Integrated Molecular and Functional Analysis of Hop Ethanolic Extract in Caco-2 Cells: Insights into Inflammation, Barrier Function, and Transport
Abstract
1. Introduction
2. Results
2.1. Chromatographic Analysis of Raw HLE
| Peak ID. | Tr, min | m/z | MS2 | Reference Ion | UV Max | Identification | Reference |
|---|---|---|---|---|---|---|---|
| 1 | 8.0 | 353 | 191b | [M−H]− | 322 | 5-O-caffeoylquinic acid | [32] |
| 2 | 8.5 | 447 | - | [M−H]− | 284 | unknown | [32] |
| 3 | 11.7 | 337 | 163b | [M−H]− | 308 | p-coumaroylquinic acid | [32] |
| 4 | 12.4 | 577 | 289, 407, 425b | [M−H]− | 276 | procyanidin dimer type B isomer 1 | [32,33] |
| 5 | 13.3 | 313 | - | [M−H]− | <220 | unknown | - |
| 6 | 13.7 | 289 | 245b | [M−H]− | 276 | catechin | compared with analytical standard |
| 7 | 13.8 | 353 | 191b | [M−H]− | 322 | 3-O-caffeoylquinic acid | compared with analytical standard |
| 8 | 14.8 | 367 | 193b | [M−H]− | 282 | feruloylquinic acid | [32] |
| 9 | 15.7 | 413 | - | [M−H]− | 317 | unknown | - |
| 10 | 15.9 | 353 | 179b | [M−H]− | 282 | 4-O-caffeoylquinic acid | [32] |
| 11 | 16.6 | 341 | - | [M−H]− | <220 | unknown | - |
| 12 | 17.6 | 577 | 245, 407, 425b | [M−H]− | 276 | procyanidin dimer type B isomer 2 | [32,33] |
| 13 | 18.8 | 313 | - | [M−H]− | 279 | unknown | - |
| 14 | 19.2 | 577 | 245, 407, 425b | [M−H]− | 278 | procyanidin dimer type B isomer 3 | [32,33] |
| 15 | 19.6 | 565 | 195, 357, 429, 519b | [M+FA-H]− | 282 | unknown | - |
| 16a | 20.8 | 289 | 245b | [M−H]− | 308 | epicatechin | compared with analytical standard |
| 16b | 20.8 | 579 | 231, 289, 533b | [M+FA-H]− | 308 | catechin or epicatechin derivative | [33] |
| 17 | 22.6 | 427 | 267b, 297 | [M−H]− | <220 | unknown | - |
| 18 | 24.6 | 427 | 297b | [M−H]− | 268 | unknown | - |
| 19 | 27.1 | 409 | 264, 347, 373b | [M−H]− | 217 | unknown | - |
| 20 | 29.8 | 357 | 195b | [M−H]− | 282 | phenolic hexoside | [33] |
| 21 | 31.0 | 427 | - | [M−H]− | <220 | unknown | - |
| 22 | 31.5 | 609 | 255, 300b, 445 | [M−H]− | <220 | unknown | - |
| 23 | 33.9 | 283 | - | [M−H]− | <220 | unknown | - |
| 24 | 34.6 | 463 | 151, 301b | [M−H]− | 350 | quercetin-O-hexoside isomer 1 | [32] |
| 25 | 34.9 | 609 | 301b | [M−H]− | 351 | quercetin-O-hexose-deoxyhexose | [32] |
| 26 | 35.7 | 463 | 301b | [M−H]− | 353 | quercetin-O-hexoside isomer 2 | [32] |
| 27 | 36.8 | 533 | 209, 293b, 323, 413 | [M−H]− | 218 | acylphloroglucinol dihexoside | [34,35] |
| 28 | 40.0 | 593 | 285b | [M−H]− | 343 | kaempferol-O-diglycoside | [32] |
| 29 | 40.3 | 393 | 311b | [M−H]− | <220 | hydroxy-n-humulinone/hydroxy-adhumolinone isomer 1 | [36] |
| 30a | 40.9 | 393 | - | [M−H]− | 342 | hydroxy-n-humulinone/hydroxy-adhumolinone isomer 2 | [36] |
| 30b | 40.9 | 447 | 285b, 327 | [M−H]− | 265, 342 | kaempferol-3-O-hexoside | [32] |
| 31 | 45.2 | 379 | 335b | [M−H]− | 327 | hydroxy-cohumulinone isomer 1 | [36] |
| 32a | 46.2 | 363 | 194b | [M−H]− | 262 | cohumulinone isomer 1 | [37] |
| 32b | 46.2 | 393 | 355b | [M−H]− | 262 | hydroxy-n-humulinone/hydroxy-adhumolinone isomer 3 | [36] |
| 33 | 47.7 | 379 | 335b | [M−H]− | <220 | hydroxy-cohumulinone isomer 2 | [36]| |
| 34 | 49.9 | 409 | 205b | [M−H]− | <220 | reduced iso-α-acid derivative | [38] |
| 35a | 51.2 | 363 | - | [M−H]− | <220 | cohumulinone isomer 2 | [37] |
| 35b | 51.2 | 393 | 263b, 348 | [M−H]− | <220 | hydroxy-n-humulinone/hydroxy-adhumolinone isomer 4 | [36] |
| 36 | 51.8 | 393 | - | [M−H]− | <220 | hydroxy-n-humulinone/hydroxy-adhumolinone isomer 5 | [36] |
| 37 | 52.4 | 393 | 246b, 307, 348 | [M−H]− | <220 | hydroxy-n-humulinone/hydroxy-adhumolinone isomer 6 | [36] |
| 38 | 53.8 | 393 | 305, 349b | [M−H]− | 328 | hydroxy-n-humulinone/hydroxy-adhumolinone isomer 7 | [36] |
| 39a | 54.6 | 377 | - | [M−H]− | <220 | n-humulinone/adhumolinone isomer 1 | [47] |
| 39b | 54.6 | 393 | 247b | [M−H]− | <220 | hydroxy-n-humulinone/hydroxy-adhumolinone isomer 8 | [36] |
