A Brief Review on the Role of the Transcription Factor PBX1 in Hematologic Malignancies
Abstract
1. Introduction
2. The Function of PBX1 in the Hematopoietic System
3. The Role of PBX1 in Hematologic Neoplasms
4. PBX1 in Leukemias
5. PBX1 in Myeloproliferative Neoplasms and Myelodysplastic Syndromes
6. PBX1 in Lymphomas
7. PBX1 in Multiple Myeloma
8. Clinical Implications and Therapeutic Challenges
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ALL | Acute lymphoblastic leukemia |
| B-ALL | B-Acute lymphoblastic leukemia |
| CML | Chronic myeloid leukemia |
| DLBCL | Diffuse large B-cell lymphoma |
| EBF | Early B-cell factor |
| FOG1 | Forkhead box G1 |
| FOXM1 | Forkhead box protein M1 |
| HL | Hodgkin lymphoma |
| HNRPDL | Heterogeneous nuclear ribonucleoprotein D-like |
| HOX | Homeobox |
| HSCs | Hematopoietic stem cells |
| lncRNA | Long noncoding RNAs |
| MDS | Myelodysplastic syndromes |
| MEIS1 | Myeloid ecotropic viral integration site 1 |
| MLL | Mixed lineage leukemia |
| MM | Multiple myeloma |
| MPN | Myeloproliferative neoplasm |
| NFI | Nuclear factor I |
| NFIL3 | Nuclear factor interleukin 3 regulated |
| NK | Natural Killer |
| PAX5 | Paired box 5 |
| PBX1 | Pre-B-cell leukemia factor 1 |
| PHF19 | PHD finger protein 19 |
| PKMT | Protein lysine methyltransferase |
| PREP1 | PBX-regulating protein 1 |
| PV | Polycythemia vera |
| RNF6 | Ring finger protein 6 |
| RORB | RAR-related orphan receptor beta |
| RT-qPCR | Real time quantitative polymerase chain reaction |
| TALE | Three amino acid loop extension |
| T-ALL | T-Acute lymphoblastic leukemia |
| TLX2 | T-cell leukemia homeobox 2 |
References
- Veiga, R.N.; de Oliveira, J.C.; Gradia, D.F. PBX1: A Key Character of the Hallmarks of Cancer. J. Mol. Med. 2021, 99, 1667–1680. [Google Scholar] [CrossRef]
- Kamps, M.P.; Murre, C.; Sun, X.H.; Baltimore, D. A New Homeobox Gene Contributes the DNA Binding Domain of the t(1;19) Translocation Protein in Pre-B ALL. Cell 1990, 60, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Nourse, J.; Mellentin, J.D.; Galili, N.; Wilkinson, J.; Stanbridge, E.; Smith, S.D.; Cleary, M.L. Chromosomal Translocation t(1;19) Results in Synthesis of a Homeobox Fusion mRNA That Codes for a Potential Chimeric Transcription Factor. Cell 1990, 60, 535–545. [Google Scholar] [CrossRef]
- Kamps, M.P.; Look, A.T.; Baltimore, D. The Human t(1;19) Translocation in Pre-B ALL Produces Multiple Nuclear E2A-Pbx1 Fusion Proteins with Differing Transforming Potentials. Genes Dev. 1991, 5, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Crisafulli, L.; Brindisi, M.; Liturri, M.G.; Sobacchi, C.; Ficara, F. PBX1: A TALE of Two Seasons-Key Roles during Development and in Cancer. Front. Cell Dev. Biol. 2024, 12, 1372873. [Google Scholar] [CrossRef]
- Kao, T.-W.; Chen, H.-H.; Lin, J.; Wang, T.-L.; Shen, Y.-A. PBX1 as a Novel Master Regulator in Cancer: Its Regulation, Molecular Biology, and Therapeutic Applications. Biochim. Biophys. Acta Rev. Cancer 2024, 1879, 189085. [Google Scholar] [CrossRef]
