Next Article in Journal
Combinative Treatment of the PARP Inhibitor Olaparib and Antimetastasis Ruthenium(II)–Arene Compound RAPTA-T for Triple-Negative BRCA1 Wild-Type Breast Cancer Cells
Previous Article in Journal
First Report of On-Site Detection of Cucurbit Leaf Crumple Virus by an Optimized RPA-Lateral Flow Assay with an Alternative Endonuclease
Previous Article in Special Issue
The Synergistic Effect of Polysaccharides and Silane Coupling Agents on the Properties of Calcium Phosphate-Based Bone Substitutes
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Special Issue “Bioceramics: Challenges and Medical Applications of Calcium-Phosphate-Based Biocompatible Ceramics”

1
Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino 275-0016, Chiba, Japan
2
Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2025, 26(21), 10612; https://doi.org/10.3390/ijms262110612 (registering DOI)
Submission received: 25 September 2025 / Revised: 28 October 2025 / Accepted: 29 October 2025 / Published: 31 October 2025
Calcium-phosphate (CaP) ceramics have long occupied a central role in biomaterials science owing to their chemical similarity to bone mineral and favorable biological performance [1,2,3]. Early work by de Groot on hydroxyapatite coatings [4] and Hench’s introduction of bioactive glasses [5] established the foundation for modern bioceramics. Over subsequent decades, CaP research expanded beyond hydroxyapatite (HAp), octacalcium phosphate (OCP), and β-tricalcium phosphate (β-TCP) to encompass hybrid composites, ion substitution strategies, and surface functionalization techniques [6,7,8,9].

1. Hydroxyapatite and Related Phosphates

Hydroxyapatite remains the archetype of bone substitute ceramics due to its stability and osteoconductivity [10,11]. Silicon-substituted HAp has demonstrated enhanced bioactivity [12], while zinc- and strontium-doped systems show improved osteogenesis [13,14]. Beyond composition, Gibson and Bonfield’s studies highlighted the role of trace substitution in tailoring HAp reactivity [15]. Contemporary approaches integrate mesoporous structures [16] and composite scaffolds [17] to facilitate drug delivery and vascularization.

2. Octacalcium Phosphate and Osteogenesis

OCP has emerged as a key transient phase with high osteoinductive potential [18]. Its transformation into HAp under physiological conditions supports new bone formation. Pioneering studies by Suzuki and colleagues revealed protein adsorption effects on OCP surfaces [19], while Wang et al. demonstrated enhanced osteogenesis in OCP–polymer composites [20]. Parallel research in Biomaterials and Acta Biomater confirmed OCP’s clinical promise [21,22].

3. β-Tricalcium Phosphate and Functionalization

β-TCP exhibits higher resorbability than HAp, making it an ideal candidate for resorbable scaffolds [23,24]. Wu and Chang demonstrated structure–function relationships in porous β-TCP [25], and Hashimoto et al. reported freeze-dried β-TCP scaffolds with tunable porosity [26]. Electrical polarization, as pioneered by Yamashita et al. [27], modulates cellular responses, a finding later confirmed in polarized β-TCP [28]. Recent work has further expanded to β-TCP doped with Mn, Mg, and Si, demonstrating improved mechanical reliability and bioactivity [29,30].

4. Hybrid Composites and Interfacial Engineering

Hybrid architectures combining CaPs with polymers, metals, and bioactive molecules enable multifunctional performance [31,32,33,34,35,36]. Vallet-Regí introduced mesoporous silica for drug delivery, further extending CaP applications [37]. Advances in additive manufacturing allow precise 3D-printed CaP composites with hierarchical porosity [38]. These approaches highlight the critical role of interfacial chemistry and microstructural design.

5. Nanostructures, Antibacterial Strategies, and Metals

Nanostructural control is central to regulating bioactivity and degradation kinetics [39]. Lactoferrin-functionalized CaP nanoparticles demonstrated antibacterial potential [40]. Metallic systems, such as bioactive Ti and Zr alloys treated in simulated body fluid [41], represent hybrid strategies bridging ceramics and metals. Antibacterial coatings and silver- or copper-doped CaPs further broaden biomedical applications [42].

6. Future Outlook

The future of CaP bioceramics will rely on integrating traditional materials science with emerging technologies. Machine learning and AI-driven design [43,44,45], self-driving laboratories [46], and predictive modeling of bioactivity [47] are accelerating discovery. Clinically, the growing burden of osteoporosis and musculoskeletal disease underscores the need for biomaterials that combine osteoconductivity, resorbability, antibacterial function, and structural integrity [48,49,50]. Progress will depend on multidisciplinary collaboration among chemists, biologists, engineers, and clinicians.

