Mechanistic Insights into Tyrosinase-Catalyzed Metabolism of Hydroquinone: Implications for the Etiology of Exogenous Ochronosis and Cytotoxicity to Melanocytes
Abstract
1. Introduction
2. Results
2.1. Oxidation of HQ by Mushroom Tyrosinase
2.2. Oxidation of HHQ by Mushroom Tyrosinase
2.3. Production of HQ-EM and HQ-PM and Finding of a Marker, 4-Aminophenol, Derived from HQ-PM
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Analytical Methods
4.3. Tyrosinase-Catalyzed Oxidation of HQ or HHQ
4.4. Preparation of HHQ-Dimer
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| HQ | Hydroquinone |
| EO | Exogenous ochronosis |
| EM | Eumelanin |
| PM | Pheomelanin |
| HHQ | 2-Hydroxy-1,4-hydroquinone |
| HBQ | 2-Hydroxy-1,4-benzoquinone |
| BQ | 1,4-Benzoquinone |
| AP | 4-Aminophenol |
| ROS | Reactive oxygen species |
| Cys | L-Cysteine |
| HPLC-UVD | High-performance liquid chromatography-UV detection |
| DQ | Dopaquinone |
| 4-OH-o-BQ | 4-Hydroxy-1,2-benzoquinone |
| HQ-EM | Hydroquinone-eumelanin |
| Cys-HHQ | 5-S-Cysteinyl-2-hydroxy-1,4-hydroquinone |
| Cys-HQ | 2-S-Cysteinyl-1,4-hydroquinone |
| HQ-PM | Hydroquinone-pheomelanin |
| HI | Hydroiodic acid |
| OH-BZ | 6-Hydroxybenzothiazole |
| 5SCD | 5-S-Cysteinyldopa |
| AHPO | Alkaline hydrogen peroxide oxidation |
| PTCA | Pyrrole-2,3,5-tricarboxylic acid |
| PDCA | Pyrrole-2,3-dicarboxylic acid |
| TTCA | Thiazole-2,4,5-tricarboxylic acid |
| TDCA | Thiazole-2,3-dicarboxylic acid |
| 4-AHP | 4-Amino-3-hydroxyphenylalanine |
| BZ-AA | 6-(2-Amino-2-carboxyethyl)-4-hydroxybenzothiazole |
References
- Oettel, H. Die Hydrochinonvergiftung. Arch. Exp. Pathol. Pharmakol. 1936, 183, 319–362. [Google Scholar] [CrossRef]
- Oliver, E.A.; Schwartz, L.; Warren, L.H. Occupational leukoderma. Preliminary report. JAMA 1939, 113, 927–928. [Google Scholar] [CrossRef]
- Briganti, S.; Camera, E.; Picardo, M. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res. 2003, 16, 101–110. [Google Scholar] [CrossRef]
- Solano, F.; Briganti, S.; Picardo, M.; Ghanem, G. Hypopigmenting agents: An updated review on biological, chemical and clinical aspects. Pigment Cell Res. 2006, 19, 550–571. [Google Scholar] [CrossRef] [PubMed]
- Stratigos, A.J.; Katsambas, A.D. Optimal management of recalcitrant disorders of hyperpigmentation in dark-skinned patients. Am. J. Clin. Dermatol. 2004, 5, 161–168. [Google Scholar] [CrossRef]
- Fabian, I.M.; Sinnathamby, E.S.; Flanagan, C.J.; Lindberg, A.; Tynes, B.; Kelkar, R.A.; Varrassi, G.; Ahmadzadeh, S.; Shekoohi, S.; Kaye, A.D. Topical hydroquinone for hyperpigmentation: A narrative review. Cureus 2023, 15, e48840. [Google Scholar] [CrossRef]
- Ren, Q.; Henes, B.; Fairhead, M.; Thöny-Meyer, L. High level production of tyrosinase in recombinant Escherichia coli. BMC Biotechnol. 2013, 13, 18. [Google Scholar] [CrossRef]
- Land, E.J.; Ramsden, C.A.; Riley, P.A. Tyrosinase autoactivation and the chemistry of ortho-quinone amines. Acc. Chem. Res. 2003, 36, 300–308. [Google Scholar] [CrossRef]
