Special Issue “Bioceramics: Challenges and Medical Applications of Calcium-Phosphate-Based Biocompatible Ceramics”
1. Hydroxyapatite and Related Phosphates
2. Octacalcium Phosphate and Osteogenesis
3. β-Tricalcium Phosphate and Functionalization
4. Hybrid Composites and Interfacial Engineering
5. Nanostructures, Antibacterial Strategies, and Metals
6. Future Outlook
Author Contributions
Conflicts of Interest
References
- Dorozhkin, S.V. Calcium orthophosphates: Applications in nature, biology, and medicine. Materials 2009, 2, 399–498. [Google Scholar] [CrossRef]
- Bohner, M. Calcium orthophosphates in medicine: From ceramics to calcium phosphate cements. Injury 2000, 31 (Suppl. S4), D37–D47. [Google Scholar] [CrossRef]
- Dorozhkin, S.V.; Epple, M. Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed. Engl. 2002, 41, 3130–3146. [Google Scholar] [CrossRef] [PubMed]
- de Groot, K.; Geesink, R.; Klein, C.P.; Serekian, P. Plasma-sprayed coatings of hydroxyapatite. J. Biomed. Mater. Res. 1987, 21, 1375–1381. [Google Scholar] [CrossRef] [PubMed]
- Hench, L.L. Bioceramics: From concept to clinic. J. Am. Ceram. Soc. 1991, 74, 1487–1510. [Google Scholar] [CrossRef]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef] [PubMed]
- Dorozhkin, S.V. Calcium orthophosphate-based bioceramics. J. Mater. Sci. 2007, 42, 1061–1095. [Google Scholar] [CrossRef]
- Bigi, A.; Boanini, E. Functionalization and biological activity of calcium phosphates doped with trace elements. Acta Biomater. 2017, 55, 21–36. [Google Scholar]
- Gibson, I.R.; Best, S.M.; Bonfield, W. Chemical characterization of silicon-substituted hydroxyapatite. J. Biomed. Mater. Res. 1999, 44, 422–428. [Google Scholar] [CrossRef]
- Sopyan, I.; Mel, M.; Ramesh, S.; Khalid, K.A. Porous hydroxyapatite for artificial bone applications. Sci. Technol. Adv. Mater. 2007, 8, 116–123. [Google Scholar] [CrossRef]
- Vallet-Regí, M.; Balas, F.; Arcos, D. Mesoporous materials for drug delivery. Angew. Chem. Int. Ed. Engl. 2007, 46, 7548–7558. [Google Scholar] [CrossRef]
- Ito, A.; Ojima, K.; Naito, H.; Ichinose, N.; Tateishi, T. Preparation and solubility of zinc-releasing calcium phosphate ceramics. J. Biomed. Mater. Res. 2000, 50, 178–183. [Google Scholar] [CrossRef]
- Boanini, E.; Gazzano, M.; Bigi, A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 2010, 6, 1882–1894. [Google Scholar] [CrossRef] [PubMed]
- Best, S.M.; Porter, A.E.; Thian, E.S.; Huang, J. Bioceramics: Past, present and future. J. Eur. Ceram. Soc. 2008, 28, 1319–1337. [Google Scholar] [CrossRef]
- Itoh, S.; Nakamura, S.; Kobayashi, T.; Shinomiya, K.; Yamashita, K. Effect of electrical polarization of hydroxyapatite ceramics on new bone formation. Calcif. Tissue Int. 2006, 78, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Vallet-Regí, M.; Colilla, M.; Izquierdo-Barba, I. Bioactive mesoporous ceramics and scaffolds for bone tissue regeneration. Chem. Mater. 2006, 18, 5071–5076. [Google Scholar]
- Rezwan, K.; Chen, Q.Z.; Blaker, J.J.; Boccaccini, A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006, 27, 3413–3431. [Google Scholar] [CrossRef] [PubMed]
- Barrère, F.; van der Valk, C.M.; Dalmeijer, R.A.J.; Meijer, G.; van Blitterswijk, C.A.; de Groot, K. Osteogenicity of octacalcium phosphate coatings applied on titanium implants. Biomaterials 2003, 24, 779–788. [Google Scholar]
- Suzuki, O.; Kamakura, S.; Katagiri, T.; Nakamura, M.; Zhao, B.; Honda, Y.; Kamijo, R. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials 2006, 27, 2671–2681. [Google Scholar] [CrossRef]