Author Contributions

K.H.; writing—original draft preparation, M.A.; writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Dorozhkin, S.V. Calcium orthophosphates: Applications in nature, biology, and medicine. Materials 2009, 2, 399–498. [Google Scholar] [CrossRef]
  2. Bohner, M. Calcium orthophosphates in medicine: From ceramics to calcium phosphate cements. Injury 2000, 31 (Suppl. S4), D37–D47. [Google Scholar] [CrossRef]
  3. Dorozhkin, S.V.; Epple, M. Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed. Engl. 2002, 41, 3130–3146. [Google Scholar] [CrossRef] [PubMed]
  4. de Groot, K.; Geesink, R.; Klein, C.P.; Serekian, P. Plasma-sprayed coatings of hydroxyapatite. J. Biomed. Mater. Res. 1987, 21, 1375–1381. [Google Scholar] [CrossRef] [PubMed]
  5. Hench, L.L. Bioceramics: From concept to clinic. J. Am. Ceram. Soc. 1991, 74, 1487–1510. [Google Scholar] [CrossRef]
  6. Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef] [PubMed]
  7. Dorozhkin, S.V. Calcium orthophosphate-based bioceramics. J. Mater. Sci. 2007, 42, 1061–1095. [Google Scholar] [CrossRef]
  8. Bigi, A.; Boanini, E. Functionalization and biological activity of calcium phosphates doped with trace elements. Acta Biomater. 2017, 55, 21–36. [Google Scholar]
  9. Gibson, I.R.; Best, S.M.; Bonfield, W. Chemical characterization of silicon-substituted hydroxyapatite. J. Biomed. Mater. Res. 1999, 44, 422–428. [Google Scholar] [CrossRef]
  10. Sopyan, I.; Mel, M.; Ramesh, S.; Khalid, K.A. Porous hydroxyapatite for artificial bone applications. Sci. Technol. Adv. Mater. 2007, 8, 116–123. [Google Scholar] [CrossRef]
  11. Vallet-Regí, M.; Balas, F.; Arcos, D. Mesoporous materials for drug delivery. Angew. Chem. Int. Ed. Engl. 2007, 46, 7548–7558. [Google Scholar] [CrossRef]
  12. Ito, A.; Ojima, K.; Naito, H.; Ichinose, N.; Tateishi, T. Preparation and solubility of zinc-releasing calcium phosphate ceramics. J. Biomed. Mater. Res. 2000, 50, 178–183. [Google Scholar] [CrossRef]
  13. Boanini, E.; Gazzano, M.; Bigi, A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 2010, 6, 1882–1894. [Google Scholar] [CrossRef] [PubMed]
  14. Best, S.M.; Porter, A.E.; Thian, E.S.; Huang, J. Bioceramics: Past, present and future. J. Eur. Ceram. Soc. 2008, 28, 1319–1337. [Google Scholar] [CrossRef]
  15. Itoh, S.; Nakamura, S.; Kobayashi, T.; Shinomiya, K.; Yamashita, K. Effect of electrical polarization of hydroxyapatite ceramics on new bone formation. Calcif. Tissue Int. 2006, 78, 133–142. [Google Scholar] [CrossRef] [PubMed]
  16. Vallet-Regí, M.; Colilla, M.; Izquierdo-Barba, I. Bioactive mesoporous ceramics and scaffolds for bone tissue regeneration. Chem. Mater. 2006, 18, 5071–5076. [Google Scholar]
  17. Rezwan, K.; Chen, Q.Z.; Blaker, J.J.; Boccaccini, A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006, 27, 3413–3431. [Google Scholar] [CrossRef] [PubMed]
  18. Barrère, F.; van der Valk, C.M.; Dalmeijer, R.A.J.; Meijer, G.; van Blitterswijk, C.A.; de Groot, K. Osteogenicity of octacalcium phosphate coatings applied on titanium implants. Biomaterials 2003, 24, 779–788. [Google Scholar]
  19. Suzuki, O.; Kamakura, S.; Katagiri, T.; Nakamura, M.; Zhao, B.; Honda, Y.; Kamijo, R. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials 2006, 27, 2671–2681. [Google Scholar] [CrossRef]
  20. Handa, T.; Anada, T.; Honda, Y.; Yamazaki, H.; Kobayashi, K.; Kanda, N.; Kamakura, S.; Echigo, S.; Suzuki, O. The effect of an octacalcium phosphate co-precipitated gelatin composite on the repair of critical-sized rat calvarial defects. Acta Biomater. 2012, 8, 1190–1200. [Google Scholar] [CrossRef] [PubMed]