| 40 | 55.6 | 393 | 339, 247b, 249 | [M−H]− | <220 | hydroxy-n-humulinone/hydroxy-adhumolinone isomer 9 | [36] |
| 41a | 60.3 | 377 | 291b | [M−H]− | <220 | n-humulinone/adhumolinone isomer 2 | [47] |
| 41b | 60.3 | 393 | 307b | [M−H]− | <220 | hydroxy-n-humulinone/hydroxy-adhumolinone isomer 10 | [36] |
| 42 | 65.1 | 351 | 151b | [M−H]− | <220 | reduced iso-α-acid derivative | [38] |
| 43 | 67.1 | 251 | - | [M−H]− | <220 | unknown | - |
| 44 | 69.7 | 393 | - | [M−H]− | <220 | hydroxy-n-humulinone/hydroxy-adhumolinone isomer 11 | [36] |
| 45 | 71.9 | 377 | - | [M−H]− | <220 | n-humulinone/adhumolinone isomer 3 | [37,47] |
| 46 | 72.7 | 263 | - | [M−H]− | 288 | hulupinic acid | [48] |
| 47 | 73.8 | 353 | - | [M−H]− | 278 | isoxanthohumol | compared with analytical standard |
| 48a | 74.5 | 377 | - | [M−H]− | <220 | n-humulinone/adhumolinone isomer 4 | [37,47] |
| 48b | 74.5 | 407 | 319b, 363 | [M−H]− | <220 | hydroxyhumulinone | [49] |
| 49 | 75.5 | 411 | 297, 320, 393b | [M−H]− | <220 | tetrahydro-iso-α-acid | [38] |
| 50 | 76.2 | 411 | 203, 268, 393b | [M−H]− | <220 | tetrahydro-iso-α-acid | [38] |
| 51a | 76.7 | 363 | 197b | [M−H]− | <220 | cohumulinone isomer 3 | [37] |
| 51b | 76.7 | 349 | 247b, 305 | [M−H]− | <220 | unknown | - |
| 52 | 78.2 | 377 | 263b | [M−H]− | <220 | n-humulinone/adhumolinone isomer 5 | [37,47] |
| 53 | 80.0 | 411 | 203, 297, 393b | [M−H]− | <220 | tetrahydro-iso-α-acid | [38] |
| 54a | 81.0 | 377 | - | [M−H]− | <220 | n-humulinone/adhumolinone isomer 6 | [37,47] |
| 54b | 81.0 | 369 | - | [M−H]− | <220 | unknown | - |
| 55 | 82.1 | 377 | - | [M−H]− | <220 | n-humulinone/adhumolinone isomer 7 | [37,47] |
| 56 | 84.4 | 339 | - | [M−H]− | <220 | 6-prenylnaringenin | compared with analytical standard |
| 57 | 84.9 | 365 | 190b | [M−H]− | <220 | dihydro-iso-α-acid | [38] |
| 58 | 85.4 | 339 | - | [M−H]− | <220 | 8-prenylnaringenin | [43] |
| 59 | 88.5 | 317 | - | [M−H]− | <220 | cohulupone | [40] |
| 60 | 88.7 | 353 | - | [M−H]− | 334 | xanthohumol | [44] |
| 61a | 93.0 | 331 | - | [M−H]− | <220 | hulupone/adhulupone isomer 1 | [37] |
| 61b | 93.0 | 361 | - | [M−H]− | <220 | n-humulone/adhumulone isomer 1 | [37] |
| 62 | 95.0 | 331 | - | [M−H]− | <220 | hulupone/adhulupone isomer 2 | [37] |
| 63 | 96.6 | 347 | 278b | [M−H]− | <220 | cohumulone | [41,42] |
| 64 | 98.7 | 375 | 154, 247b, 279, 357 | [M−H]− | <220 | prehumulone isomer 1 | [37] |
| 65 | 99.5 | 361 | 209, 292b | [M−H]− | <220 | n-humulone/adhumulone isomer 2 | [37] |
| 66a | 100.1 | 361 | 292b | [M−H]− | <220 | n-humulone/adhumulone isomer 3 | [37] |
| 66b | 100.1 | 429 | 301b, 385 | [M−H]− | <220 | unknown | - |
| 67 | 103.8 | 375 | - | [M−H]− | <220 | prehumulone isomer 2 | [37] |
| 68 | 105.8 | 415 | - | [M−H]− | <220 | unknown | |
| 69 | 107.0 | 399 | 353b | [M−H]− | <220 | colupulone | [37] |
| 70 | 108.3 | 499 | 249, 403b, 481 | [M−H]− | <220 | unknown | [45,46] |
| 71 | 109.0 | 513 | 205, 330, 399, 417b, 495 | [M−H]− | <220 | bitter acid derivative | [45,46] |
| 72 | 109.5 | 413 | 233b | [M−H]− | <220 | lupulone/adlupulone | [37] |
| 73 | 111.0 | 513 | 208, 263, 369, 387, 399, 417b, 495 | [M−H]− | <220 | bitter acid derivative | [45,46] |
| 74 | 111.6 | 513 | 189, 387, 399, 417b | [M−H]− | <220 | bitter acid derivative | [45,46] |
2.2. Influence of HLE on Caco-2 Viability
2.3. Selection of In Vitro Inflammation-Induced Caco-2 Model
2.4. Anti-Inflammatory Activity of HLE in an Inflammation-Induced Caco-2 Model
2.5. Influence of HLE on Caco-2 Monolayers Stability
2.6. Transport and Metabolism of HLE Constituents Through Caco-2 Monolayers
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of the Plant Extract
4.3. Chromatographic Analysis of Raw Extract
4.4. Caco-2 Cell Culture
4.5. Viability Assay of Caco-2 Cells
4.6. Caco-2 Inflammatory Model
4.7. Inflammatory Activity of HLE
4.8. TEER Measurement of Caco-2 Monolayer
4.9. Analysis of Caco-2 Transport and Metabolism of HL Constituents
4.10. Chromatographic Analysis of Caco-2 Transport and Metabolism of HLE Constituents