- Chan, K.K.-K.; Zhang, J.; Chia, N.-Y.; Chan, Y.-S.; Sim, H.S.; Tan, K.S.; Oh, S.K.-W.; Ng, H.-H.; Choo, A.B.-H. KLF4 and PBX1 Directly Regulate NANOG Expression in Human Embryonic Stem Cells. Stem Cells 2009, 27, 2114–2125. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Xing, Y.; Tan, J.; Chen, X.; Xue, Y.; Qu, L.; Ma, J.; Jin, X. Comprehensive Summary: The Role of PBX1 in Development and Cancers. Front. Cell Dev. Biol. 2024, 12, 1442052. [Google Scholar] [CrossRef]
- Ficara, F.; Murphy, M.J.; Lin, M.; Cleary, M.L. Pbx1 Regulates Self-Renewal of Long-Term Hematopoietic Stem Cells by Maintaining Their Quiescence. Cell Stem Cell. 2008, 2, 484–496. [Google Scholar] [CrossRef]
- Ficara, F.; Crisafulli, L.; Lin, C.; Iwasaki, M.; Smith, K.S.; Zammataro, L.; Cleary, M.L. Pbx1 Restrains Myeloid Maturation While Preserving Lymphoid Potential in Hematopoietic Progenitors. J. Cell Sci. 2013, 126, 3181–3191. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, Y.; Fu, B.; Zhang, J.; Dong, Z.; Zhang, X.; Shen, N.; Sun, R.; Tian, Z.; Wei, H. PBX1 Promotes Development of Natural Killer Cells by Binding Directly to the Nfil3 Promoter. FASEB J. 2020, 34, 6479–6492. [Google Scholar] [CrossRef]
- Cullmann, K.; Jahn, M.; Spindler, M.; Schenk, F.; Manukjan, G.; Mucci, A.; Steinemann, D.; Boller, K.; Schulze, H.; Bender, M.; et al. Forming Megakaryocytes from Murine Induced Pluripotent Stem Cells by the Inducible Overexpression of Supporting Factors. Res. Pract. Thromb. Haemost. 2020, 5, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Zewdu, R.; Risolino, M.; Barbulescu, A.; Ramalingam, P.; Butler, J.M.; Selleri, L. Spleen Hypoplasia Leads to Abnormal Stress Hematopoiesis in Mice with Loss of Pbx Homeoproteins in Splenic Mesenchyme. J. Anat. 2016, 229, 153–169. [Google Scholar] [CrossRef]
- Jurberg, A.D.; Vasconcelos-Fontes, L.; Cotta-de-Almeida, V. A Tale from TGF-β Superfamily for Thymus Ontogeny and Function. Front. Immunol. 2015, 6, 442. [Google Scholar] [CrossRef] [PubMed]
- McCarron, M.J.; Irla, M.; Sergé, A.; Soudja, S.M.; Marie, J.C. Transforming Growth Factor-Beta Signaling in Aβ Thymocytes Promotes Negative Selection. Nat. Commun. 2019, 10, 5690. [Google Scholar] [CrossRef] [PubMed]
- Mary, L.; Leclerc, D.; Labalme, A.; Bellaud, P.; Mazaud-Guittot, S.; Dréano, S.; Evrard, B.; Bigand, A.; Cauchoix, A.; Loget, P.; et al. Functional Assessment of a New PBX1 Variant in a 46,XY Fetus with Severe Syndromic Difference of Sexual Development through CRISPR-Cas9 Gene Editing. Genes 2023, 14, 273. [Google Scholar] [CrossRef]
- Pi, W.-C.; Wang, J.; Shimada, M.; Lin, J.-W.; Geng, H.; Lee, Y.-L.; Lu, R.; Li, D.; Wang, G.G.; Roeder, R.G.; et al. E2A-PBX1 Functions as a Coactivator for RUNX1 in Acute Lymphoblastic Leukemia. Blood 2020, 136, 11–23. [Google Scholar] [CrossRef]
- Yin, H.; Wang, J.; Tan, Y.; Jiang, M.; Zhang, H.; Meng, G. Transcription Factor Abnormalities in B-ALL Leukemogenesis and Treatment. Trends Cancer 2023, 9, 855–870. [Google Scholar] [CrossRef]
- Trasanidis, N.; Katsarou, A.; Bergonia, B.; Keren, K.; Kostopoulos, I.V.; Ponnusamy, K.; Paudel, R.; Xiao, X.; Auner, H.W.; Roberts, I.; et al. PBX1 Co-Operates with FOXM1 to Regulate Myeloma Cell Proliferation and to Define an Ultra High-Risk chr1q Gain Myeloma Patient Subgroup. Blood 2019, 134, 3760. [Google Scholar] [CrossRef]
- Trasanidis, N.; Katsarou, A.; Ponnusamy, K.; Shen, Y.-A.; Kostopoulos, I.V.; Bergonia, B.; Keren, K.; Reema, P.; Xiao, X.; Szydlo, R.M.; et al. Systems Medicine Dissection of Chr1q-Amp Reveals a Novel PBX1-FOXM1 Axis for Targeted Therapy in Multiple Myeloma. Blood 2022, 139, 1939–1953. [Google Scholar] [CrossRef]
- Nagel, S.; Meyer, C.; Pommerenke, C. Establishment of the Lymphoid ETS-Code Reveals Deregulated ETS Genes in Hodgkin Lymphoma. PLoS ONE 2023, 18, e0288031. [Google Scholar] [CrossRef]
- Nagel, S.; Pommerenke, C.; Meyer, C.; MacLeod, R.A.F.; Drexler, H.G. Establishment of the TALE-Code Reveals Aberrantly Activated Homeobox Gene PBX1 in Hodgkin Lymphoma. PLoS ONE 2021, 16, e0246603. [Google Scholar] [CrossRef] [PubMed]
- Muggeo, S.; Crisafulli, L.; Uva, P.; Fontana, E.; Ubezio, M.; Morenghi, E.; Colombo, F.S.; Rigoni, R.; Peano, C.; Vezzoni, P.; et al. PBX1-Directed Stem Cell Transcriptional Program Drives Tumor Progression in Myeloproliferative Neoplasm. Stem Cell Rep. 2021, 16, 2607–2616. [Google Scholar] [CrossRef] [PubMed]
- Panda, T.; Rainchwar, S.; Singh, R.; Singh, A.; Soni, M.; Kakkar, D.; Jegan, K.R.; Pillai, R.H.; Palatty, R.J.; Jha, K.; et al. Real World Outcome of B ALL with t (1; 19) (Q23; P13)/TCF3::PBX1 in Adolescents and Adults Treated with Intensive Regimes. Leuk. Res. 2024, 141, 107506. [Google Scholar] [CrossRef] [PubMed]
- Park, J.T.; Shih, I.-M.; Wang, T.-L. Identification of Pbx1, a Potential Oncogene, as a Notch3 Target Gene in Ovarian Cancer. Cancer Res. 2008, 68, 8852–8860. [Google Scholar] [CrossRef]
- Thiaville, M.M.; Stoeck, A.; Chen, L.; Wu, R.-C.; Magnani, L.; Oidtman, J.; Shih, I.-M.; Lupien, M.; Wang, T.-L. Identification of PBX1 Target Genes in Cancer Cells by Global Mapping of PBX1 Binding Sites. PLoS ONE 2012, 7, e36054. [Google Scholar] [CrossRef]
- Moskow, J.J.; Bullrich, F.; Huebner, K.; Daar, I.O.; Buchberg, A.M. Meis1, a PBX1-Related Homeobox Gene Involved in Myeloid Leukemia in BXH-2 Mice. Mol. Cell Biol. 1995, 15, 5434–5443. [Google Scholar] [CrossRef]
- Thorsteinsdottir, U.; Kroon, E.; Jerome, L.; Blasi, F.; Sauvageau, G. Defining Roles for HOX and MEIS1 Genes in Induction of Acute Myeloid Leukemia. Mol. Cell Biol. 2001, 21, 224–234. [Google Scholar] [CrossRef]
- Ji, D.; Zhang, P.; Ma, W.; Fei, Y.; Xue, W.; Wang, Y.; Zhang, X.; Zhou, H.; Zhao, Y. Oncogenic Heterogeneous Nuclear Ribonucleoprotein D-like Modulates the Growth and Imatinib Response of Human Chronic Myeloid Leukemia CD34+ Cells via Pre-B-Cell Leukemia Homeobox 1. Oncogene 2020, 39, 443–453. [Google Scholar] [CrossRef]
- Chen, K.-S.; Lim, J.W.C.; Richards, L.J.; Bunt, J. The Convergent Roles of the Nuclear Factor I Transcription Factors in Development and Cancer. Cancer Lett. 2017, 410, 124–138. [Google Scholar] [CrossRef]
- Johnson, T.S.; Sudha, P.; Liu, E.; Becker, N.; Robertson, S.; Blaney, P.; Morgan, G.; Chopra, V.S.; Dos Santos, C.; Nixon, M.; et al. 1q Amplification and PHF19 Expressing High-Risk Cells Are Associated with Relapsed/Refractory Multiple Myeloma. Nat. Commun. 2024, 15, 4144. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.-M.; Lian, G.-Y.; Sheng, S.-M.; Xu, J.; Ye, L.-L.; Min, C.; Guo, S.-F. Exosomal lncRNA NEAT1 Inhibits NK-Cell Activity to Promote Multiple Myeloma Cell Immune Escape via an EZH2/PBX1 Axis. Mol. Cancer Res. 2024, 22, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Grüninger, P.K.; Uhl, F.; Herzog, H.; Gentile, G.; Andrade-Martinez, M.; Schmidt, T.; Han, K.; Morgens, D.W.; Bassik, M.C.; Cleary, M.L.; et al. Functional Characterization of the PI3K/AKT/MTOR Signaling Pathway for Targeted Therapy in B-Precursor Acute Lymphoblastic Leukemia. Cancer Gene Ther. 2022, 29, 1751–1760. [Google Scholar] [CrossRef]
- Smith, K.S.; Chanda, S.K.; Lingbeek, M.; Ross, D.T.; Botstein, D.; van Lohuizen, M.; Cleary, M.L. Bmi-1 Regulation of INK4A-ARF Is a Downstream Requirement for Transformation of Hematopoietic Progenitors by E2a-Pbx1. Mol. Cell 2003, 12, 393–400. [Google Scholar] [CrossRef]
- Lin, C.-H.; Wong, S.H.-K.; Kurzer, J.H.; Schneidawind, C.; Wei, M.C.; Duque-Afonso, J.; Jeong, J.; Feng, X.; Cleary, M.L. SETDB2 Links E2A-PBX1 to Cell-Cycle Dysregulation in Acute Leukemia through CDKN2C Repression. Cell Rep. 2018, 23, 1166–1177. [Google Scholar] [CrossRef]
- Lee, Y.-L.; Ito, K.; Pi, W.-C.; Lin, I.-H.; Chu, C.-S.; Malik, S.; Cheng, I.-H.; Chen, W.-Y.; Roeder, R.G. Mediator Subunit MED1 Is Required for E2A-PBX1-Mediated Oncogenic Transcription and Leukemic Cell Growth. Proc. Natl. Acad. Sci. USA 2021, 118, e1922864118. [Google Scholar] [CrossRef]
- Sykes, D.B.; Kamps, M.P. E2a/Pbx1 Induces the Rapid Proliferation of Stem Cell Factor-Dependent Murine pro-T Cells That Cause Acute T-Lymphoid or Myeloid Leukemias in Mice. Mol. Cell Biol. 2004, 24, 1256–1269. [Google Scholar] [CrossRef] [PubMed]
- Bijl, J.; Krosl, J.; Lebert-Ghali, C.-E.; Vacher, J.; Mayotte, N.; Sauvageau, G. Evidence for Hox and E2A-PBX1 Collaboration in Mouse T-Cell Leukemia. Oncogene 2008, 27, 6356–6364. [Google Scholar] [CrossRef]
- Rosales-Aviña, J.A.; Torres-Flores, J.; Aguilar-Lemarroy, A.; Gurrola-Díaz, C.; Hernández-Flores, G.; Ortiz-Lazareno, P.C.; Lerma-Díaz, J.M.; de Celis, R.; González-Ramella, Ó.; Barrera-Chaires, E.; et al. MEIS1, PREP1, and PBX4 Are Differentially Expressed in Acute Lymphoblastic Leukemia: Association of MEIS1 Expression with Higher Proliferation and Chemotherapy Resistance. J. Exp. Clin. Cancer Res. 2011, 30, 112. [Google Scholar] [CrossRef]