- Wakamatsu, K.; Zippin, J.H.; Ito, S. Chemical and biochemical control of skin pigmentation with special emphasis on mixed melanogenesis. Pigment Cell Melanoma Res. 2021, 34, 730–747. [Google Scholar] [CrossRef]
- Bolognia, J.L.; Sodi, S.A.; Osber, M.P.; Pawelek, J.M. Enhancement of the depigmenting effect of hydroquinone by cystamine and buthionine sulfoximine. Br. J. Dermatol. 1995, 133, 349–357. [Google Scholar] [CrossRef]
- Findlay, G.H.; Morrison, J.G.; Simson, I.W. Exogenous ochronosis and pigmented colloid milium from hydroquinone bleaching creams. Br. J. Dermatol. 1975, 93, 613–622. [Google Scholar] [CrossRef]
- Jow, T.; Hantash, B.M. Hydroquinone-induced depigmentation: Case report and review of the literature. Dermatitis 2014, 25, e1–e5. [Google Scholar] [CrossRef]
- Simmons, B.J.; Griffith, R.D.; Bray, F.N.; Falto-Aizpurua, L.A.; Nouri, K. Exogenous ochronosis: A comprehensive review of the diagnosis, epidemiology, causes, and treatments. Am. J. Clin. Dermatol. 2015, 16, 205–212. [Google Scholar] [CrossRef]
- Tan, S.K. Exogenous ochronosis in ethnic Chinese Asians: A clinicopathological study, diagnosis and treatment. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 842–850. [Google Scholar] [CrossRef]
- Bhattar, P.A.; Zawar, V.P.; Godse, K.V.; Patil, S.P.; Nadkarni, N.J.; Gautam, M.M. Exogenous ochronosis. Indian J. Dermatol. 2015, 60, 537–543. [Google Scholar] [CrossRef]
- Hull, P.R.; Procter, P.R. The melanocyte: An essential link in hydroquinone-induced ochronosis. J. Am. Acad. Dermatol. 1990, 22, 529–531. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Kolbe, L.; Weets, G.; Rogers, T.; Bushdid, C.; Nishimaki-Mogami, T.; Tanaka, H.; Passeron, T.; Ojika, M.; Wakamatsu, K. Exogenous ochronosis by hydroquinone is not caused by Inhibition of homogentisate dioxygenase but potentially by tyrosinase-catalyzed metabolism of hydroquinone. Br. J. Dermatol. 2025, 193, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Jergil, B.; Lindbladh, C.H.; Rorsman, H.; Rosengren, E. Inactivation of human tyrosinase by cysteine. Protection by dopa and tyrosine. Acta Derm. Venereol. 1984, 64, 155–182. [Google Scholar] [CrossRef] [PubMed]
- Valero, E.; Varón, R.; García-Carmona, F. A kinetic study of irreversible enzyme inhibition by an inhibitor that is rendered unstable by enzymic catalysis. The inhibition of polyphenol oxidase by L-cysteine. Biochem. J. 1991, 277, 869–874. [Google Scholar] [CrossRef]
- del Mar García-Molina, M.; Muñoz-Muñoz, J.L.; Martinez-Ortiz, F.; Martinez, J.R.; García-Ruiz, P.A.; Rodriguez-López, J.N.; García-Cánovas, F. Tyrosinase-catalyzed hydroxylation of hydroquinone, a depigmenting agent, to hydroxyhydroquinone: A kinetic study. Bioorg. Med. Chem. 2014, 22, 3360–3369. [Google Scholar] [CrossRef]
- Palumbo, A.; d’Ischia, M.; Misuraca, G.; Prota, G. Mechanism of inhibition of melanogenesis by hydroquinone. Biochim. Biophys. Acta 1991, 1073, 85–90. [Google Scholar] [CrossRef]