- Handa, T.; Anada, T.; Honda, Y.; Yamazaki, H.; Kobayashi, K.; Kanda, N.; Kamakura, S.; Echigo, S.; Suzuki, O. The effect of an octacalcium phosphate co-precipitated gelatin composite on the repair of critical-sized rat calvarial defects. Acta Biomater. 2012, 8, 1190–1200. [Google Scholar] [CrossRef] [PubMed]
- Habibovic, P.; Yuan, H.; van der Valk, C.; Meijer, G.; van Blitterswijk, C.; de Groot, K. 3D microenvironment and osteoinduction. Biomaterials 2005, 26, 3565–3575. [Google Scholar] [CrossRef] [PubMed]
- Habibovic, P.; de Groot, K. Osteoinductive biomaterials—Properties and relevance in bone regeneration. J. Tissue Eng. Regen. Med. 2007, 1, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.T.; Chang, J. Degradation, bioactivity and cytocompatibility of β-tricalcium phosphate scaffolds with controlled porous structure. Acta Biomater. 2007, 3, 351–359. [Google Scholar]
- LeGeros, R.Z. Calcium phosphate-based osteoinductive materials. Chem. Rev. 2008, 108, 4742–4753. [Google Scholar] [CrossRef]
- Ohtsuki, C.; Kokubo, T.; Yamamuro, T. Bioactive glass-ceramics: Properties and applications. J. Non-Cryst. Solids. 1992, 143, 84–92. [Google Scholar] [CrossRef]
- Hashimoto, K.; Oikawa, H.; Shibata, H. Characterization of porous β-type tricalcium phosphate ceramics formed via physical foaming with freeze-drying. Int. J. Mol. Sci. 2024, 25, 5363. [Google Scholar] [CrossRef]
- Yamashita, K.; Oikawa, N.; Umegaki, T. Acceleration and deceleration of bone-like crystal growth on hydroxyapatite by electric poling. Chem. Mater. 1996, 8, 2697–2700. [Google Scholar] [CrossRef]
- Zheng, J.; Nozaki, K.; Hashimoto, K.; Yamashita, K.; Wakabayashi, N. Exploring the biological impact of β-TCP surface polarization on osteoblast and osteoclast activity. Int. J. Mol. Sci. 2025, 26, 141. [Google Scholar] [CrossRef]
- Qian, E.; Eltawila, A.; Kang, Y. Doping of hollow urchin-like MnO2 nanoparticles in β-tricalcium phosphate scaffold promotes stem cell osteogenic differentiation. Int. J. Mol. Sci. 2025, 26, 5092. [Google Scholar] [CrossRef]
- Bohner, M.; Gbureck, U.; Barralet, J.E. Technological issues for the development of more efficient calcium phosphate bone cements: A critical assessment. Biomaterials 2005, 26, 6423–6429. [Google Scholar] [CrossRef]
- Pańtak, P.; Czechowska, J.P.; Vivcharenko, V.; Dorner-Reisel, A.; Zima, A. Synergistic effect of polysaccharides and silane coupling agents on calcium phosphate-based bone substitutes. Int. J. Mol. Sci. 2025, 26, 8910. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Oyane, A.; Inose, T.; Kanemoto, Y.; Miyaji, H. One-step fabrication of water-dispersible calcium phosphate nanoparticles with immobilized lactoferrin for intraoral disinfection. Int. J. Mol. Sci. 2025, 26, 852. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Takai, S.; Yabutsuka, T. Development of rapid bioactivity-expressed Zr-50Ti alloys by surface treatment with modified simulated body fluid. Int. J. Mol. Sci. 2024, 25, 6587. [Google Scholar] [CrossRef]
- Kizuki, T.; Takadama, H.; Matsushita, T.; Nakamura, T.; Kokubo, T. Preparation of bioactive Ti metal surface enriched with calcium ions by chemical treatment. Acta Biomater. 2010, 6, 2836–2842. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Biocomposites and hybrid biomaterials based on calcium orthophosphates. Biomaterials 2011, 32, 315–338. [Google Scholar]
- Bandyopadhyay, A.; Mitra, I.; Bose, S. Calcium phosphate-based resorbable ceramics: Influence of microstructure. Adv. Drug Deliv. Rev. 2015, 94, 96–114. [Google Scholar]
- Vallet-Regí, M.; González-Calbet, J.M. Calcium phosphates as substitution biomaterials for bone tissue regeneration. Prog. Solid. State Chem. 2004, 32, 1–31. [Google Scholar] [CrossRef]
- Langer, R.; Vacanti, J.P. Tissue engineering. Science 1993, 260, 920–926. [Google Scholar] [CrossRef]
- Kaplan, D.L. Biopolymer-based biomaterials. Annu. Rev. Mater. Res. 2009, 39, 293–321. [Google Scholar]
- Edanami, N.; Yoshiba, K.; Ibn Belal, R.S.; Yoshiba, N.; Takenaka, S.; Ohkura, N.; Takahara, S.; Ida, T.; Baldeon, R.; Kasimoto, S.; et al. Role of dystrophic calcification in reparative dentinogenesis after rat molar pulpotomy. Int. J. Mol. Sci. 2025, 26, 7130. [Google Scholar] [CrossRef] [PubMed]
- Porter, A.E.; Patel, N.; Skepper, J.N.; Best, S.M.; Bonfield, W. Effect of sintered CaP microstructure on human bone cell response. Biomaterials 2003, 24, 231–242. [Google Scholar]
- Vallet-Regí, M.; Salinas, A.J. Glasses with medical applications. Acc. Chem. Res. 2013, 46, 1094–1105. [Google Scholar] [CrossRef]
- Butler, K.T.; Davies, D.W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature 2018, 559, 547–555. [Google Scholar] [CrossRef]
- Ramprasad, R.; Batra, R.; Pilania, G.; Mannodi-Kanakkithodi, A.; Kim, C. Machine learning in materials informatics: Recent applications and prospects. npj Comput. Mater. 2017, 3, 54. [Google Scholar] [CrossRef]
- Häse, F.; Roch, L.M.; Aspuru-Guzik, A. Next-generation experimentation with self-driving laboratories. Trends Chem. 2019, 1, 282–291. [Google Scholar] [CrossRef]
- Yang, J.; Ankit, K.; Zhang, Y.; Bai, Y.; Ong, S.P. Machine-learning-enabled prediction of bioactive materials for bone regeneration. ACS Appl. Mater. Interfaces 2021, 13, 49395–49406. [Google Scholar]
- Vallet-Regí, M.; Lozano, D.; González, B.; Izquierdo-Barba, I. Nanostructured calcium phosphate ceramics for bone regeneration. Chem. Rev. 2022, 122, 14062–14112. [Google Scholar]
- Learmonth, I.D.; Young, C.; Rorabeck, C. The operation of the century: Total hip replacement. Lancet 2007, 370, 1508–1519. [Google Scholar] [CrossRef]
- Goodman, S.B.; Gallo, J. Periprosthetic osteolysis: Mechanisms, prevention and treatment. J. Clin. Med. 2019, 8, 2091. [Google Scholar] [CrossRef] [PubMed]
- Tande, A.J.; Patel, R. Prosthetic joint infection. Clin. Microbiol. Rev. 2014, 27, 302–345. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashimoto, K.; Aizawa, M. Special Issue “Bioceramics: Challenges and Medical Applications of Calcium-Phosphate-Based Biocompatible Ceramics”. Int. J. Mol. Sci. 2025, 26, 10612. https://doi.org/10.3390/ijms262110612
Hashimoto K, Aizawa M. Special Issue “Bioceramics: Challenges and Medical Applications of Calcium-Phosphate-Based Biocompatible Ceramics”. International Journal of Molecular Sciences. 2025; 26(21):10612. https://doi.org/10.3390/ijms262110612
Chicago/Turabian StyleHashimoto, Kazuaki, and Mamoru Aizawa. 2025. "Special Issue “Bioceramics: Challenges and Medical Applications of Calcium-Phosphate-Based Biocompatible Ceramics”" International Journal of Molecular Sciences 26, no. 21: 10612. https://doi.org/10.3390/ijms262110612
APA StyleHashimoto, K., & Aizawa, M. (2025). Special Issue “Bioceramics: Challenges and Medical Applications of Calcium-Phosphate-Based Biocompatible Ceramics”. International Journal of Molecular Sciences, 26(21), 10612. https://doi.org/10.3390/ijms262110612