- Blasi, F.; Bruckmann, C. MEIS1 in Hematopoiesis and Cancer. How MEIS1-PBX Interaction Can Be Used in Therapy. J. Dev. Biol. 2021, 9, 44. [Google Scholar] [CrossRef]
- Kamps, M.P.; Baltimore, D. E2A-Pbx1, the t(1;19) Translocation Protein of Human Pre-B-Cell Acute Lymphocytic Leukemia, Causes Acute Myeloid Leukemia in Mice. Mol. Cell Biol. 1993, 13, 351–357. [Google Scholar] [CrossRef]
- Rice, K.L.; Lin, X.; Wolniak, K.; Ebert, B.L.; Berkofsky-Fessler, W.; Buzzai, M.; Sun, Y.; Xi, C.; Elkin, P.; Levine, R.; et al. Analysis of Genomic Aberrations and Gene Expression Profiling Identifies Novel Lesions and Pathways in Myeloproliferative Neoplasms. Blood Cancer J. 2011, 1, e40. [Google Scholar] [CrossRef]
- Berkofsky-Fessler, W.; Buzzai, M.; Kim, M.K.-H.; Fruchtman, S.; Najfeld, V.; Min, D.-J.; Costa, F.F.; Bischof, J.M.; Soares, M.B.; McConnell, M.J.; et al. Transcriptional Profiling of Polycythemia Vera Identifies Gene Expression Patterns Both Dependent and Independent from the Action of JAK2V617F. Clin. Cancer Res. 2010, 16, 4339–4352. [Google Scholar] [CrossRef] [PubMed]
- Akada, H.; Akada, S.; Hutchison, R.E.; Sakamoto, K.; Wagner, K.-U.; Mohi, G. Critical Role of Jak2 in the Maintenance and Function of Adult Hematopoietic Stem Cells. Stem Cells 2014, 32, 1878–1889. [Google Scholar] [CrossRef]
- Shepherd, M.S.; Li, J.; Wilson, N.K.; Oedekoven, C.A.; Li, J.; Belmonte, M.; Fink, J.; Prick, J.C.M.; Pask, D.C.; Hamilton, T.L.; et al. Single-Cell Approaches Identify the Molecular Network Driving Malignant Hematopoietic Stem Cell Self-Renewal. Blood 2018, 132, 791–803. [Google Scholar] [CrossRef] [PubMed]
- Ganan-Gomez, I.; Yang, H.; Ma, F.; Montalban-Bravo, G.; Thongon, N.; Marchica, V.; Richard-Carpentier, G.; Chien, K.; Manyam, G.; Wang, F.; et al. Stem Cell Architecture Drives Myelodysplastic Syndrome Progression and Predicts Response to Venetoclax-Based Therapy. Nat. Med. 2022, 28, 557–567. [Google Scholar] [CrossRef]
- Naumovski, L.; Utz, P.J.; Bergstrom, S.K.; Morgan, R.; Molina, A.; Toole, J.J.; Glader, B.E.; McFall, P.; Weiss, L.M.; Warnke, R. SUP-HD1: A New Hodgkin’s Disease-Derived Cell Line with Lymphoid Features Produces Interferon-Gamma. Blood 1989, 74, 2733–2742. [Google Scholar] [CrossRef] [PubMed]
- Borghini, S.; Bachetti, T.; Fava, M.; Di Duca, M.; Cargnin, F.; Fornasari, D.; Ravazzolo, R.; Ceccherini, I. The TLX2 Homeobox Gene Is a Transcriptional Target of PHOX2B in Neural-Crest-Derived Cells. Biochem. J. 2006, 395, 355–361. [Google Scholar] [CrossRef]
- Nagel, S. The NKL- and TALE-Codes Represent Hematopoietic Gene Signatures to Evaluate Deregulated Homeobox Genes in Hodgkin Lymphoma. Hemato 2022, 3, 122–130. [Google Scholar] [CrossRef]
- OncoKBTM—MSK’s Precision Oncology Knowledge Base. Available online: https://www.oncokb.org/ (accessed on 1 February 2025).