  21. Habibovic, P.; Yuan, H.; van der Valk, C.; Meijer, G.; van Blitterswijk, C.; de Groot, K. 3D microenvironment and osteoinduction. Biomaterials 2005, 26, 3565–3575. [Google Scholar] [CrossRef] [PubMed]
  22. Habibovic, P.; de Groot, K. Osteoinductive biomaterials—Properties and relevance in bone regeneration. J. Tissue Eng. Regen. Med. 2007, 1, 25–32. [Google Scholar] [CrossRef] [PubMed]
  23. Wu, C.T.; Chang, J. Degradation, bioactivity and cytocompatibility of β-tricalcium phosphate scaffolds with controlled porous structure. Acta Biomater. 2007, 3, 351–359. [Google Scholar]
  24. LeGeros, R.Z. Calcium phosphate-based osteoinductive materials. Chem. Rev. 2008, 108, 4742–4753. [Google Scholar] [CrossRef]
  25. Ohtsuki, C.; Kokubo, T.; Yamamuro, T. Bioactive glass-ceramics: Properties and applications. J. Non-Cryst. Solids. 1992, 143, 84–92. [Google Scholar] [CrossRef]
  26. Hashimoto, K.; Oikawa, H.; Shibata, H. Characterization of porous β-type tricalcium phosphate ceramics formed via physical foaming with freeze-drying. Int. J. Mol. Sci. 2024, 25, 5363. [Google Scholar] [CrossRef]
  27. Yamashita, K.; Oikawa, N.; Umegaki, T. Acceleration and deceleration of bone-like crystal growth on hydroxyapatite by electric poling. Chem. Mater. 1996, 8, 2697–2700. [Google Scholar] [CrossRef]
  28. Zheng, J.; Nozaki, K.; Hashimoto, K.; Yamashita, K.; Wakabayashi, N. Exploring the biological impact of β-TCP surface polarization on osteoblast and osteoclast activity. Int. J. Mol. Sci. 2025, 26, 141. [Google Scholar] [CrossRef]
  29. Qian, E.; Eltawila, A.; Kang, Y. Doping of hollow urchin-like MnO2 nanoparticles in β-tricalcium phosphate scaffold promotes stem cell osteogenic differentiation. Int. J. Mol. Sci. 2025, 26, 5092. [Google Scholar] [CrossRef]
  30. Bohner, M.; Gbureck, U.; Barralet, J.E. Technological issues for the development of more efficient calcium phosphate bone cements: A critical assessment. Biomaterials 2005, 26, 6423–6429. [Google Scholar] [CrossRef]
  31. Pańtak, P.; Czechowska, J.P.; Vivcharenko, V.; Dorner-Reisel, A.; Zima, A. Synergistic effect of polysaccharides and silane coupling agents on calcium phosphate-based bone substitutes. Int. J. Mol. Sci. 2025, 26, 8910. [Google Scholar] [CrossRef] [PubMed]
  32. Nakamura, M.; Oyane, A.; Inose, T.; Kanemoto, Y.; Miyaji, H. One-step fabrication of water-dispersible calcium phosphate nanoparticles with immobilized lactoferrin for intraoral disinfection. Int. J. Mol. Sci. 2025, 26, 852. [Google Scholar] [CrossRef] [PubMed]
  33. Wu, Y.; Takai, S.; Yabutsuka, T. Development of rapid bioactivity-expressed Zr-50Ti alloys by surface treatment with modified simulated body fluid. Int. J. Mol. Sci. 2024, 25, 6587. [Google Scholar] [CrossRef]
  34. Kizuki, T.; Takadama, H.; Matsushita, T.; Nakamura, T.; Kokubo, T. Preparation of bioactive Ti metal surface enriched with calcium ions by chemical treatment. Acta Biomater. 2010, 6, 2836–2842. [Google Scholar] [CrossRef]
  35. Dorozhkin, S.V. Biocomposites and hybrid biomaterials based on calcium orthophosphates. Biomaterials 2011, 32, 315–338. [Google Scholar]
  36. Bandyopadhyay, A.; Mitra, I.; Bose, S. Calcium phosphate-based resorbable ceramics: Influence of microstructure. Adv. Drug Deliv. Rev. 2015, 94, 96–114. [Google Scholar]