- Palumbo, A.; d’Ischia, M.; Misuraca, G.; Prota, G. Skin depigmentation by hydroquinone: A chemical and biochemical insight. Pigment Cell Res. 1990, 3 (Suppl. S2), 299–303. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Sugumaran, M.; Wakamatsu, K. Chemical reactivities of ortho-quinones produced in living organisms: Fate of quinonoid products formed by tyrosinase and phenoloxidase action on phenols and catechols. Int. J. Mol. Sci. 2020, 21, 6080. [Google Scholar] [CrossRef] [PubMed]
- del Mar García-Molina, M.; Muñoz-Muñoz, J.L.; Berna, J.; García-Ruiz, P.A.; Rodriguez-Lopez, J.N.; García-Cánovas, F. Catalysis and inactivation of tyrosinase in its action on hydroxyhydroquinone. IUBMB Life 2014, 66, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Philipp, B.; Schink, B. Evidence of two oxidative reaction steps initiating anaerobic degradation of resorcinol (1,3-dihydroxybenzene) by the denitrifying bacterium Azoarcus anaerobius. J. Bacteriol. 1998, 180, 3644–3649. [Google Scholar] [CrossRef]
- Wakamatsu, K.; Ito, S. Recent advances in characterization of melanin pigments in biological samples. Int. J. Mol. Sci. 2023, 24, 8305. [Google Scholar] [CrossRef]
- Ito, S.; Nakanishi, Y.; Valenzuela, R.K.; Brilliant, M.H.; Kolbe, L.; Wakamatsu, K. Usefulness of alkaline hydrogen peroxide oxidation to analyze eumelanin and pheomelanin in various tissue samples: Application to chemical analysis of human hair melanins. Pigment Cell Melanoma Res. 2011, 24, 605–613. [Google Scholar] [CrossRef]
- Wakamatsu, K.; Ito, S.; Rees, J.L. The usefulness of 4-amino-3-hydroxyphenylalanine as a specific marker of pheomelanin. Pigment Cell Res. 2002, 15, 225–232. [Google Scholar] [CrossRef]
- Wakamatsu, K.; Ohtara, K.; Ito, S. Chemical analysis of late stages of pheomelanogenesis: Conversion of dihydrobenzothiazine to a benzothiazole structure. Pigment Cell Melanoma Res. 2009, 22, 474–486. [Google Scholar] [CrossRef]
- Ramsden, C.A.; Riley, P.A. Mechanistic aspects of the tyrosinase oxidation of hydroquinone. Bioorg. Med. Chem. Lett. 2014, 24, 2463–2464. [Google Scholar] [CrossRef]
- Penney, K.B.; Smith, C.J.; Allen, J.C. Depigmenting action of hydroquinone depends on disruption of fundamental cell processes. J. Investig. Dermatol. 1984, 82, 308–310. [Google Scholar] [CrossRef]
- Jimbow, K.; Obata, H.; Pathak, M.A.; Fitzpatrick, T.B. Mechanisms of depigmentation by hydroquinone. J. Investig. Dermatol. 1974, 62, 436–449. [Google Scholar] [CrossRef]
- Smith, C.J.; O’Hare, K.B.; Allen, J.C. Selective cytotoxicity of hydroquinone for melanocyte-derived cells is mediated by tyrosinase activity but independent of melanin content. Pigment Cell Res. 1988, 1, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Rubio, V.; Zhang, J.; Valverde, M.; Rojas, E.; Shi, Z.-Z. Essential role of Nrf2 in protection against hydroquinone- and benzoquinone-induced cytotoxicity. Toxicol. In Vitro 2011, 25, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Tenscher, P.R.; Escher, B.I.; Schlichting, R.; König, M.; Bramaz, N.; Schirmer, K.; von Gunten, U. Toxic effects of substituted p-benzoquinones and hydroquinones in in vitro bioassays are altered by reactions with the cell assay medium. Water Res. 2021, 202, 117415. [Google Scholar] [CrossRef] [PubMed]
- Son, M.Y.; Deng, C.X.; Hoeijmarkers, J.H.; Rebel, V.I.; Hasty, P. A mechanism for 1,4-benzoquinone-induced genotoxicity. Oncotarget 2016, 18, 46433–46447. [Google Scholar] [CrossRef]
- Tanaka, H.; Yamashita, Y.; Umezawa, K.; Hirobe, T.; Ito, S.; Wakamatsu, K. The pro-oxidant activity of pheomelanin is significantly enhanced by UVA irradiation: Benzothiazole moieties are more reactive than benzothiazine moieties. Int. J. Mol. Sci. 2018, 19, 2889. [Google Scholar] [CrossRef]
- Mitra, D.; Luo, X.; Morgan, A.; Wang, J.; Hoang, M.P.; Lo, J.; Guerrero, C.R.; Lennerz, J.K.; Mihm, M.C.; Wargo, J.A.; et al. An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature 2012, 495, 449–453. [Google Scholar] [CrossRef]
- Penneys, N.S. Ochronosislike pigmentation from hydroquinone bleaching creams. Arch. Dermatol. 1985, 121, 1239–1240. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.M.; Kammath, V.; Bleakley, A. Tyrosinase, could it be a missing link in ochronosis in alkaptonuria? Med. Hypotheses 2016, 91, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Mann, T.; Gerwat, W.; Batzer, J.; Eggers, K.; Scherner, C.; Wenck, H.; Stäb, F.; Hearing, V.J.; Röhm, K.H.; Kolbe, L. Inhibition of human tyrosinase requires molecular motifs distinctively different from mushroom tyrosinase. J. Investig. Dermatol. 2018, 138, 1601–1608. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ito, S.; Kolbe, L.; Rogers, T.; Mann, T.; Weets, G.; Tanaka, H.; Nishimaki-Mogami, T.; Passeron, T.; Ojika, M.; Wakamatsu, K. Mechanistic Insights into Tyrosinase-Catalyzed Metabolism of Hydroquinone: Implications for the Etiology of Exogenous Ochronosis and Cytotoxicity to Melanocytes. Int. J. Mol. Sci. 2025, 26, 10734. https://doi.org/10.3390/ijms262110734
Ito S, Kolbe L, Rogers T, Mann T, Weets G, Tanaka H, Nishimaki-Mogami T, Passeron T, Ojika M, Wakamatsu K. Mechanistic Insights into Tyrosinase-Catalyzed Metabolism of Hydroquinone: Implications for the Etiology of Exogenous Ochronosis and Cytotoxicity to Melanocytes. International Journal of Molecular Sciences. 2025; 26(21):10734. https://doi.org/10.3390/ijms262110734
Chicago/Turabian StyleIto, Shosuke, Ludger Kolbe, Tamara Rogers, Tobias Mann, Gudrun Weets, Hitomi Tanaka, Tomoko Nishimaki-Mogami, Thierry Passeron, Makoto Ojika, and Kazumasa Wakamatsu. 2025. "Mechanistic Insights into Tyrosinase-Catalyzed Metabolism of Hydroquinone: Implications for the Etiology of Exogenous Ochronosis and Cytotoxicity to Melanocytes" International Journal of Molecular Sciences 26, no. 21: 10734. https://doi.org/10.3390/ijms262110734
APA StyleIto, S., Kolbe, L., Rogers, T., Mann, T., Weets, G., Tanaka, H., Nishimaki-Mogami, T., Passeron, T., Ojika, M., & Wakamatsu, K. (2025). Mechanistic Insights into Tyrosinase-Catalyzed Metabolism of Hydroquinone: Implications for the Etiology of Exogenous Ochronosis and Cytotoxicity to Melanocytes. International Journal of Molecular Sciences, 26(21), 10734. https://doi.org/10.3390/ijms262110734