- Kim, S.; Kim, H.; Kang, H.; Kim, J.; Eom, H.; Kim, T.; Yoon, S.-S.; Suh, C.; Lee, D.; Korean Society of Hematology Lymphoma Working Party. Clinical Significance of Cytogenetic Aberrations in Bone Marrow of Patients with Diffuse Large B-Cell Lymphoma: Prognostic Significance and Relevance to Histologic Involvement. J. Hematol. Oncol. 2013, 6, 76. [Google Scholar] [CrossRef]
- Moraveji, S.; Tonk, V.; Gaur, S.; Torabi, A. Langerhans Cell Histiocytosis and Diffuse Large B-Cell Lymphoma with Tetrasomy of PBX1 Gene and t(14;19): Two Entities in One Lymph Node. Pathology 2016, 48, 728–731. [Google Scholar] [CrossRef]
- Kumar, S.K.; Rajkumar, S.V. The Multiple Myelomas—Current Concepts in Cytogenetic Classification and Therapy. Nat. Rev. Clin. Oncol. 2018, 15, 409–421. [Google Scholar] [CrossRef]
- Abdallah, N.; Rajkumar, S.V.; Greipp, P.; Kapoor, P.; Gertz, M.A.; Dispenzieri, A.; Baughn, L.B.; Lacy, M.Q.; Hayman, S.R.; Buadi, F.K.; et al. Cytogenetic Abnormalities in Multiple Myeloma: Association with Disease Characteristics and Treatment Response. Blood Cancer J. 2020, 10, 82. [Google Scholar] [CrossRef]
- Calura, E.; Bisognin, A.; Manzoni, M.; Todoerti, K.; Taiana, E.; Sales, G.; Morgan, G.J.; Tonon, G.; Amodio, N.; Tassone, P.; et al. Disentangling the microRNA Regulatory Milieu in Multiple Myeloma: Integrative Genomics Analysis Outlines Mixed miRNA-TF Circuits and Pathway-Derived Networks Modulated in t(4;14) Patients. Oncotarget 2016, 7, 2367–2378. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, R.A.; Pandha, H.S.; Simpson, G.R.; Pettengell, R.; Poterlowicz, K.; Thompson, A.; Harrington, K.; El-Tanani, M.; Morgan, R. Inhibition of HOX/PBX Dimer Formation Leads to Necroptosis in Acute Myeloid Leukemia Cells. Oncotarget 2017, 8, 89566–89579. [Google Scholar] [CrossRef]
- Uckun, F.M.; Qazi, S.; Dibirdik, I.; Myers, D.E. Rational Design of an Immunoconjugate for Selective Knock-down of Leukemia-Specific E2A-PBX1 Fusion Gene Expression in Human Pre-B Leukemia. Integr. Biol. 2013, 5, 122–132. [Google Scholar] [CrossRef]
- Shen, Y.-A.; Jung, J.; Shimberg, G.D.; Hsu, F.-C.; Rahmanto, Y.S.; Gaillard, S.L.; Hong, J.; Bosch, J.; Shih, I.-M.; Chuang, C.-M.; et al. Development of Small Molecule Inhibitors Targeting PBX1 Transcription Signaling as a Novel Cancer Therapeutic Strategy. iScience 2021, 24, 103297. [Google Scholar] [CrossRef] [PubMed]
| System | Signaling Pathway | Function |
|---|---|---|
| Hematopoietic system | Regulation of EF1, PAX5, GATA1, FOG1, MN1 | Supports HSC self-renewal and differentiation |
| B-cell and megakaryocyte expansion and maturation | ||
| Immune system | Upregulation of the AKT1 pathway via activation by ILT2 receptor Direct activation of Rtkn2 expression Direct regulation of CD44 expression | Maturation and function of several immune cells (NK cells, T reg cells, T cells) |
| Thymus | Regulates PAX1 expression Interactions with SMAD, Notch | Regulates the proliferation of thymocytes |
| Spleen | Upregulation of Nkx2-5 Downregulation of p15Ink4b | Splenic cell development and function |
| Hematologic Neoplasm | Gene Upregulation, Transcriptional Regulators and Signaling Pathways | Function |
|---|---|---|
| Acute lymphoblastic leukemia | E2A::PBX1 | Impedes normal hematopoiesis [6] |
| Acute myeloid leukemia | MEIS1-PBX1 interaction (transcriptional regulatory complex) | Binds to DNA and facilitates leukemic transformation [27,28] |
| PREP-PBX1 interaction | Binds to DNA and creates complexes with HOX proteins inducing leukemic cell proliferation [27,28] | |
| Mixed-lineage leukemia | MEIS1 upregulation | Primarily interacts with PBX1 and promotes proliferation of leukemic cells [6] |
| Philadelphia-negative MPN | PBX1 upregulation | Sustain malignant clone of MPN [23] |
| Chronic myeloid leukemia | HNRPDL/PBX1 axis | Controls growth and imatinib sensitivity of CD34+ CML cells [6,29] |
| Hodgkin lymphoma | NFIB upregulation | Activated by PBX1 [22,30] |
| TLX2 upregulation | Activated by PBX1 [22,30] | |
| Multiple myeloma | PBX1-FOXM1 signaling axis | Drives proliferative phenotype in 1q amp MM [20] |
| PHF19 upregulation | PBX1 is a positive regulator of PHF19, which affects cell proliferation in MM [31] | |
| lncRNA NEAT1 overexpression | Inhibits NK-cell activity and therefore promotes immune escape [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzileontiadou, S.; Boulogeorgou, K.; Frouzaki, C.; Papaioannou, M.; Koletsa, T.; Hatjiharissi, E. A Brief Review on the Role of the Transcription Factor PBX1 in Hematologic Malignancies. Int. J. Mol. Sci. 2025, 26, 10545. https://doi.org/10.3390/ijms262110545
Chatzileontiadou S, Boulogeorgou K, Frouzaki C, Papaioannou M, Koletsa T, Hatjiharissi E. A Brief Review on the Role of the Transcription Factor PBX1 in Hematologic Malignancies. International Journal of Molecular Sciences. 2025; 26(21):10545. https://doi.org/10.3390/ijms262110545
Chicago/Turabian StyleChatzileontiadou, Sofia, Kassiani Boulogeorgou, Christina Frouzaki, Maria Papaioannou, Triantafyllia Koletsa, and Evdoxia Hatjiharissi. 2025. "A Brief Review on the Role of the Transcription Factor PBX1 in Hematologic Malignancies" International Journal of Molecular Sciences 26, no. 21: 10545. https://doi.org/10.3390/ijms262110545
APA StyleChatzileontiadou, S., Boulogeorgou, K., Frouzaki, C., Papaioannou, M., Koletsa, T., & Hatjiharissi, E. (2025). A Brief Review on the Role of the Transcription Factor PBX1 in Hematologic Malignancies. International Journal of Molecular Sciences, 26(21), 10545. https://doi.org/10.3390/ijms262110545