  37. Vallet-Regí, M.; González-Calbet, J.M. Calcium phosphates as substitution biomaterials for bone tissue regeneration. Prog. Solid. State Chem. 2004, 32, 1–31. [Google Scholar] [CrossRef]
  38. Langer, R.; Vacanti, J.P. Tissue engineering. Science 1993, 260, 920–926. [Google Scholar] [CrossRef]
  39. Kaplan, D.L. Biopolymer-based biomaterials. Annu. Rev. Mater. Res. 2009, 39, 293–321. [Google Scholar]
  40. Edanami, N.; Yoshiba, K.; Ibn Belal, R.S.; Yoshiba, N.; Takenaka, S.; Ohkura, N.; Takahara, S.; Ida, T.; Baldeon, R.; Kasimoto, S.; et al. Role of dystrophic calcification in reparative dentinogenesis after rat molar pulpotomy. Int. J. Mol. Sci. 2025, 26, 7130. [Google Scholar] [CrossRef] [PubMed]
  41. Porter, A.E.; Patel, N.; Skepper, J.N.; Best, S.M.; Bonfield, W. Effect of sintered CaP microstructure on human bone cell response. Biomaterials 2003, 24, 231–242. [Google Scholar]
  42. Vallet-Regí, M.; Salinas, A.J. Glasses with medical applications. Acc. Chem. Res. 2013, 46, 1094–1105. [Google Scholar] [CrossRef]
  43. Butler, K.T.; Davies, D.W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature 2018, 559, 547–555. [Google Scholar] [CrossRef]
  44. Ramprasad, R.; Batra, R.; Pilania, G.; Mannodi-Kanakkithodi, A.; Kim, C. Machine learning in materials informatics: Recent applications and prospects. npj Comput. Mater. 2017, 3, 54. [Google Scholar] [CrossRef]
  45. Häse, F.; Roch, L.M.; Aspuru-Guzik, A. Next-generation experimentation with self-driving laboratories. Trends Chem. 2019, 1, 282–291. [Google Scholar] [CrossRef]
  46. Yang, J.; Ankit, K.; Zhang, Y.; Bai, Y.; Ong, S.P. Machine-learning-enabled prediction of bioactive materials for bone regeneration. ACS Appl. Mater. Interfaces 2021, 13, 49395–49406. [Google Scholar]
  47. Vallet-Regí, M.; Lozano, D.; González, B.; Izquierdo-Barba, I. Nanostructured calcium phosphate ceramics for bone regeneration. Chem. Rev. 2022, 122, 14062–14112. [Google Scholar]
  48. Learmonth, I.D.; Young, C.; Rorabeck, C. The operation of the century: Total hip replacement. Lancet 2007, 370, 1508–1519. [Google Scholar] [CrossRef]
  49. Goodman, S.B.; Gallo, J. Periprosthetic osteolysis: Mechanisms, prevention and treatment. J. Clin. Med. 2019, 8, 2091. [Google Scholar] [CrossRef] [PubMed]
  50. Tande, A.J.; Patel, R. Prosthetic joint infection. Clin. Microbiol. Rev. 2014, 27, 302–345. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Hashimoto, K.; Aizawa, M. Special Issue “Bioceramics: Challenges and Medical Applications of Calcium-Phosphate-Based Biocompatible Ceramics”. Int. J. Mol. Sci. 2025, 26, 10612. https://doi.org/10.3390/ijms262110612

AMA Style

Hashimoto K, Aizawa M. Special Issue “Bioceramics: Challenges and Medical Applications of Calcium-Phosphate-Based Biocompatible Ceramics”. International Journal of Molecular Sciences. 2025; 26(21):10612. https://doi.org/10.3390/ijms262110612

Chicago/Turabian Style

Hashimoto, Kazuaki, and Mamoru Aizawa. 2025. "Special Issue “Bioceramics: Challenges and Medical Applications of Calcium-Phosphate-Based Biocompatible Ceramics”" International Journal of Molecular Sciences 26, no. 21: 10612. https://doi.org/10.3390/ijms262110612

APA Style

Hashimoto, K., & Aizawa, M. (2025). Special Issue “Bioceramics: Challenges and Medical Applications of Calcium-Phosphate-Based Biocompatible Ceramics”. International Journal of Molecular Sciences, 26(21), 10612. https://doi.org/10.3390/ijms262110612

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop