The Glymphatic–Venous Axis in Brain Clearance Failure: Aquaporin-4 Dysfunction, Biomarker Imaging, and Precision Therapeutic Frontiers
Abstract
1. Introduction—The Glymphatic—Venous Axis as a Systems-Level Framework for Brain Clearance
1.1. State-Dependent Vasomotion and Neural Oscillations as Proximal Drivers of Influx
1.2. Anatomical Organization of Efflux and Venous Integration
1.3. Venous Hemodynamics as a Bottleneck and Regulator
1.4. Quantitative Biomarkers and Reproducibility of Clearance Assessment
1.5. Systems Biomechanics and Integrative Modeling
1.6. Toward a Working Definition and Implications
- 1.
- Periarterial CSF influx into parenchyma driven by slow vasomotion, neural oscillatory states, and brain tissue pulsations [22];
- 2.
- Parenchymal interstitial transport mediated by astrocytic AQP4 regulates neurovascular coupling and matrix composition [23];
- 3.
- Perivenous efflux drains through the dural venous regions and meningeal lymphatics, which are limited by venous compliance and resistance [24].
- Any intolerable combinations on this system that inhibit slow flow (e.g., inadequate sleep hygiene, sedatives) will inhibit inflow and correspond to low glymphatic indices;
- Venous stenosis (increased vascular wall stiffness) or hypertension will inhibit efflux hunt as manifested by increased perivascular space diffusion or slow clearance rate of tracers;
- Restoring venous outflow (stenting) or boosting sleep oscillations (neuromodulation or circadian rhythms) will result in restoring clinical measures of clearance ability.
1.7. Scope and Novelty of This Review
2. Anatomical and Structural Foundations of the Glymphatic—Venous Axis
2.1. Periarterial Influx Pathways: Developmental Gateways of Entry
2.2. Astrocytic Endfeet and Aquaporin-4 Polarization: The Molecular Switchboard
2.3. Interstitial Pathways and the Extracellular Matrix: A Dynamic Microenvironment
2.4. Perivenous Efflux: Collapsible Exit Corridors
2.5. Meningeal Lymphatic Vessels: Immune Bridges of the Axis
2.6. Perineural Routes: Evolutionary Safeguards and Fragile Exits
2.7. Systems Integration, Regional Vulnerability, and Quantitative Anatomy
2.8. Pharmacological and Oncological Implications
2.9. Controversies and Knowledge Gaps
3. Molecular and Cellular Regulators of the Glymphatic–Venous Axis
3.1. Astroglial Water Channels: Polarity, Isoforms, and Biochemical Regulation
3.2. Rhythmic Drivers of Clearance
3.3. Pericytes and Microvascular Gating
3.4. Immune and Endothelial Interactions
3.5. Lymphatic Contractility and Plasticity
3.6. Venous Hydraulics and Systemic Context
3.7. Quantitative Modeling and Imaging
3.8. Debates and Uncertainties
3.9. Therapeutic Perspectives
4. Pathological Failure of the Glymphatic–Venous Axis
4.1. Neurodegenerative-Protein-Aggregation Syndromes
4.2. Errors in Clearance Related to Vascular and Trauma
4.3. Neuroinflammatory, Infective, and Neoplastic States
4.4. Integrative Mechanisms and Translational Perspectives
5. Diagnostic and Biomarker Frontiers
5.1. Magnetic Resonance Imaging Biomarkers
5.1.1. Diffusion Metrics
5.1.2. Tracer Kinetics
5.1.3. Physiological Gating
Development, Sex, and Population Variability
5.2. Clinical and Systemic Anchors
5.3. Pharmaceutical and Translational Trial Relevance
5.4. Conceptual Integration
5.5. Global Accessibility and Equity Considerations
6. Therapeutic Strategies Targeting Brain Clearance Coupling
6.1. Physiological and Lifestyle Modulation
6.2. Pharmacological Strategies
6.3. Mechanical and Electrical Neuromodulation Approaches
6.4. Clinical Trial Design and Translational Readiness
6.5. Global and Ethical Considerations
7. Emerging Technologies and Future Directions
7.1. Continuous Human Monitoring of Glymphatic Physiology
7.2. Sleep Neurochemistry and Vasomotor Coupling
7.3. Rhythm-Based Augmentation of Clearance
7.4. High-Fidelity Visualization of Drainage Routes
7.5. Ultrasound-Based Actuation
7.6. Algorithmic Acceleration of Imaging Pipelines
7.7. Digital Twin Frameworks
7.8. Environmental and Occupational Modifiers
7.9. Endocrine Modulation and Circadian Interventions
7.10. Integrated Trial Design
7.11. Ethical and Governance Considerations
8. Clinical Implications Across Neurological and Systemic Diseases
8.1. Alzheimer’s Disease and Related Dementias
8.2. Cerebrovascular Disease and Stroke
8.3. Traumatic Brain Injury
8.4. Parkinson’s Disease and Movement Disorders
8.5. Multiple Sclerosis and Neuroinflammatory Disorders
8.6. Hydrocephalus and Idiopathic Intracranial Hypertension
8.7. Psychiatric and Systemic Disorders
9. Therapeutic Frontiers and Interventional Strategies
9.1. Rational Combination Paradigms
9.2. Chronotherapeutics and the Clearance Clock
9.3. Device-Based Actuation
9.4. Pharmacological Innovation
9.5. Trial Architectures and Regulatory Pathways
9.6. Safety and Governance
9.7. Precision Deployment Through Endotyping
9.8. Implementation, Equity, and Global Perspectives
9.9. Roadmap for 2025–2030
- Regulatory qualification of composite clearance biomarker as an acceptable surrogate endpoint.
- Adjunctive trial demonstrating clearance-timed or clearance-enhancing therapies reduce ARIA incidence or improve cognitive slope when combined with approved backbones.
- Validated clearance endotypes, demonstrating intervention appropriately matched to clearance phenotype results in an outcome superior to standard of care.
- Health-policy endorsement of clearance stratification as part of reimbursement criteria for expensive therapies.
- Toolkit releases disseminated globally with low-cost clearance measures and ultimately included in dementia prevention programming initiatives.
10. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sweeney, M.D.; Zlokovic, B.V. A lymphatic waste-disposal system implicated in Alzheimer’s disease. Nature 2018, 560, 172–174. [Google Scholar] [CrossRef]
- Fertan, E.; Hung, C.; Danial, J.S.H.; Lam, J.Y.L.; Preman, P.; Albertini, G.; English, E.A.; Böken, D.; Livesey, F.J.; De Strooper, B.; et al. Clearance of beta-amyloid and tau aggregates is size dependent and altered by an inflammatory challenge. Brain Commun. 2024, 7, fcae454. [Google Scholar] [CrossRef] [PubMed]
- Ohara, M.; Hattori, T. The Glymphatic System in Cerebrospinal Fluid Dynamics: Clinical Implications, Its Evaluation, and Application to Therapeutics. Neurodegener. Dis. 2025, 1–13. [Google Scholar] [CrossRef]
- Chen, S.; Wang, H.; Zhang, L.; Xi, Y.; Lu, Y.; Yu, K.; Zhu, Y.; Regina, I.; Bi, Y.; Tong, F. Glymphatic system: A self-purification circulation in brain. Front. Cell Neurosci. 2025, 19, 1528995. [Google Scholar] [CrossRef]
- Ding, Z.; Fan, X.; Zhang, Y.; Yao, M.; Wang, G.; Dong, Y.; Liu, J.; Song, W. The glymphatic system: A new perspective on brain diseases. Front. Aging Neurosci. 2023, 15, 1179988. [Google Scholar] [CrossRef]
- Kiviniemi, V.; Helakari, H.; Raitamaa, L.; Huotari, N.; Rajna, Z.; Järvelä, M.; Elabasy, A.; Tuunanen, J.; Poltojainen, V.; Väyrynen, T.; et al. Ultrafast Imaging of Physiological Brain Pulsations with Magnetic Resonance Encephalography—From Noise to Predictive Clinical Biomarker. NMR Biomed. 2025, 38, e70092. [Google Scholar] [CrossRef]
- Hauglund, N.L.; Andersen, M.; Tokarska, K.; Radovanovic, T.; Kjaerby, C.; Sørensen, F.L.; Bojarowska, Z.; Untiet, V.; Ballestero, S.B.; Kolmos, M.G.; et al. Norepinephrine-mediated slow vasomotion drives glymphatic clearance during sleep. Cell 2025, 188, 606–622.e17. [Google Scholar] [CrossRef] [PubMed]
- Mlinarič, T.; Khachatryan, E.; Wittevrongel, B.; Dauwe, I.; Carrette, E.; Van Roost, D.; Achten, E.; Boon, P.; Meurs, A.; Van Hulle, M.M. Visual gamma stimulation induces 40 Hz neural oscillations in the human hippocampus and alters phase synchrony and lag. Commun. Biol. 2025, 8, 1301. [Google Scholar] [CrossRef] [PubMed]
- Yun, C.-S.; Sohn, C.-H.; Yeon, J.; Chung, K.-J.; Min, B.-J.; Yun, C.-H.; Han, B.S. Feasibility of Observing Glymphatic System Activity During Sleep Using Diffusion Tensor Imaging Analysis Along the Perivascular Space (DTI-ALPS) Index. Diagnostics 2025, 15, 1798. [Google Scholar] [CrossRef]
- Hladky, S.B.; Barrand, M.A. The glymphatic hypothesis: The theory and the evidence. Fluids Barriers CNS 2022, 19, 9. [Google Scholar] [CrossRef]
- Bohr, T.; Hjorth, P.G.; Holst, S.C.; Hrabětová, S.; Kiviniemi, V.; Lilius, T.; Lundgaard, I.; Mardal, K.-A.; Martens, E.A.; Mori, Y.; et al. The glymphatic system: Current understanding and modeling. iScience 2022, 25, 104987. [Google Scholar] [CrossRef]
- Laaker, C.J.; Kovacs, K.G.; Baenen, C.M.; Hsu, M.; Port, J.M.; Vrba, S.M.; Kumar, M.; Hubacek, A.J.; Herbath, M.; Priyathilaka, T.T.; et al. Perineural immune environment of olfactory nerves is reshaped by neuroinflammatory drainage and connects to ethmoid bone marrow. Sci. Adv. 2025, 11, eadt9591. [Google Scholar] [CrossRef] [PubMed]
- Stahl, J.; Abou-Mrad, T.; Stone McGuire, L.; Janiga, G.; Saalfeld, S.; Alaraj, A.; Berg, P. Flow-based simulation in transverse sinus stenosis pre- and post-stenting: Pressure prediction accuracy, hemodynamic complexity, and relationship to pulsatile tinnitus. J. Neurointerv. Surg. 2025, jnis-2024-022867. [Google Scholar] [CrossRef]
- Hladky, S.B.; Barrand, M.A. Regulation of brain fluid volumes and pressures: Basic principles, intracranial hypertension, ventriculomegaly and hydrocephalus. Fluids Barriers CNS 2024, 21, 57. [Google Scholar] [CrossRef]
- Wu, C.-H.; Kuo, Y.; Ling, Y.-H.; Wang, Y.-F.; Fuh, J.-L.; Lirng, J.-F.; Wu, H.-M.; Wang, S.-J.; Chen, S.-P. Dynamic changes in glymphatic function in reversible cerebral vasoconstriction syndrome. J. Headache Pain 2024, 25, 17. [Google Scholar] [CrossRef]
- Dai, X.; Gao, L.; Zhang, J.; Li, X.; Yu, J.; Yu, L.; Li, Y.; Zeng, M.; Wang, X.; Zhang, H. Investigating DTI-ALPS index and its association with cognitive impairments in patients with alcohol use disorder: A diffusion tensor imaging study. J. Psychiatr. Res. 2024, 180, 213–218. [Google Scholar] [CrossRef]
- Gkintoni, E.; Vantarakis, A.; Gourzis, P. Neuroimaging Insights into the Public Health Burden of Neuropsychiatric Disorders: A Systematic Review of Electroencephalography-Based Cognitive Biomarkers. Medicina 2025, 61, 1003. [Google Scholar] [CrossRef]
- Imaizumi, T.; Suzuki, K.; Sakashita, K.; Ohwada, R.; Komura, S.; Tamada, T. Brain pulsation demonstrated by CSF flow artifacts on FLAIR images might be associated with brain function. Eur. J. Radiol. 2025, 189, 112164. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wu, Y.; Wu, J.; Li, B.; Hua, R.; Shi, F.; Chen, L.; Wu, Y. MRI-based machine learning analysis of perivascular spaces and their link to sleep disturbances, dementia, and mental distress in young adults with long-time mobile phone use. Front. Neurosci. 2025, 19, 1555054. [Google Scholar] [CrossRef]
- Dreyer, L.W.; Eklund, A.; Rognes, M.E.; Malm, J.; Qvarlander, S.; Støverud, K.-H.; Mardal, K.-A.; Vinje, V. Modeling CSF circulation and the glymphatic system during infusion using subject specific intracranial pressures and brain geometries. Fluids Barriers CNS 2024, 21, 82. [Google Scholar] [CrossRef]
- Gan, Y.; Holstein-Rønsbo, S.; Nedergaard, M.; Boster, K.A.S.; Thomas, J.H.; Kelley, D.H. Perivascular pumping of cerebrospinal fluid in the brain with a valve mechanism. J. R. Soc. Interface 2023, 20, 20230288. [Google Scholar] [CrossRef]
- Nozaleda, G.L.; Coenen, W.; Haughton, V.; Sánchez, A.L. Arterial pulsations and transmantle pressure synergetically drive glymphatic flow. Sci. Rep. 2025, 15, 13798. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhan, J.; Cai, Q.; Xu, F.; Chai, R.; Lam, K.; Luan, Z.; Zhou, G.; Tsang, S.; Kipp, M.; et al. The Water Transport System in Astrocytes–Aquaporins. Cells 2022, 11, 2564. [Google Scholar] [CrossRef]
- Zhang, Q.; Niu, Y.; Li, Y.; Xia, C.; Chen, Z.; Chen, Y.; Feng, H. Meningeal lymphatic drainage: Novel insights into central nervous system disease. Signal Transduct. Target. Ther. 2025, 10, 142. [Google Scholar] [CrossRef]
- Li, G.; Cao, Y.; Tang, X.; Huang, J.; Cai, L.; Zhou, L. The meningeal lymphatic vessels and the glymphatic system: Potential therapeutic targets in neurological disorders. J. Cereb. Blood Flow Metab. 2022, 42, 1364–1382. [Google Scholar] [CrossRef] [PubMed]
- Cracas, S.V.; Aleni, C.; Garro, G.; Antona, A.; Venetucci, J.; Bettio, V.; Varalda, M.; Scotti, L.; Ferrante, D.; Rolla, R.; et al. Investigating aging trajectories and determinants in Northern Italy through the Novara cohort study. Sci. Rep. 2025, 15, 17908. [Google Scholar] [CrossRef] [PubMed]
- Ineichen, B.V.; Okar, S.V.; Proulx, S.T.; Engelhardt, B.; Lassmann, H.; Reich, D.S. Perivascular Spaces and Their Role in Neuroinflammation. Neuron 2022, 110, 3566–3581. [Google Scholar] [CrossRef] [PubMed]
- Meinhold, L.; Gennari, A.G.; Natalucci, G.; Latal, B.; Wehrle, F.M.; Fauchere, J.-C.; Hagmann, C.; O’Gorman Tuura, R. Prematurity is associated with white matter T2 MRI visible perivascular spaces in very preterm-born neonates. Brain Commun. 2025, 7, fcaf244. [Google Scholar] [CrossRef]
- Gjerde, I.G.; Rognes, M.E.; Sánchez, A.L. The directional flow generated by peristalsis in perivascular networks—Theoretical and numerical reduced-order descriptions. J. Appl. Phys. 2023, 134, 174701. [Google Scholar] [CrossRef]
- Toader, C.; Tataru, C.P.; Florian, I.-A.; Covache-Busuioc, R.-A.; Dumitrascu, D.-I.; Glavan, L.A.; Costin, H.P.; Bratu, B.-G.; Ciurea, A.V. From Homeostasis to Pathology: Decoding the Multifaceted Impact of Aquaporins in the Central Nervous System. Int. J. Mol. Sci. 2023, 24, 14340. [Google Scholar] [CrossRef]
- Mirouse, V. Evolution and developmental functions of the dystrophin-associated protein complex: Beyond the idea of a muscle-specific cell adhesion complex. Front. Cell Dev. Biol. 2023, 11, 1182524. [Google Scholar] [CrossRef]
- Frey, M.M.; Zohoorian, N.; Skauli, N.; Ottersen, O.P.; Amiry-Moghaddam, M. Are diurnal variations in glymphatic clearance driven by circadian regulation of Aquaporin-4 expression? Fluids Barriers CNS 2025, 22, 64. [Google Scholar] [CrossRef]
- Rossi, J.; Zedde, M.; Napoli, M.; Pascarella, R.; Pisanello, A.; Biagini, G.; Valzania, F. Impact of Sex Hormones on Glioblastoma: Sex-Related Differences and Neuroradiological Insights. Life 2024, 14, 1523. [Google Scholar] [CrossRef]
- Pintér, P.; Alpár, A. The Role of Extracellular Matrix in Human Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 11085. [Google Scholar] [CrossRef]
- Tewari, B.P.; Chaunsali, L.; Prim, C.E.; Sontheimer, H. A glial perspective on the extracellular matrix and perineuronal net remodeling in the central nervous system. Front. Cell. Neurosci. 2022, 16, 1022754. [Google Scholar] [CrossRef] [PubMed]
- Sariano, P.A.; Mizenko, R.R.; Shirure, V.S.; Brandt, A.K.; Nguyen, B.B.; Nesiri, C.; Shergill, B.S.; Brostoff, T.; Rocke, D.M.; Borowsky, A.D.; et al. Convection and extracellular matrix binding control interstitial transport of extracellular vesicles. J. Extracell. Vesicles 2023, 12, e12323. [Google Scholar] [CrossRef] [PubMed]