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AKT | Protein kinase B |
| AMPK | AMP-activated protein kinase |
| ANOVA | Analysis of Variance |
| COX-2 | Cyclooxygenase-2 |
| DAD | Diode array detector |
| Dex- | Dexamethasone |
| ERK | Extracellular signal-regulated kinase |
| ESI | Electrospray Ionization |
| FA | Formic acid |
| FBS | Fetal Bovine Serum |
| HL | Humulus lupulus |
| HLE | Humulus lupulus extract |
| iNOS | Inducible Nitric Oxide Synthase |
| IBD | Inflammatory Bowel Disease |
| IFN-γ | Interferon-gamma |
| IL-1β | Interleukin-1 beta |
| IL-6 | Interleukin-6 |
| IL-8 | Interleukin-8 |
| IEC(s) | Intestinal Epithelial Cell(s) |
| LPS | Lipopolysaccharide |
| (HP)LC-MS | (High-Performance) Liquid Chromatography |
| MAPK | Mitogen-activated protein kinases |
| MLCK | Myosin light chain kinase |
| MTT | Thiazolyl Blue Tetrazolium Bromide |
| NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
| NO | Nitric Oxide |
| Nrf2 | Nuclear factor erythroid 2-related factor 2 |
| NTC | Non-treated control |
| n/a | not applicable |
| PFs | Prenylated Flavonoid(s) |
| PGE2 | Prostaglandin E2 |
| PBS | Phosphate-Buffered Saline |
| TC | Treated control |
| TEER | Transepithelial Electrical Resistance |
| TNF-α | Tumor Necrosis Factor-alpha |
| Trt | Triton X-100 |
| (U)HPLC-DAD-MS/MS | (Ultra-)High-Performance Liquid Chromatography-Diode Array Detector-Tandem Mass Spectrometry |
| XTM | Xanthohumol |
| UV | Ultraviolet |
References
- Korpelainen, H.; Pietiläinen, M. Hop (Humulus lupulus L.): Traditional and Present Use, and Future Potential. Econ. Bot. 2021, 75, 302–322. [Google Scholar] [CrossRef]
- Zanoli, P.; Zavatti, M. Pharmacognostic and Pharmacological Profile of Humulus lupulus L. J. Ethnopharmacol. 2008, 116, 383–396. [Google Scholar] [CrossRef]
- Bowe, J.; Li, X.F.; Kinsey-Jones, J.; Heyerick, A.; Brain, S.; Milligan, S.; O’Byrne, K. The Hop Phytoestrogen, 8-Prenylnaringenin, Reverses the Ovariectomy-Induced Rise in Skin Temperature in an Animal Model of Menopausal Hot Flushes. J. Endocrinol. 2006, 191, 399–405. [Google Scholar] [CrossRef]
- Weber, N.; Biehler, K.; Schwabe, K.; Haarhaus, B.; Quirin, K.W.; Frank, U.; Schempp, C.M.; Wölfle, U. Hop Extract Acts as an Antioxidant with Antimicrobial Effects against Propionibacterium Acnes and Staphylococcus Aureus. Molecules 2019, 24, 223. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, M.; Fukizawa, S.; Nonaka, Y. Hop-Derived Prenylflavonoid Isoxanthohumol Suppresses Insulin Resistance by Changing the Intestinal Microbiota and Suppressing Chronic Inflammation in High Fat Diet-Fed Mice. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 1537–1547. [Google Scholar] [CrossRef]
- Buckwold, V.E.; Wilson, R.J.H.; Nalca, A.; Beer, B.B.; Voss, T.G.; Turpin, J.A.; Buckheit, R.W.; Wei, J.; Wenzel-Mathers, M.; Walton, E.M.; et al. Antiviral Activity of Hop Constituents against a Series of DNA and RNA Viruses. Antivir. Res. 2004, 61, 57–62. [Google Scholar] [CrossRef]
- Tsionkis, G.; Andronidou, E.M.; Kontou, P.I.; Tamposis, I.A.; Tegopoulos, K.; Pergantas, P.; Grigoriou, M.E.; Skavdis, G.; Bagos, P.G.; Braliou, G.G. Humulus lupulus (Hop)-Derived Chemical Compounds Present Antiproliferative Activity on Various Cancer Cell Types: A Meta-Regression Based Panoramic Meta-Analysis. Pharmaceuticals 2025, 18, 1139. [Google Scholar] [CrossRef] [PubMed]
- Kiofentzoglou, D.; Andronidou, E.M.; Kontou, P.I.; Bagos, P.G.; Braliou, G.G. Antimicrobial Activity of Chemical Hop (Humulus lupulus) Compounds: A Systematic Review and Meta-Analysis. Appl. Sci. 2025, 15, 7806. [Google Scholar] [CrossRef]
- Carbone, K.; Gervasi, F. An Updated Review of the Genus Humulus: A Valuable Source of Bioactive Compounds for Health and Disease Prevention. Plants 2022, 11, 3434. [Google Scholar] [CrossRef] [PubMed]
- Dorn, C.; Massinger, S.; Wuzik, A.; Heilmann, J.; Hellerbrand, C. Xanthohumol Suppresses Inflammatory Response to Warm Ischemia-Reperfusion Induced Liver Injury. Exp. Mol. Pathol. 2013, 94, 10–16. [Google Scholar] [CrossRef]
- Legette, L.L.; Moreno Luna, A.Y.; Reed, R.L.; Miranda, C.L.; Bobe, G.; Proteau, R.R.; Stevens, J.F. Xanthohumol Lowers Body Weight and Fasting Plasma Glucose in Obese Male Zucker Fa/Fa Rats. Phytochemistry 2013, 91, 236–241. [Google Scholar] [CrossRef]
- Restivo, I.; Basilicata, M.G.; Giardina, I.C.; Massaro, A.; Pepe, G.; Salviati, E.; Pecoraro, C.; Carbone, D.; Cascioferro, S.; Parrino, B.; et al. A Combination of Polymethoxyflavones from Citrus Sinensis and Prenylflavonoids from Humulus lupulus Counteracts IL-1β-Induced Differentiated Caco-2 Cells Dysfunction via a Modulation of NF-ΚB/Nrf2 Activation. Antioxidants 2023, 12, 1621. [Google Scholar] [CrossRef]
- Sychrová, A.; Škovranová, G.; Čulenová, M.; Bittner Fialová, S. Prenylated Flavonoids in Topical Infections and Wound Healing. Molecules 2022, 27, 4491. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.M.; Yun, S.M.; Choi, Y.H.; Heo, J.; Kim, N.J.; Kim, S.H.; Kim, E.H. Xanthohumol Prevents Dextran Sulfate Sodium-Induced Colitis via Inhibition of IKKβ/NF-ΚB Signaling in Mice. Oncotarget 2018, 9, 866–880. [Google Scholar] [CrossRef]
- Vazquez-Cervantes, G.I.; Ortega, D.R.; Ayala, T.B.; de la Cruz, V.P.; Esquivel, D.F.G.; Salazar, A.; Pineda, B. Redox and Anti-Inflammatory Properties from Hop Components in Beer-Related to Neuroprotection. Nutrients 2021, 13, 2000. [Google Scholar] [CrossRef]
- Luescher, S.; Urmann, C.; Butterweck, V. Effect of Hops Derived Prenylated Phenols on TNF-α Induced Barrier Dysfunction in Intestinal Epithelial Cells. J. Nat. Prod. 2017, 80, 925–931. [Google Scholar] [CrossRef] [PubMed]
- Bolton, J.L.; Dunlap, T.L.; Hajirahimkhan, A.; Mbachu, O.; Chen, S.N.; Chadwick, L.; Nikolic, D.; Van Breemen, R.B.; Pauli, G.F.; Dietz, B.M. The Multiple Biological Targets of Hops and Bioactive Compounds. Chem. Res. Toxicol. 2019, 32, 222–233, Correction in Chem. Res. Toxicol. 2019, 32, 1732. [Google Scholar] [CrossRef]
- Jung, F.; Staltner, R.; Tahir, A.; Baumann, A.; Burger, K.; Halilbasic, E.; Hellerbrand, C.; Bergheim, I. Oral Intake of Xanthohumol Attenuates Lipoteichoic Acid-Induced Inflammatory Response in Human PBMCs. Eur. J. Nutr. 2022, 61, 4155–4166. [Google Scholar] [CrossRef] [PubMed]
- Farazmand, A. Institutional Login FAQ. Public Adm. Rev. 2009, 69, 1007–1020. [Google Scholar] [CrossRef]
- Van De Walle, J.; Hendrickx, A.; Romier, B.; Larondelle, Y.; Schneider, Y.J. Inflammatory Parameters in Caco-2 Cells: Effect of Stimuli Nature, Concentration, Combination and Cell Differentiation. Toxicol. Vitr. 2010, 24, 1441–1449. [Google Scholar] [CrossRef]
- Langley, B.O.; Ryan, J.J.; Hanes, D.; Phipps, J.; Stack, E.; Metz, T.O.; Stevens, J.F.; Bradley, R. Xanthohumol Microbiome and Signature in Healthy Adults (the XMaS Trial): Safety and Tolerability Results of a Phase I Triple-Masked, Placebo-Controlled Clinical Trial. Mol. Nutr. Food Res. 2021, 65, 2001170. [Google Scholar] [CrossRef]
- Langley, B.O.; Ryan, J.J.; Phipps, J.; Buttolph, L.; Bray, B.; Aslan, J.E.; Metz, T.O.; Stevens, J.F.; Bradley, R. Xanthohumol Microbiome and Signature in Adults with Crohn’s Disease (the XMaS Trial): A Protocol for a Phase II Triple-Masked, Placebo-Controlled Clinical Trial. Trials 2022, 23, 885. [Google Scholar] [CrossRef]
- Lupinacci, E.; Meijerink, J.; Vincken, J.P.; Gabriele, B.; Gruppen, H.; Witkamp, R.F. Xanthohumol from Hop (Humulus lupulus L.) Is an Efficient Inhibitor of Monocyte Chemoattractant Protein-1 and Tumor Necrosis Factor-α Release in LPS-Stimulated RAW 264.7 Mouse Macrophages and U937 Human Monocytes. J. Agric. Food Chem. 2009, 57, 7274–7281. [Google Scholar] [CrossRef]
- Sangiovanni, E.; Fumagalli, M.; Santagostini, L.; Forino, M.; Piazza, S.; Colombo, E.; Taglialatela-Scafati, O.; Fico, G.; Dell’Agli, M. A Bio-Guided Assessment of the Anti-Inflammatory Activity of Hop Extracts (Humulus lupulus L. Cv. Cascade) in Human Gastric Epithelial Cells. J. Funct. Foods 2019, 57, 95–102. [Google Scholar] [CrossRef]
- Schink, A.; Neumann, J.; Leifke, A.L.; Ziegler, K.; Fröhlich-Nowoisky, J.; Cremer, C.; Thines, E.; Weber, B.; Pöschl, U.; Schuppan, D.; et al. Screening of Herbal Extracts for TLR2-and TLR4-Dependent Anti-Inflammatory Effects. PLoS ONE 2018, 13, e0203907. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.N.; Sun, L.C.; Chu, Y.L.; Yu, R.C.; Hsieh, C.W.; Hsu, H.Y.; Hsu, F.C.; Cheng, K.C. Bioactive Compounds with Anti-Oxidative and Anti-Inflammatory Activities of Hop Extracts. Food Chem. 2020, 330, 127244. [Google Scholar] [CrossRef] [PubMed]
- Fuchimoto, J.; Kojima, T.; Kobayashi, N.; Ohkuni, T.; Ogasawara, N.; Masaki, T.; Obata, K.; Nomura, K.; Kondoh, A.; Shigyo, T.; et al. Hop Water Extract Inhibits Double-Stranded RNA-Induced Thymic Stromal Lymphopoietin Release from Human Nasal Epithelial Cells. Am. J. Rhinol. Allergy 2012, 26, 433–438. [Google Scholar] [CrossRef]
- Hougee, S.; Faber, J.; Sanders, A.; Van Den Berg, W.B.; Garssen, J.; Smit, H.F.; Hoijer, M.A. Selective Inhibition of COX-2 by a Standardized CO2 Extract of Humulus lupulus In Vitro and Its Activity in a Mouse Model of Zymosan-Induced Arthritis. Planta Med. 2006, 72, 228–233. [Google Scholar] [CrossRef]
- Hurth, Z.; Faber, M.L.; Gendrisch, F.; Holzer, M.; Haarhaus, B.; Cawelius, A.; Schwabe, K.; Schempp, C.M.; Wölfle, U. The Anti-Inflammatory Effect of Humulus lupulus Extract In Vivo Depends on the Galenic System of the Topical Formulation. Pharmaceuticals 2022, 15, 350. [Google Scholar] [CrossRef]
- Hamm, A.K.; Manter, D.K.; Kirkwood, J.S.; Wolfe, L.M.; Cox-York, K.; Weir, T.L. The Effect of Hops (Humulus lupulus L.) Extract Supplementation on Weight Gain, Adiposity and Intestinal Function in Ovariectomized Mice. Nutrients 2019, 11, 3004. [Google Scholar] [CrossRef]
- Caban, M.; Owczarek, K.; Rosicka-Kaczmarek, J.; Miśkiewicz, K.; Oracz, J.; Pawłowski, W.; Niewinna, K.; Lewandowska, U. Spent Hop (Humulus lupulus L.) Extract and Its Flaxseed Polysaccharide-Based Encapsulates Attenuate Inflammatory Bowel Diseases Through the Nuclear Factor-Kappa B, Extracellular Signal-Regulated Kinase, and Protein Kinase B Signalling Pathways. Cells 2025, 14, 1099. [Google Scholar] [CrossRef]
- Tanaka, Y.; Yanagida, A.; Komeya, S.; Kawana, M.; Honma, D.; Tagashira, M.; Kanda, T.; Shibusawa, Y. Comprehensive Separation and Structural Analyses of Polyphenols and Related Compounds from Bracts of Hops (Humulus lupulus L.). J. Agric. Food Chem. 2014, 62, 2198–2206. [Google Scholar] [CrossRef]
- Kruk, A.; Popowski, D.; Roszko, M.; Granica, S.; Piwowarski, J.P. Heterogeneity of Transport and Metabolism of Tormentillae Rhizoma Constituents across Human Intestinal Epithelium Cellular Model. Food Res. Int. 2024, 188, 114326. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, S.C.; Gomes, B.A.; Campos, M.F.; da Fonseca, T.S.; Esteves, M.E.A.; Andriolo, B.V.; Cheohen, C.F.d.A.R.; Constant, L.E.C.; da Silva Costa, S.; Calil, P.T.; et al. Myrtucommulones and Related Acylphloroglucinols from Myrtaceae as a Promising Source of Multitarget SARS-CoV-2 Cycle Inhibitors. Pharmaceuticals 2024, 17, 436. [Google Scholar] [CrossRef]
- Tanaka, Y.; Honma, D.; Tamura, M.; Yanagida, A.; Zhao, P.; Shoji, T.; Tagashira, M.; Shibusawa, Y.; Kanda, T. New Chromanone and Acylphloroglucinol Glycosides from the Bracts of Hops. Phytochem. Lett. 2012, 5, 514–518. [Google Scholar] [CrossRef]
- Taniguchi, Y.; Taniguchi, H.; Yamada, M.; Matsukura, Y.; Koizumi, H.; Furihata, K.; Shindo, K. Analysis of the Components of Hard Resin in Hops (Humulus lupulus L.) and Structural Elucidation of Their Transformation Products Formed during the Brewing Process. J. Agric. Food Chem. 2014, 62, 11602–11612. [Google Scholar] [CrossRef]
- García-Villalba, R.; Cortacero-Ramírez, S.; Segura-Carretero, A.; Martín-Lagos Contreras, J.A.; Fernández-Gutiérrez, A. Analysis of Hop Acids and Their Oxidized Derivatives and Iso-α-Acids in Beer by Capillary Electrophoresis-Electrospray Ionization Mass Spectrometry. J. Agric. Food Chem. 2006, 54, 5400–5409. [Google Scholar] [CrossRef] [PubMed]
- Vanhoenacker, G.; De Keukeleire, D.; Sandra, P. Analysis of Iso-α-Acids and Reduced Iso-α-Acids in Beer by Direct Injection and Liquid Chromatography with Ultraviolet Absorbance Detection or with Mass Spectrometry. J. Chromatogr. A 2004, 1035, 53–61. [Google Scholar] [CrossRef]
- Cattoor, K.O.; Bracke, M.; Deforce, D.; De Keukeleire, D.; Heyerick, A. Transport of Hop Bitter Acids across Intestinal Caco-2 Cell Monolayers. J. Agric. Food Chem. 2010, 58, 4132–4140. [Google Scholar] [CrossRef]
- Duŝek, M.; Olŝovská, J.; Krofta, K.; Jurková, M.; Mikyŝka, A. Qualitative Determination of β-Acids and Their Transformation Products in Beer and Hop Using HR/AM-LC-MS/MS. J. Agric. Food Chem. 2014, 62, 7690–7697. [Google Scholar] [CrossRef]
- Killeen, D.P.; Andersen, D.H.; Beatson, R.A.; Gordon, K.C.; Perry, N.B. Vibrational Spectroscopy and Chemometrics for Rapid, Quantitative Analysis of Bitter Acids in Hops (Humulus lupulus). J. Agric. Food Chem. 2014, 62, 12521–12528. [Google Scholar] [CrossRef] [PubMed]
- Seliger, J.M.; Cicek, S.S.; Witt, L.T.; Martin, H.J.; Maser, E.; Hintzpeter, J. Selective Inhibition of Human AKR1B10 by N-Humulone, Adhumulone and Cohumulone Isolated from Humulus lupulus Extract. Molecules 2018, 23, 3041. [Google Scholar] [CrossRef]
- Nikolic, D.; Li, Y.; Chadwick, L.R.; Van Breemen, R.B. In Vitro Studies of Intestinal Permeability and Hepatic and Intestinal Metabolism of 8-Prenylnaringenin, a Potent Phytoestrogen from Hops (Humulus lupulus L.). Pharm. Res. 2006, 23, 864–872. [Google Scholar] [CrossRef]
- Ji, W.; Zhao, L.; Yun, C.; Liu, J.; Ma, J.; Zhu, L.; Duan, J.; Zhang, S. Efficient Glycosylation and in Vitro Neuroprotective Evaluation of Abundant Prenylflavonoid in Hops. Process Biochem. 2024, 144, 179–186. [Google Scholar] [CrossRef]
- Česlová, L.; Holčapek, M.; Fidler, M.; Drštičková, J.; Lísa, M. Characterization of Prenylflavonoids and Hop Bitter Acids in Various Classes of Czech Beers and Hop Extracts Using High-Performance Liquid Chromatography-Mass Spectrometry. J. Chromatogr. A 2009, 1216, 7249–7257. [Google Scholar] [CrossRef]
- Haseleu, G.; Intelmann, D.; Hofmann, T. Identification and RP-HPLC-ESI-MS/MS Quantitation of Bitter-Tasting β-Acid Transformation Products in Beer. J. Agric. Food Chem. 2009, 57, 7480–7489. [Google Scholar] [CrossRef] [PubMed]
- Cattoor, K.; Dresel, M.; De Bock, L.; Boussery, K.; Van Bocxlaer, J.; Remon, J.P.; De Keukeleire, D.; Deforce, D.; Hofmann, T.; Heyerick, A. Metabolism of Hop-Derived Bitter Acids. J. Agric. Food Chem. 2013, 61, 7916–7924. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, N.; Li, X.; Chen, G.; Wang, C.; Lin, B.; Hou, Y. Characteristic α-Acid Derivatives from Humulus lupulus with Antineuroinflammatory Activities. J. Nat. Prod. 2017, 80, 3081–3092. [Google Scholar] [CrossRef]
- Taniguchi, Y.; Matsukura, Y.; Ozaki, H.; Nishimura, K.; Shindo, K. Identification and Quantification of the Oxidation Products Derived from α-Acids and β-Acids during Storage of Hops (Humulus lupulus L.). J. Agric. Food Chem. 2013, 61, 3121–3130. [Google Scholar] [CrossRef]
- Kruk, A.; Piwowarski, J.P.; Pawłowska, K.A.; Popowski, D.; Granica, S. High Molecular Pyrogens Present in Plant Extracts Interfere with Examinations of Their Immunomodulatory Properties In Vitro. Sci. Rep. 2021, 11, 799. [Google Scholar] [CrossRef]
- Zhang, B.; Chu, W.; Wei, P.; Liu, Y.; Wei, T. Xanthohumol Induces Generation of Reactive Oxygen Species and Triggers Apoptosis Through Inhibition of Mitochondrial Electron Transfer Chain Complex I; Elsevier: Amsterdam, The Netherlands, 2015; Volume 89, ISBN 8610648885. [Google Scholar]
- Lecomte, M.; Tomassi, D.; Rizzoli, R.; Tenon, M.; Berton, T.; Harney, S.; Fança-Berthon, P. Effect of a Hop Extract Standardized in 8-Prenylnaringenin on Bone Health and Gut Microbiome in Postmenopausal Women with Osteopenia: A One-Year Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2023, 15, 2688. [Google Scholar] [CrossRef]
- Matsuhisa, K.; Watari, A.; Iwamoto, K.; Kondoh, M.; Yagi, K. Lignosulfonic Acid Attenuates NF-ΚB Activation and Intestinal Epithelial Barrier Dysfunction Induced by TNF-α/IFN-γ in Caco-2 Cells. J. Nat. Med. 2018, 72, 448–455. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Mattson, M.P. Hormesis Provides a Generalized Quantitative Estimate of Biological Plasticity. J. Cell Commun. Signal. 2011, 5, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Leri, M.; Scuto, M.; Ontario, M.L.; Calabrese, V.; Calabrese, E.J.; Bucciantini, M.; Stefani, M. Healthy Effects of Plant Polyphenols: Molecular Mechanisms. Int. J. Mol. Sci. 2020, 21, 1250. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.J. Hormesis Mediates Acquired Resilience: Using Plant-Derived Chemicals to Enhance Health. Annu. Rev. Food Sci. Technol. 2021, 12, 355–381. [Google Scholar] [CrossRef]
- Al-Sadi, R.; Ye, D.; Said, H.M.; Ma, T.Y. Cellular and Molecular Mechanism of Interleukin-1β Modulation of Caco-2 Intestinal Epithelial Tight Junction Barrier. J. Cell. Mol. Med. 2011, 15, 970–982. [Google Scholar] [CrossRef] [PubMed]
- Piekara, J.; Piasecka-Kwiatkowska, D. Antioxidant Potential of Xanthohumol in Disease Prevention: Evidence from Human and Animal Studies. Antioxidants 2024, 13, 1559. [Google Scholar] [CrossRef]
- Chen, L.; Wang, J.; You, Q.; He, S.; Meng, Q.; Gao, J.; Wu, X.; Shen, Y.; Sun, Y.; Wu, X.; et al. Activating AMPK to Restore Tight Junction Assembly in Intestinal Epithelium and to Attenuate Experimental Colitis by Metformin. Front. Pharmacol. 2018, 9, 761. [Google Scholar] [CrossRef]
- Lněničková, K.; Šadibolová, M.; Matoušková, P.; Szotáková, B.; Skálová, L.; Boušová, I. The Modulation of Phase Ii Drug-Metabolizing Enzymes in Proliferating and Differentiated Caco-2 Cells by Hop-Derived Prenylflavonoids. Nutrients 2020, 12, 2138. [Google Scholar] [CrossRef]
- Van Breemen, R.B.; Li, Y. Caco-2 cell permeability assays to measure drug absorption. Expert Opin. Drug Metab. Toxicol. 2005, 1, 175–185. [Google Scholar] [CrossRef]
- Siissalo, S.; Laine, L.; Tolonen, A.; Kaukonen, A.M.; Finel, M.; Hirvonen, J. Caco-2 Cell Monolayers as a Tool to Study Simultaneous Phase II Metabolism and Metabolite Efflux of Indomethacin, Paracetamol and 1-Naphthol. Int. J. Pharm. 2010, 383, 24–29. [Google Scholar] [CrossRef]
- Bernardi, S.; Del Bo, C.; Marino, M.; Gargari, G.; Cherubini, A.; Andrés-Lacueva, C.; Hidalgo-Liberona, N.; Peron, G.; González-Dominguez, R.; Kroon, P.; et al. Polyphenols and Intestinal Permeability: Rationale and Future Perspectives. J. Agric. Food Chem. 2020, 68, 1816–1829. [Google Scholar] [CrossRef]
- Ekbatan, S.S.; Iskandar, M.M.; Sleno, L.; Sabally, K.; Khairallah, J.; Prakash, S.; Kubow, S. Absorption and Metabolism of Phenolics from Digests of Polyphenol-Rich Potato Extracts Using the Caco-2/HepG2 Co-Culture System. Foods 2018, 7, 8. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, J.W.; Cong, R.; Park, J.S.; Nguyen, C.H.B.; Park, K.; Kang, K.; Shim, S.M. Exploring Absorption Indices for a Variety of Polyphenols through Caco-2 Cell Model: Insights from Permeability Studies and Principal Component Analysis. J. Sci. Food Agric. 2025, 105, 6243–6253. [Google Scholar] [CrossRef] [PubMed]
- Heinlein, A.; Metzger, M.; Walles, H.; Buettner, A. Transport of hop aroma compounds across Caco-2 monolayers. Food Funct. 2014, 5, 2719–2730. [Google Scholar] [CrossRef] [PubMed]
- Jung, F.; Staltner, R.; Baumann, A.; Burger, K.; Halilbasic, E.; Hellerbrand, C.; Bergheim, I. A Xanthohumol-Rich Hop Extract Diminishes Endotoxin-Induced Activation of TLR4 Signaling in Human Peripheral Blood Mononuclear Cells: A Study in Healthy Women. Int. J. Mol. Sci. 2022, 23, 12702. [Google Scholar] [CrossRef]
- Kruk, A.; Popowski, D.; Średnicka, P.; Roszko, M.; Granica, S.; Piwowarski, J.P. Selective Metabolism of Tormentil Rhizome Constituents by Human Gut Microbiota and Its Impact on Biodiversity Ex Vivo. Food Chem. 2025, 478, 143674. [Google Scholar] [CrossRef]






| Peak ID | tr, min | m/z | Calculated MW | Reference Ion | Identification | MS2 | Transport Efficiency (%) |
|---|---|---|---|---|---|---|---|
| M1 | 16.4 | 343.13944 | 298.14139 | [M+FA−H]− | metabolite 1 | 55.86654, 58.08405, 135.14658b, 166.25183 | n/a |
| M2 | 22.2 | 317.17609 | 318.18336 | [M−H]− | cohulupone | 152.04805, 180.04312, 205.05089, 248.10583b, 317.17654 | 7.2 |
| M3 | 22.6 | 449.14987 | 450.15715 | [M−H]− | metabolite 2 | 78.17171, 87.84658, 236.79556b, 385.18146 | n/a |
| M4 | 22.7 | 331.19182 | 332.19904 | [M−H]− | hulupone/adhulupone | 166.06361, 194.05853, 219.0666, 262.12131, 331.19196b | 3.7 |
| M5 | 22.8 | 349.20167 | 350.20907 | [M−H]− | unknown | 125.06069, 221.15474, 305.21255b, 306.21475, 349.20239 | 2.7 |
| M6 | 22.8 | 411.20223 | 412.20951 | [M−H]− | tetrahydro-iso-α-acid | 125.06058, 153.09175, 209.08215b, 263.12863, 297.1351 | 2 |
| M7 | 23.3 | 377.19668 | 378.20396 | [M−H]− | n-humulinone/adhumulinone isomer 1 | 221.08199, 249.07697, 291.12399, 308.12689 b, 377.19846 | 6.9 |
| M8 | 23.4 | 369.13407 | 370.14135 | [M−H]− | unknown | 119.05026b, 143.45879, 178.45453, 355.06036, 369.13239 | 7.2 |
| M9 | 23.8 | 431.18389 | 432.19117 | [M−H]− | metabolite 3 | 208.58945, 321.09552, 329.75766b, 345.68106 | n/a |
| M10 | 23.9 | 363.18098 | 364.18826 | [M−H]− | cohumulinone | 195.06659, 223.06175, 224.06908b, 294.11105, 363.18164 | 9 |
| M11 | 24.2 | 393.19174 | 394.199 | [M−H]− | hydroxy-n-humulinone/hydroxyadhumolinone | 98.9873, 195.06644b, 207.06679, 375.18094, 393.19287 | 17.4 |
| M12 | 24.4 | 377.19673 | 378.204 | [M−H]− | n-humulinone/adhumulinone isomer 2 | 237.07733, 238.08496, 249.07758, 291.12433, 308.12717b | 11.7 |
| M13 | 24.9 | 353.13912 | 354.1464 | [M−H]− | xanthohumol | 79.95727, 96.95999, 119.05023, 353.19995b, 354.20297 | 3.5 |
| M14 | 26.3 | 347.18604 | 348.19332 | [M−H]− | cohumulone | 93.05042, 207.06635, 235.0614, 278.11609b, 279.11969 | 9.5 |
| M15 | 26.8 | 361.20168 | 362.20896 | [M−H]− | n-humulone/adhumulone isomer 1 | 207.06651b, 221.08208, 249.07739, 292.13202, 293.13544 | 8 |
| M16 | 27.0 | 361.20170 | 362.20898 | [M−H]− | n-humulone/adhumulone isomer 2 | 207.06624, 221.08202, 249.07722, 292.13193b, 293.13556 | 9.6 |
| M17 | 27.5 | 375.21740 | 376.22468 | [M−H]− | prehumulone | 221.08205, 235.09769, 263.09299, 306.14771b, 307.15103 | 4.3 |
| M18 | 27.8 | 429.26446 | 430.27174 | [M−H]− | unknown | 259.09827, 301.14468, 317.13989, 360.19376, 429.26514b | 26.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verhelst, R.E.; Kruk, A. Integrated Molecular and Functional Analysis of Hop Ethanolic Extract in Caco-2 Cells: Insights into Inflammation, Barrier Function, and Transport. Int. J. Mol. Sci. 2025, 26, 10608. https://doi.org/10.3390/ijms262110608
Verhelst RE, Kruk A. Integrated Molecular and Functional Analysis of Hop Ethanolic Extract in Caco-2 Cells: Insights into Inflammation, Barrier Function, and Transport. International Journal of Molecular Sciences. 2025; 26(21):10608. https://doi.org/10.3390/ijms262110608
Chicago/Turabian StyleVerhelst, Ruben Emmanuel, and Aleksandra Kruk. 2025. "Integrated Molecular and Functional Analysis of Hop Ethanolic Extract in Caco-2 Cells: Insights into Inflammation, Barrier Function, and Transport" International Journal of Molecular Sciences 26, no. 21: 10608. https://doi.org/10.3390/ijms262110608
APA StyleVerhelst, R. E., & Kruk, A. (2025). Integrated Molecular and Functional Analysis of Hop Ethanolic Extract in Caco-2 Cells: Insights into Inflammation, Barrier Function, and Transport. International Journal of Molecular Sciences, 26(21), 10608. https://doi.org/10.3390/ijms262110608

