A.; Pack, A.I. Pleiotropic Genetic Effects Influencing Sleep and Neurological Disorders. Lancet Neurol. 2017, 16, 158. [Google Scholar] [CrossRef] [PubMed]
- Glickman, G. Circadian Rhythms and Sleep in Children with Autism. Neurosci. Biobehav. Rev. 2009, 34, 755. [Google Scholar] [CrossRef] [PubMed]
- Harper, D.G.; Volicer, L.; Stopa, E.G.; McKee, A.C.; Nitta, M.; Satlin, A. Disturbance of Endogenous Circadian Rhythm in Aging and Alzheimer Disease. Am. J. Geriatr. Psychiatry 2005, 13, 359. [Google Scholar] [CrossRef] [PubMed]
- Volicer, L.; Harper, D.G.; Manning, B.C.; Goldstein, R.; Satlin, A. Sundowning and Circadian Rhythms in Alzheimer’s Disease. Am. J. Psychiatry 2001, 158, 704. [Google Scholar] [CrossRef]
- Ju, Y.S.; Lucey, B.P.; Holtzman, D.M. Sleep and Alzheimer Disease Pathology—A Bidirectional Relationship. Nat. Rev. Neurol. 2013, 10, 115. [Google Scholar] [CrossRef]
- Lim, A.; Kowgier, M.; Yu, L.; Buchman, A.S.; Bennett, D.A. Sleep Fragmentation and the Risk of Incident Alzheimer’s Disease and Cognitive Decline in Older Persons. Sleep 2013, 36, 1027. [Google Scholar] [CrossRef]
- Vizcarra, V.S.; Fame, R.M.; Hablitz, L.M. Circadian Mechanisms in Brain Fluid Biology. Circ. Res. 2024, 134, 711. [Google Scholar] [CrossRef]
- Kang, J.-E.; Lim, M.M.; Bateman, R.J.; Lee, J.J.; Smyth, L.P.; Cirrito, J.R.; Fujiki, N.; Nishino, S.; Holtzman, D.M. Amyloid-β Dynamics Are Regulated by Orexin and the Sleep-Wake Cycle. Science 2009, 326, 1005. [Google Scholar] [CrossRef] [PubMed]
- Lucey, B.P.; Hicks, T.J.; McLeland, J.; Toedebusch, C.D.; Boyd, J.; Elbert, D.L.; Patterson, B.W.; Baty, J.; Morris, J.C.; Ovod, V.; et al. Effect of Sleep on Overnight Cerebrospinal Fluid Amyloid β Kinetics. Ann. Neurol. 2017, 83, 197. [Google Scholar] [CrossRef] [PubMed]
- Mestre, H.; Hablitz, L.M.; Xavier, A.L.; Feng, W.; Zou, W.; Pu, T.; Monai, H.; Murlidharan, G.; Castellanos Rivera, R.M.; Simon, M.J.; et al. Aquaporin-4-Dependent Glymphatic Solute Transport in the Rodent Brain. eLife 2018, 7, e40070. [Google Scholar] [CrossRef]
- Nedergaard, M.; Goldman, S.A. Glymphatic Failure as a Final Common Pathway to Dementia. Science 2020, 370, 50. [Google Scholar] [CrossRef] [PubMed]
- Kress, G.J.; Liao, F.; Dimitry, J.; Cedeño, M.R.; FitzGerald, G.A.; Holtzman, D.M.; Musiek, E.S. Regulation of Amyloid-β Dynamics and Pathology by the Circadian Clock. J. Exp. Med. 2018, 215, 1059. [Google Scholar] [CrossRef]
- Wu, Y.; Swaab, D.F. Disturbance and Strategies for Reactivation of the Circadian Rhythm System in Aging and Alzheimer’s Disease. Sleep Med. 2007, 8, 623. [Google Scholar] [CrossRef]
- Swaab, D.F.; Fliers, E.; Partiman, T.S. The Suprachiasmatic Nucleus of the Human Brain in Relation to Sex, Age and Senile Dementia. Brain Res. 1985, 342, 37. [Google Scholar] [CrossRef]
- Ancoli-Israel, S.; Gehrman, P.; Martin, J.L.; Shochat, T.; Marler, M.; Corey-Bloom, J.; Levi, L. Increased Light Exposure Consolidates Sleep and Strengthens Circadian Rhythms in Severe Alzheimer’s Disease Patients. Behav. Sleep Med. 2003, 1, 22. [Google Scholar] [CrossRef]
- Lek, R.F.R. der Effect of Bright Light and Melatonin on Cognitive and Noncognitive Function in Elderly Residents of Group Care Facilities. JAMA 2008, 299, 2642. [Google Scholar] [CrossRef]
- Arnulf, I.; Leu-Semenescu, S. Sleepiness in Parkinson’s Disease. Park. Amp; Relat. Disord. 2009, 15, S101–S104. [Google Scholar] [CrossRef] [PubMed]
- Videnović, A.; Golombék, D.A. Circadian and Sleep Disorders in Parkinson’s Disease. Exp. Neurol. 2012, 243, 45. [Google Scholar] [CrossRef] [PubMed]
- Postuma, R.B.; Gagnon, J.; Vendette, M.; Fantini, M.L.; Massicotte-Marquez, J.; Montplaisir, J. Quantifying the Risk of Neurodegenerative Disease in Idiopathic REM Sleep Behavior Disorder. Neurology 2008, 72, 1296. [Google Scholar] [CrossRef]
- Schenck, C.H.; Bundlie, S.R.; Mahowald, M.W. Delayed Emergence of a Parkinsonian Disorder in 38% of 29 Older Men Initially Diagnosed with Idiopathic Rapid Eye Movement Sleep Behavior Disorder. Neurology 1996, 46, 388. [Google Scholar] [CrossRef]
- Hood, S.; Amir, S. Neurodegeneration and the Circadian Clock. Front. Aging Neurosci. 2017, 9, 170. [Google Scholar] [CrossRef]
- Bonuccelli, U.; Del Dotto, P.; Rascol, O. Role of Dopamine Receptor Agonists in the Treatment of Early Parkinson’s Disease. Park. Amp; Relat. Disord. 2009, 15, S44–S53. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, S.; Sothern, R.B.; Xu, S.; Chan, P. Expression of Clock Genes Per1 and Bmal1 in Total Leukocytes in Health and Parkinson’s Disease. Eur. J. Neurol. 2009, 17, 550. [Google Scholar] [CrossRef]
- Willis, G.L.; Turner, E.J.D. Primary and Secondary Features of Parkinson’s Disease Improve with Strategic Exposure to Bright Light: A Case Series Study. Chronobiol. Int. 2007, 24, 521. [Google Scholar] [CrossRef]
- Willis, G.L.; Moore, C.; Armstrong, S.M. A Historical Justification for and Retrospective Analysis of the Systematic Application of Light Therapy in Parkinson’s Disease. Rev. Neurosci. 2012, 23, 199–226. [Google Scholar] [CrossRef]
- Martínez-Martín, P.; Rodríguez-Blázquez, C.; Kurtis, M.; Chaudhuri, K.R. The Impact of Non-motor Symptoms on Health-related Quality of Life of Patients with Parkinson’s Disease. Mov. Disord. 2011, 26, 399. [Google Scholar] [CrossRef]
- Chaudhuri, K.R.; Healy, D.G.; Schapira, A.H. Non-Motor Symptoms of Parkinson’s Disease: Diagnosis and Management. Lancet Neurol. 2006, 5, 235. [Google Scholar] [CrossRef] [PubMed]
- Cools, R.; Barker, R.A.; Sahakian, B.J.; Robbins, T.W. Enhanced or Impaired Cognitive Function in Parkinson’s Disease as a Function of Dopaminergic Medication and Task Demands. Cereb. Cortex 2001, 11, 1136. [Google Scholar] [CrossRef] [PubMed]
- Videnović, A.; Golombék, D.A. Circadian Dysregulation in Parkinson’s Disease. Neurobiol. Sleep Circadian Rhythm. 2016, 2, 53. [Google Scholar] [CrossRef]
- Willis, G.L.; ARMSTRONG, S. A Therapeutic Role For Melatonin Antagonism in Experimental Models of Parkinson’s Disease. Physiol. Behav. 1999, 66, 785. [Google Scholar] [CrossRef]
- Paus, S.; Schmitz-Hübsch, T.; Wüllner, U.; Vogel, A.; Klockgether, T.; Abele, M. Bright Light Therapy in Parkinson’s Disease: A Pilot Study. Mov. Disord. 2007, 22, 1495. [Google Scholar] [CrossRef]
- Morton, A.J. Circadian and Sleep Disorder in Huntington’s Disease. Exp. Neurol. 2012, 243, 34. [Google Scholar] [CrossRef]
- Morton, A.J.; Wood, N.I.; Hastings, M.H.; Hurelbrink, C.; Barker, R.A.; Maywood, E.S. Disintegration of the Sleep-Wake Cycle and Circadian Timing in Huntington’s Disease. J. Neurosci. 2005, 25, 157. [Google Scholar] [CrossRef]
- Kudo, T.; Schroeder, A.M.; Loh, D.H.; Kuljis, D.; Jordan, M.C.; Roos, K.P.; Colwell, C.S. Dysfunctions in Circadian Behavior and Physiology in Mouse Models of Huntington’s Disease. Exp. Neurol. 2010, 228, 80. [Google Scholar] [CrossRef]
- Maywood, E.S.; Fraenkel, E.; McAllister, C.J.; Wood, N.; Reddy, A.B.; Hastings, M.H.; Morton, A.J. Disruption of Peripheral Circadian Timekeeping in a Mouse Model of Huntington’s Disease and Its Restoration by Temporally Scheduled Feeding. J. Neurosci. 2010, 30, 10199. [Google Scholar] [CrossRef]
- Pallier, P.N.; Morton, A.J. Management of Sleep/Wake Cycles Improves Cognitive Function in a Transgenic Mouse Model of Huntington’s Disease. Brain Res. 2009, 1279, 90. [Google Scholar] [CrossRef]
- Pallier, P.N.; Maywood, E.S.; Zheng, Z.; Chesham, J.E.; Inyushkin, A.N.; Dyball, R.; Hastings, M.H.; Jennifer Morton, A. Pharmacological Imposition of Sleep Slows Cognitive Decline and Reverses Dysregulation of Circadian Gene Expression in a Transgenic Mouse Model of Huntington’s Disease. J. Neurosci. 2007, 27, 7869. [Google Scholar] [CrossRef]
- Ahmed, R.M.; Newcombe, R.; Piper, A.J.; Lewis, S.J.G.; Yee, B.J.; Kiernan, M.C.; Grunstein, R.R. Sleep Disorders and Respiratory Function in Amyotrophic Lateral Sclerosis. Sleep Med. Rev. 2015, 26, 33. [Google Scholar] [CrossRef]
- Coco, D.L.; Mattaliano, P.; Spataro, R.; Mattaliano, A.; Bella, V.L. Sleep-Wake Disturbances in Patients with Amyotrophic Lateral Sclerosis. J. Neurol. Neurosurg. Psychiatry 2011, 82, 839. [Google Scholar] [CrossRef]
- Boentert, M.; Karabul, N.; Wenninger, S.; Stubbe-Dräger, B.; Mengel, E.; Schoser, B.; Young, P. Sleep-related Symptoms and Sleep-disordered Breathing in Adult Pompe Disease. Eur. J. Neurol. 2014, 22, 369. [Google Scholar] [CrossRef]
- Hut, R.A.; Zee, E.A. van der The Cholinergic System, Circadian Rhythmicity, and Time Memory. Behav. Brain Res. 2010, 221, 466. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.N.; Hatfield, C.; Kipps, C.; Hastings, M.H.; Hodges, J.R. Disrupted Sleep and Circadian Patterns in Frontotemporal Dementia. Eur. J. Neurol. 2008, 16, 317. [Google Scholar] [CrossRef] [PubMed]
- Cronin, P.; McCarthy, M.J.; Lim, A.; Salmon, D.P.; Galasko, D.; Masliah, E.; Jager, P.L.D.; Bennett, D.A.; Desplats, P. Circadian Alterations during Early Stages of Alzheimer’s Disease Are Associated with Aberrant Cycles of DNA Methylation in BMAL1. Alzheimer S Dement. 2016, 13, 689. [Google Scholar] [CrossRef]
- Hofstra, W.A.; Weerd, A.W. de The Circadian Rhythm and Its Interaction with Human Epilepsy: A Review of Literature. Sleep Med. Rev. 2009, 13, 413. [Google Scholar] [CrossRef]
- Pavlova, M.; Shea, S.A.; Bromfield, E.B. Day/Night Patterns of Focal Seizures. Epilepsy Behav. 2003, 5, 44. [Google Scholar] [CrossRef]
- Dinner, D.S. Effect of Sleep on Epilepsy. J. Clin. Neurophysiol. 2002, 19, 504. [Google Scholar] [CrossRef]
- McRae, P.A.; Porter, B.E. The Perineuronal Net Component of the Extracellular Matrix in Plasticity and Epilepsy. Neurochem. Int. 2012, 61, 963. [Google Scholar] [CrossRef]
- Loddenkemper, T.; Lockley, S.W.; Kaleyias, J.; Kothare, S.V. Chronobiology of Epilepsy: Diagnostic and Therapeutic Implications of Chrono-Epileptology. J. Clin. Neurophysiol. 2011, 28, 146. [Google Scholar] [CrossRef]
- Ramgopal, S.; Thomé-Souza, S.; Jackson, M.; Kadish, N.E.; Fernández, I.S.; Klehm, J.; Bosl, W.J.; Reinsberger, C.; Schachter, S.C.; Loddenkemper, T. Seizure Detection, Seizure Prediction, and Closed-Loop Warning Systems in Epilepsy. Epilepsy Behav. 2014, 37, 291. [Google Scholar] [CrossRef] [PubMed]
- Baraldo, M. The Influence of Circadian Rhythms on the Kinetics of Drugs in Humans. Expert Opin. Drug Metab. Toxicol. 2008, 4, 175. [Google Scholar] [CrossRef]
- Matzen, J.; Buchheim, K.; Holtkamp, M. Circadian Dentate Gyrus Excitability in a Rat Model of Temporal Lobe Epilepsy. Exp. Neurol. 2011, 234, 105. [Google Scholar] [CrossRef] [PubMed]
- Pitts, G.R.; Ohta, H.; McMahon, D.G. Daily Rhythmicity of Large-Conductance Ca2+-Activated K+ Currents in Suprachiasmatic Nucleus Neurons. Brain Res. 2006, 1071, 54. [Google Scholar] [CrossRef] [PubMed]
- Kouzehgarani, G.N.; Bothwell, M.Y.; Gillette, M.U. Circadian Rhythm of Redox State Regulates Membrane Excitability in Hippocampal CA1 Neurons. Eur. J. Neurosci. 2019, 51, 34. [Google Scholar] [CrossRef]
- Dlima, N.; Marcel, C.; Hedi, B.M.; Depannemaecker, D. Modeling the Influence of Circadian Rhythm on Ionic Dynamics and the Effect of Antiepileptic Drugs. Eur. J. Neurosci. 2025, 62, e70265. [Google Scholar] [CrossRef]
- Malow, B.A.; Bowes, R.; Lin, X. Predictors of Sleepiness in Epilepsy Patients. Sleep 1997, 20, 1105. [Google Scholar] [CrossRef]
- Fountain, N.B.; Kim, J.S.; Lee, S.I. Sleep Deprivation Activates Epileptiform Discharges Independent of the Activating Effects of Sleep. J. Clin. Neurophysiol. 1998, 15, 69. [Google Scholar] [CrossRef] [PubMed]
- Duffy, J.F.; Zeitzer, J.M.; Czeisler, C.A. Decreased Sensitivity to Phase-Delaying Effects of Moderate Intensity Light in Older Subjects. Neurobiol. Aging 2006, 28, 799. [Google Scholar] [CrossRef] [PubMed]
- Czeisler, C.A.; Dumont, M.; Duffy, J.F.; Steinberg, J.; Richardson, G.S.; Brown, E.N.; Sánchez, R.E.A.; Ríos, C.D.; Ronda, J.M. Association of Sleep-Wake Habits in Older People with Changes in Output of Circadian Pacemaker. Lancet 1992, 340, 933. [Google Scholar] [CrossRef] [PubMed]
- Weinert, D. Age-dependent changes of the circadian system. Chronobiol. Int. 2000, 17, 261. [Google Scholar] [CrossRef]
- Ancoli-Israel, S.; Martin, J.L.; Gehrman, P.; Shochat, T.; Corey-Bloom, J.; Marler, M.; Nevitt, S.J.; Levi, L. Effect of Light on Agitation in Institutionalized Patients With Severe Alzheimer Disease. Am. J. Geriatr. Psychiatry 2003, 11, 194. [Google Scholar] [CrossRef]
- Van Someren, E.J.W.; Kessler, A.; Mirmiran, M.; Swaab, D.F. Indirect Bright Light Improves Circadian Rest-Activity Rhythm Disturbances in Demented Patients. Biol. Psychiatry 1997, 41, 955. [Google Scholar] [CrossRef]
- Crowley, K.; Sullivan, E.V.; Adalsteinsson, E.; Pfefferbaum, A.; Colrain, I.M. Differentiating Pathologic Delta From Healthy Physiologic Delta in Patients With Alzheimer Disease. Sleep 2005, 28, 865. [Google Scholar] [CrossRef]
- Jack, C.R.; Knopman, D.S.; Jagust, W.J.; Shaw, L.M.; Aisen, P.S.; Weiner, M.W.; Petersen, R.C.; Trojanowski, J.Q. Hypothetical Model of Dynamic Biomarkers of the Alzheimer’s Pathological Cascade. Lancet Neurol. 2010, 9, 119. [Google Scholar] [CrossRef]
- Sperling, R.A.; Aisen, P.; Beckett, L.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R.; Kaye, J.; Montine, T.J.; et al. Toward Defining the Preclinical Stages of Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer S Dement. 2011, 7, 280. [Google Scholar] [CrossRef]
- Smolensky, M.H.; Hermida, R.C.; Reinberg, A.; Sackett-Lundeen, L.; Portaluppi, F. Circadian Disruption: New Clinical Perspective of Disease Pathology and Basis for Chronotherapeutic Intervention. Chronobiol. Int. 2016, 33, 1101. [Google Scholar] [CrossRef]
- Dallmann, R.; Okyar, A.; Lévi, F. Dosing-Time Makes the Poison: Circadian Regulation and Pharmacotherapy. Trends Mol. Med. 2016, 22, 430. [Google Scholar] [CrossRef]
- Lévi, F.; Okyar, A.; Dulong, S.; Innominato, P.F.; Clairambault, J. Circadian Timing in Cancer Treatments. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 377. [Google Scholar] [CrossRef]
- Ballesta, A.; Innominato, P.F.; Dallmann, R.; Rand, D.A.J.; Lévi, F. Systems Chronotherapeutics. Pharmacol. Rev. 2017, 69, 161. [Google Scholar] [CrossRef]
- Kaşkal, M.; Sevım, M.; Ülker, G.; Keleş, C.; Bebïtoğlu, B.T. The Clinical Impact of Chronopharmacology on Current Medicine. Naunyn-Schmiedeberg S Arch. Pharmacol. 2025, 398, 6179–6191. [Google Scholar] [CrossRef] [PubMed]
- Ohdo, S.; Koyanagi, S.; Matsunaga, N. Chronopharmacological Strategies Focused on Chrono-Drug Discovery. Pharmacol. Ther. 2019, 202, 72. [Google Scholar] [CrossRef] [PubMed]
- Ruben, M.D.; Smith, D.F.; FitzGerald, G.A.; Hogenesch, J.B. Dosing Time Matters. Science 2019, 365, 547. [Google Scholar] [CrossRef]
- Innominato, P.F.; Roche, V.; Palesh, O.; Ulusakarya, A.; Spiegel, D.; Lévi, F. The Circadian Timing System in Clinical Oncology. Ann. Med. 2014, 46, 191. [Google Scholar] [CrossRef] [PubMed]
- Wirz-Justice, A.; Hoofdakker, R.H.V. den Sleep Deprivation in Depression: What Do We Know, Where Do We Go? Biol. Psychiatry 1999, 46, 445. [Google Scholar] [CrossRef]
- Giedke, H.; Schwärzler, F. Therapeutic Use of Sleep Deprivation in Depression. Sleep Med. Rev. 2002, 6, 361. [Google Scholar] [CrossRef]
- Hemmeter, U.-M.; Hemmeter-Spernal, J.; Krieg, J.-C. Sleep Deprivation in Depression. Expert Rev. Neurother. 2010, 10, 1101. [Google Scholar] [CrossRef]
- Benedetti, F.; Barbini, B.; Fulgosi, M.C.; Colombo, C.; Dallaspezia, S.; Pontiggia, A.; Smeraldi, E. Combined Total Sleep Deprivation and Light Therapy in the Treatment of Drug-Resistant Bipolar Depression. J. Clin. Psychiatry 2005, 66, 1535. [Google Scholar] [CrossRef]
- Wu, J.C.; Bunney, W.E. The Biological Basis of an Antidepressant Response to Sleep Deprivation and Relapse: Review and Hypothesis. Am. J. Psychiatry 1990, 147, 14. [Google Scholar] [CrossRef]
- Terman, M.; Terman, J.S. Light Therapy for Seasonal and Nonseasonal Depression: Efficacy, Protocol, Safety, and Side Effects. CNS Spectr. 2005, 10, 647. [Google Scholar] [CrossRef]
- Khalsa, S.B.S.; Jewett, M.E.; Cajochen, C.; Czeisler, C.A. A Phase Response Curve to Single Bright Light Pulses in Human Subjects. J. Physiol. 2003, 549, 945. [Google Scholar] [CrossRef]
- LeGates, T.A.; Fernandez, D.C.; Hattar, S. Light as a Central Modulator of Circadian Rhythms, Sleep and Affect. Nat. Rev. Neurosci. 2014, 15, 443. [Google Scholar] [CrossRef] [PubMed]
- Vandewalle, G.; Maquet, P.; Dijk, D. Light as a Modulator of Cognitive Brain Function. Trends Cogn. Sci. 2009, 13, 429. [Google Scholar] [CrossRef] [PubMed]
- Dallmann, R.; Brown, S.A.; Gachon, F. Chronopharmacology: New Insights and Therapeutic Implications. Annu. Rev. Pharmacol. Toxicol. 2013, 54, 339. [Google Scholar] [CrossRef]
- Hermida, R.C.; Crespo, J.J.; Domínguez-Sardiña, M.; Otero, A.; Moyá, A.; Ríos, M.T.; Sineiro, E.; Castiñeira, M.C.; Callejas, P.A.; Pousa, L.; et al. Bedtime Hypertension Treatment Improves Cardiovascular Risk Reduction: The Hygia Chronotherapy Trial. Eur. Heart J. 2019, 41, 4565. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Mojón, A.; Fernández, J.R. Influence of Circadian Time of Hypertension Treatment on Cardiovascular Risk: Results of the Mapec Study. Chronobiol. Int. 2010, 27, 1629. [Google Scholar] [CrossRef]
- Silva, S.; Bicker, J.; Falcão, A.; Fortuna, A. Antidepressants and Circadian Rhythm: Exploring Their Bidirectional Interaction for the Treatment of Depression. Pharmaceutics 2021, 13, 1975. [Google Scholar] [CrossRef]
- Nagayama, H.; Nagano, K.; Ikezaki, A.; Tashiro, T. Double-Blind Study of the Chronopharmacotherapy of Depression. Chronobiol. Int. 1991, 8, 203. [Google Scholar] [CrossRef]
- Youan, B.C. Chronopharmaceutics: Gimmick or Clinically Relevant Approach to Drug Delivery? J. Control. Release 2004, 98, 337. [Google Scholar] [CrossRef]
- Smolensky, M.H.; Lemmer, B.; Reinberg, A. Chronobiology and Chronotherapy of Allergic Rhinitis and Bronchial Asthma. Adv. Drug Deliv. Rev. 2007, 59, 852. [Google Scholar] [CrossRef]
- Okyar, A.; Dressler, C.; Hanafy, A.; Baktır, G.; Lemmer, B.; Spahn-Langguth, H. Circadian Variations in Exsorptive Transport: In Situ Intestinal Perfusion Data and In Vivo Relevance. Chronobiol. Int. 2012, 29, 443. [Google Scholar] [CrossRef] [PubMed]
- Kervezee, L.; Hartman, R.; van den Berg, D.; Shimizu, S.; Yamamoto, Y.; Meijer, J.H.; Lange, E.C.M. de Diurnal Variation in P-Glycoprotein-Mediated Transport and Cerebrospinal Fluid Turnover in the Brain. AAPS J. 2014, 16, 1029. [Google Scholar] [CrossRef] [PubMed]
- Crinion, S.; Morris, D.W.; Lopez, L.M. Neuropsychiatric Disorders, Chronotype and Sleep: A Narrative Review of GWAS Findings and the Application of Mendelian Randomization to Investigate Causal Relationships. Genes Brain Behav. 2024, 23, e12885. [Google Scholar] [CrossRef] [PubMed]
- Roenneberg, T.; Wirz-Justice, A.; Merrow, M. Life between Clocks: Daily Temporal Patterns of Human Chronotypes. J. Biol. Rhythm. 2003, 18, 80. [Google Scholar] [CrossRef]
- Hu, Y.; Shmygelska, A.; Tran, D.; Eriksson, N.; Tung, J.Y.; Hinds, D.A. GWAS of 89,283 Individuals Identifies Genetic Variants Associated with Self-Reporting of Being a Morning Person. Nat. Commun. 2016, 7, 10448. [Google Scholar] [CrossRef]
- Jones, S.E.; Lane, J.M.; Wood, A.R.; van Hees, V.T.; Tyrrell, J.; Beaumont, R.N.; Jeffries, A.R.; Dashti, H.S.; Hillsdon, M.; Ruth, K.S.; et al. Genome-Wide Association Analyses of Chronotype in 697,828 Individuals Provides Insights into Circadian Rhythms. Nat. Commun. 2019, 10, 343. [Google Scholar] [CrossRef]
- Roenneberg, T.; Allebrandt, K.V.; Merrow, M.; Vetter, C. Social Jetlag and Obesity. Curr. Biol. 2012, 22, 939. [Google Scholar] [CrossRef]
- Wittmann, M.; Dinich, J.; Merrow, M.; Roenneberg, T. Social Jetlag: Misalignment of Biological and Social Time. Chronobiol. Int. 2006, 23, 497. [Google Scholar] [CrossRef] [PubMed]
- Lévi, F.; Dugué, P.; Innominato, P.F.; Karaboué, A.; Dispersyn, G.; Parganiha, A.; Giacchetti, S.; Moreau, T.; Focan, C.; Waterhouse, J.; et al. Wrist Actimetry Circadian Rhythm as a Robust Predictor of Colorectal Cancer Patients Survival. Chronobiol. Int. 2014, 31, 891. [Google Scholar] [CrossRef] [PubMed]
- Innominato, P.F.; Focan, C.; Gorlia, T.; Moreau, T.; Garufi, C.; Waterhouse, J.; Giacchetti, S.; Coudert, B.; Iacobelli, S.; Genet, D.; et al. Circadian Rhythm in Rest and Activity: A Biological Correlate of Quality of Life and a Predictor of Survival in Patients with Metastatic Colorectal Cancer. Cancer Res. 2009, 69, 4700. [Google Scholar] [CrossRef] [PubMed]
- Ancoli-Israel, S.; Cole, R.J.; Alessi, C.; Chambers, M.J.; Moorcroft, W.H.; Pollak, C.P. The Role of Actigraphy in the Study of Sleep and Circadian Rhythms. Sleep 2003, 26, 342. [Google Scholar] [CrossRef]
- Benloucif, S.; Burgess, H.J.; Klerman, E.B.; Lewy, A.J.; Middleton, B.; Murphy, P.; Parry, B.L.; Revell, V.L. Measuring Melatonin in Humans. J. Clin. Sleep Med. 2008, 4, 66. [Google Scholar] [CrossRef]
- Braun, R.; Kath, W.L.; Iwanaszko, M.; Kula-Eversole, E.; Abbott, S.M.; Reid, K.J.; Zee, P.C.; Allada, R. Universal Method for Robust Detection of Circadian State from Gene Expression. Proc. Natl. Acad. Sci. USA 2018, 115, E9247–E9256. [Google Scholar] [CrossRef]
- Laing, E.E.; Möller-Levet, C.S.; Poh, N.; Santhi, N.; Archer, S.N.; Dijk, D.-J. Blood Transcriptome Based Biomarkers for Human Circadian Phase. eLife 2017, 6, e20214. [Google Scholar] [CrossRef]
- Burns, A.; Phillips, A.J.K.; Rutter, M.K.; Saxena, R.; Cain, S.W.; Lane, J.M. Genome-Wide Gene by Environment Study of Time Spent in Daylight and Chronotype Identifies Emerging Genetic Architecture Underlying Light Sensitivity. Sleep 2022, 46, zsac287. [Google Scholar] [CrossRef]
- Lane, J.M.; Vlasac, I.; Anderson, S.; Kyle, S.D.; Dixon, W.G.; Bechtold, D.A.; Gill, S.; Little, M.A.; Luik, A.I.; Loudon, A.; et al. Genome-Wide Association Analysis Identifies Novel Loci for Chronotype in 100,420 Individuals from the UK Biobank. Nat. Commun. 2016, 7, 10889. [Google Scholar] [CrossRef]
- Jones, S.E.; Tyrrell, J.; Wood, A.R.; Beaumont, R.N.; Ruth, K.S.; Tuke, M.A.; Yaghootkar, H.; Hu, Y.; Teder-Laving, M.; Hayward, C.; et al. Genome-Wide Association Analyses in 128,266 Individuals Identifies New Morningness and Sleep Duration Loci. PLoS Genetics 2016, 12, e1006125. [Google Scholar] [CrossRef]
- Viola, A.; Archer, S.; James, L.M.; Groeger, J.A.; Lo, J.C.; Skene, D.J.; von Schantz, M.; Dijk, D. PER3 Polymorphism Predicts Sleep Structure and Waking Performance. Curr. Biol. 2007, 17, 613. [Google Scholar] [CrossRef]
- Archer, S.; Robilliard, D.L.; Skene, D.J.; Smits, M.G.; Williams, A.; Arendt, J.; Schantz, M. von A Length Polymorphism in the Circadian Clock Gene Per3 Is Linked to Delayed Sleep Phase Syndrome and Extreme Diurnal Preference. Sleep 2003, 26, 413. [Google Scholar] [CrossRef]
- Lane, J.M.; Liang, J.; Vlasac, I.; Anderson, S.; Bechtold, D.A.; Bowden, J.; Emsley, R.; Gill, S.; Little, M.A.; Luik, A.I.; et al. Genome-Wide Association Analyses of Sleep Disturbance Traits Identify New Loci and Highlight Shared Genetics with Neuropsychiatric and Metabolic Traits. Nat. Genet. 2016, 49, 274. [Google Scholar] [CrossRef]
- Kalmbach, D.A.; Schneider, L.; Cheung, J.; Bertrand, S.J.; Kariharan, T.; Pack, A.I.; Gehrman, P. Genetic Basis of Chronotype in Humans: Insights From Three Landmark GWAS. Sleep 2016, 40, zsw048. [Google Scholar] [CrossRef]
- Stone, J.; McGlashan, E.M.; Quin, N.; Skinner, K.; Stephenson, J.J.; Cain, S.W.; Phillips, A.J.K. The Role of Light Sensitivity and Intrinsic Circadian Period in Predicting Individual Circadian Timing. J. Biol. Rhythm. 2020, 35, 628. [Google Scholar] [CrossRef]
- Perez-Pozuelo, I.; Zhai, B.; Palotti, J.; Mall, R.; Aupetit, M.; García-Gómez, J.M.; Taheri, S.; Guan, Y.; Fernández-Luque, L. The Future of Sleep Health: A Data-Driven Revolution in Sleep Science and Medicine. Npj Digit. Med. 2020, 3, 42. [Google Scholar] [CrossRef] [PubMed]
- Figueiro, M.G.; Steverson, B.; Heerwagen, J.; Kampschroer, K.; Hunter, C.M.; Gonzales, K.; Plitnick, B.; Rea, M.S. The Impact of Daytime Light Exposures on Sleep and Mood in Office Workers. Sleep Health 2017, 3, 204. [Google Scholar] [CrossRef] [PubMed]
- Walch, O.; Cochran, A.L.; Forger, D.B. A Global Quantification of “Normal” Sleep Schedules Using Smartphone Data. Sci. Adv. 2016, 2, e1501705. [Google Scholar] [CrossRef] [PubMed]
- Winnebeck, E.C.; Fischer, D.; Leise, T.; Roenneberg, T. Dynamics and Ultradian Structure of Human Sleep in Real Life. Curr. Biol. 2017, 28, 49. [Google Scholar] [CrossRef]
- Cheng, P.; Walch, O.; Huang, Y.; Mayer, C.; Sagong, C.; Castelan, A.C.; Burgess, H.J.; Roth, T.; Forger, D.B.; Drake, C.L. Predicting Circadian Misalignment with Wearable Technology: Validation of Wrist-Worn Actigraphy and Photometry in Night Shift Workers. Sleep 2020, 44, zsaa180. [Google Scholar] [CrossRef]
- Figueiro, M.G.; Rea, M.S. The Effects of Red and Blue Lights on Circadian Variations in Cortisol, Alpha Amylase, and Melatonin. Int. J. Endocrinol. 2010, 2010, 1. [Google Scholar] [CrossRef] [PubMed]
- Stevens, R.G.; Brainard, G.C.; Blask, D.E.; Lockley, S.W.; Motta, M. Breast Cancer and Circadian Disruption from Electric Lighting in the Modern World. CA A Cancer J. Clin. 2013, 64, 207. [Google Scholar] [CrossRef] [PubMed]
- Chellappa, S.L.; Steiner, R.; Blattner, P.; Oelhafen, P.; Götz, T.; Cajochen, C. Non-Visual Effects of Light on Melatonin, Alertness and Cognitive Performance: Can Blue-Enriched Light Keep Us Alert? PLoS ONE 2011, 6, e16429. [Google Scholar] [CrossRef] [PubMed]
- Münch, M.; Kobialka, S.; Steiner, R.; Oelhafen, P.; Wirz-Justice, A.; Cajochen, C. Wavelength-Dependent Effects of Evening Light Exposure on Sleep Architecture and Sleep EEG Power Density in Men. AJP Regul. Integr. Comp. Physiol. 2006, 290, R1421–R1428. [Google Scholar] [CrossRef]
- Chang, A.; Aeschbach, D.; Duffy, J.F.; Czeisler, C.A. Evening Use of Light-Emitting eReaders Negatively Affects Sleep, Circadian Timing, and next-Morning Alertness. Proc. Natl. Acad. Sci. USA 2014, 112, 1232. [Google Scholar] [CrossRef] [PubMed]
- Cajochen, C.; Münch, M.; Kobialka, S.; Kräuchi, K.; Steiner, R.; Oelhafen, P.; Orgül, S.; Wirz-Justice, A. High Sensitivity of Human Melatonin, Alertness, Thermoregulation, and Heart Rate to Short Wavelength Light. J. Clin. Endocrinol. Metab. 2005, 90, 1311. [Google Scholar] [CrossRef]
- Stepanski, E.; Wyatt, J.K. Use of Sleep Hygiene in the Treatment of Insomnia. Sleep Med. Rev. 2003, 7, 215. [Google Scholar] [CrossRef]
- Irish, L.; Kline, C.E.; Gunn, H.E.; Buysse, D.J.; Hall, M.H. The Role of Sleep Hygiene in Promoting Public Health: A Review of Empirical Evidence. Sleep Med. Rev. 2014, 22, 23. [Google Scholar] [CrossRef]
- Okajima, I.; Komada, Y.; Inoue, Y. A Meta-Analysis on the Treatment Effectiveness of Cognitive Behavioral Therapy for Primary Insomnia. Sleep Biol. Rhythm. 2010, 9, 24. [Google Scholar] [CrossRef]
- Morin, C.M.; Bootzin, R.R.; Buysse, D.J.; Edinger, J.D.; Espie, C.A.; Lichstein, K.L. Psychological And Behavioral Treatment Of Insomnia: Update Of The Recent Evidence (1998–2004). Sleep 2006, 29, 1398. [Google Scholar] [CrossRef]
- Mistlberger, R.E.; Skene, D.J. Social Influences on Mammalian Circadian Rhythms: Animal and Human Studies. Biol. Rev. /Biol. Rev. Camb. Philos. Soc. 2004, 79, 533. [Google Scholar] [CrossRef]
- Sletten, T.L.; Magee, M.; Murray, J.M.; Gordon, C.J.; Lovato, N.; Kennaway, D.J.; Gwini, S.M.; Bartlett, D.J.; Lockley, S.W.; Lack, L.; et al. Efficacy of Melatonin with Behavioural Sleep-Wake Scheduling for Delayed Sleep-Wake Phase Disorder: A Double-Blind, Randomised Clinical Trial. PLoS Med. 2018, 15, e1002587. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, R.; Wang, Q.; Someren, E.J.W.V.; Xu, H.; Zhou, J. Age-Associated Difference in Circadian Sleep–Wake and Rest–Activity Rhythms. Physiol. Behav. 2002, 76, 597. [Google Scholar] [CrossRef]
- Duffy, J.F.; Czeisler, C.A. Effect of Light on Human Circadian Physiology. Sleep Med. Clin. 2009, 4, 165. [Google Scholar] [CrossRef] [PubMed]
- Pandi-Perumal, S.R.; Smits, M.G.; Spence, W.; Srinivasan, V.; Cardinali, D.P.; Lowe, A.; Kayumov, L. Dim Light Melatonin Onset (DLMO): A Tool for the Analysis of Circadian Phase in Human Sleep and Chronobiological Disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2006, 31, 1. [Google Scholar] [CrossRef]
- Klerman, E.B.; Gershengorn, H.B.; Duffy, J.F.; Kronauer, R.E. Comparisons of the Variability of Three Markers of the Human Circadian Pacemaker. J. Biol. Rhythm. 2002, 17, 181. [Google Scholar] [CrossRef]
- Duffy, J.F.; Dijk, D. Getting Through to Circadian Oscillators: Why Use Constant Routines? J. Biol. Rhythm. 2002, 17, 4. [Google Scholar] [CrossRef]
- Wittenbrink, N.; Ananthasubramaniam, B.; Münch, M.; Koller, B.; Maier, B.; Weschke, C.; Bes, F.; de Zeeuw, J.; Nowozin, C.; Wahnschaffe, A.; et al. High-Accuracy Determination of Internal Circadian Time from a Single Blood Sample. J. Clin. Investig. 2018, 128, 3826. [Google Scholar] [CrossRef]
- Margrie, T.W.; Brecht, M.; Sakmann, B. In Vivo, Low-Resistance, Whole-Cell Recordings from Neurons in the Anaesthetized and Awake Mammalian Brain. Pflügers Arch. Eur. J. Physiol. 2002, 444, 491. [Google Scholar] [CrossRef]
- Roth, B.L. DREADDs for Neuroscientists. Neuron 2016, 89, 683. [Google Scholar] [CrossRef]
- Yizhar, O.; Fenno, L.E.; Davidson, T.J.; Mogri, M.; Deisseroth, K. Optogenetics in Neural Systems. Neuron 2011, 71, 9. [Google Scholar] [CrossRef]
- Kantermann, T.; Juda, M.; Merrow, M.; Roenneberg, T. The Human Circadian Clock’s Seasonal Adjustment Is Disrupted by Daylight Saving Time. Curr. Biol. 2007, 17, 1996. [Google Scholar] [CrossRef] [PubMed]
- Kelley, P.; Lockley, S.W.; Foster, F.; Kelley, J. Synchronizing Education to Adolescent Biology: ‘Let Teens Sleep, Start School Later. ’ Learn. Media Technol. 2014, 40, 210. [Google Scholar] [CrossRef]
- Foster, R.G.; Peirson, S.N.; Wulff, K.; Winnebeck, E.; Vetter, C.; Roenneberg, T. Sleep and Circadian Rhythm Disruption in Social Jetlag and Mental Illness. Prog. Mol. Biol. Transl. Sci. 2013, 119, 325–346. [Google Scholar] [CrossRef] [PubMed]
- Solt, L.A.; Wang, Y.; Banerjee, S.; Hughes, T.; Kojetin, D.J.; Lundåsen, T.; Shin, Y.; Liu, J.; Cameron, M.D.; Noël, R.; et al. Regulation of Circadian Behaviour and Metabolism by Synthetic REV-ERB Agonists. Nature 2012, 485, 62. [Google Scholar] [CrossRef]
- Hirota, T.; Lee, J.W.; John, P.C.S.; Sawa, M.; Iwaisako, K.; Noguchi, T.; Pongsawakul, P.Y.; Sonntag, T.; Welsh, D.K.; Brenner, D.A.; et al. Identification of Small Molecule Activators of Cryptochrome. Science 2012, 337, 1094. [Google Scholar] [CrossRef]
- Kojetin, D.J.; Burris, T.P. REV-ERB and ROR Nuclear Receptors as Drug Targets. Nat. Rev. Drug Discov. 2014, 13, 197. [Google Scholar] [CrossRef]
- Sulli, G.; Manoogian, E.N.C.; Taub, P.R.; Panda, S. Training the Circadian Clock, Clocking the Drugs, and Drugging the Clock to Prevent, Manage, and Treat Chronic Diseases. Trends Pharmacol. Sci. 2018, 39, 812. [Google Scholar] [CrossRef]
- Lévi, F.; Okyar, A. Circadian Clocks and Drug Delivery Systems: Impact and Opportunities in Chronotherapeutics. Expert Opin. Drug Deliv. 2011, 8, 1535. [Google Scholar] [CrossRef]
- Ohdo, S.; Koyanagi, S.; Matsunaga, N.; Hamdan, A.M. Molecular Basis of Chronopharmaceutics. J. Pharm. Sci. 2011, 100, 3560. [Google Scholar] [CrossRef]
- Smolensky, M.H.; Peppas, N.A. Chronobiology, Drug Delivery, and Chronotherapeutics. Adv. Drug Deliv. Rev. 2007, 59, 828. [Google Scholar] [CrossRef]



| Channel Type | Circadian Regulation Mechanism | Time-of-Day Variation | Functional Consequence |
|---|---|---|---|
| Voltage-gated K+channels (Kv2.1) |
|
|
|
| Voltage-gated Na+channels |
|
|
|
| Voltage-gated Ca2+channels |
|
|
|
| General voltage-gated channels |
|
|
|
| Regulatory Level | Key Mechanisms | Molecular Components | Functional Outcome |
|---|---|---|---|
| Transcriptional regulation |
|
|
|
| Lipid metabolism |
|
|
|
| Ion channel trafficking and localization |
|
|
|
| Glial modulation |
|
|
|
| Disorder | Type of Capacitance Disruption | Underlying Mechanisms | Behavioral/Cognitive Consequence | Therapeutic Implication |
|---|---|---|---|---|
| Major Depressive Disorder (MDD) |
|
|
|
|
| Bipolar Disorder |
|
|
|
|
| Schizophrenia |
|
|
|
|
| Attention-Deficit/Hyperactivity Disorder (ADHD) |
|
|
|
|
| Autism Spectrum Disorders (ASDs) |
|
|
|
|
| Alzheimer’s Disease (AD) |
|
|
|
|
| Parkinson’s Disease (PD) |
|
|
|
|
| Huntington’s Disease (HD) |
|
|
|
|
| Amyotrophic Lateral Sclerosis (ALS) |
|
|
|
|
| Frontotemporal Dementia (FTD) |
|
|
|
|
| Epilepsy |
|
|
|
|
| Normal Aging and Cognitive Decline |
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowacka, A.; Śniegocki, M.; Bożiłow, D.; Ziółkowska, E. Circadian Regulation of Neuronal Membrane Capacitance—Mechanisms and Implications for Neural Computation and Behavior. Int. J. Mol. Sci. 2025, 26, 10766. https://doi.org/10.3390/ijms262110766
Nowacka A, Śniegocki M, Bożiłow D, Ziółkowska E. Circadian Regulation of Neuronal Membrane Capacitance—Mechanisms and Implications for Neural Computation and Behavior. International Journal of Molecular Sciences. 2025; 26(21):10766. https://doi.org/10.3390/ijms262110766
Chicago/Turabian StyleNowacka, Agnieszka, Maciej Śniegocki, Dominika Bożiłow, and Ewa Ziółkowska. 2025. "Circadian Regulation of Neuronal Membrane Capacitance—Mechanisms and Implications for Neural Computation and Behavior" International Journal of Molecular Sciences 26, no. 21: 10766. https://doi.org/10.3390/ijms262110766
APA StyleNowacka, A., Śniegocki, M., Bożiłow, D., & Ziółkowska, E. (2025). Circadian Regulation of Neuronal Membrane Capacitance—Mechanisms and Implications for Neural Computation and Behavior. International Journal of Molecular Sciences, 26(21), 10766. https://doi.org/10.3390/ijms262110766