- Markus, H.S.; Joutel, A. The pathogenesis of cerebral small vessel disease and vascular cognitive impairment. Physiol. Rev. 2025, 105, 1075–1171. [Google Scholar] [CrossRef]
- Fargen, K.M.; Midtlien, J.P.; Margraf, C.R.; Hui, F.K. Idiopathic intracranial hypertension pathogenesis: The jugular hypothesis. Interv. Neuroradiol. 2024, 15910199241270660. [Google Scholar] [CrossRef]
- Wang, M.; Yan, C.; Li, X.; Yang, T.; Wu, S.; Liu, Q.; Luo, Q.; Zhou, F. Non-invasive modulation of meningeal lymphatics ameliorates ageing and Alzheimer’s disease-associated pathology and cognition in mice. Nat. Commun. 2024, 15, 1453. [Google Scholar] [CrossRef] [PubMed]
- Desai, D.D.; Yu, S.E.; Salvatore, B.; Goldberg, Z.; Bowers, E.M.R.; Moore, J.A.; Phan, B.; Lee, S.E. Olfactory and neurological outcomes of SARS-CoV-2 from acute infection to recovery. Front. Allergy 2022, 3, 1019274. [Google Scholar] [CrossRef]
- Șerban, M.; Toader, C.; Covache-Busuioc, R.-A. The Collapse of Brain Clearance: Glymphatic-Venous Failure, Aquaporin-4 Breakdown, and AI-Empowered Precision Neurotherapeutics in Intracranial Hypertension. Int. J. Mol. Sci. 2025, 26, 7223. [Google Scholar] [CrossRef]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020, 7, 193. [Google Scholar] [CrossRef]
- Mironov, A.A.; Mironov, A.; Sanavio, B.; Krol, S.; Beznoussenko, G.V. Intracellular Membrane Transport in Vascular Endothelial Cells. Int. J. Mol. Sci. 2023, 24, 5791. [Google Scholar] [CrossRef] [PubMed]
- Croci, M.; Vinje, V.; Rognes, M.E. Uncertainty quantification of parenchymal tracer distribution using random diffusion and convective velocity fields. Fluids Barriers CNS 2019, 16, 32. [Google Scholar] [CrossRef]
- Salman, M.M.; Kitchen, P.; Halsey, A.; Wang, M.X.; Törnroth-Horsefield, S.; Conner, A.C.; Badaut, J.; Iliff, J.J.; Bill, R.M. Emerging roles for dynamic aquaporin-4 subcellular relocalization in CNS water homeostasis. Brain 2022, 145, 64–75. [Google Scholar] [CrossRef]
- Abbrescia, P.; Signorile, G.; Valente, O.; Palazzo, C.; Cibelli, A.; Nicchia, G.P.; Frigeri, A. Crucial role of Aquaporin-4 extended isoform in brain water Homeostasis and Amyloid-β clearance: Implications for Edema and neurodegenerative diseases. Acta Neuropathol. Commun. 2024, 12, 159. [Google Scholar] [CrossRef] [PubMed]
- Nesverova, V.; Törnroth-Horsefield, S. Phosphorylation-Dependent Regulation of Mammalian Aquaporins. Cells 2019, 8, 82. [Google Scholar] [CrossRef] [PubMed]
- Delli Pizzi, S.; Gambi, F.; Di Pietro, M.; Caulo, M.; Sensi, S.L.; Ferretti, A. BOLD cardiorespiratory pulsatility in the brain: From noise to signal of interest. Front. Hum. Neurosci. 2024, 17, 1327276. [Google Scholar] [CrossRef]
- Sahu, P.P.; Tseng, P. Gamma sensory entrainment for cognitive improvement in neurodegenerative diseases: Opportunities and challenges ahead. Front. Integr. Neurosci. 2023, 17, 1146687. [Google Scholar] [CrossRef]
- Hashitani, H.; Mitsui, R.; Miwa-Nishimura, K.; Lam, M. Role of capillary pericytes in the integration of spontaneous Ca2+ transients in the suburothelial microvasculature in situ of the mouse bladder. J. Physiol. 2018, 596, 3531–3552. [Google Scholar] [CrossRef]
- Ruiz-Zapata, A.M.; Heinz, A.; Kerkhof, M.H.; van de Westerlo-van Rijt, C.; Schmelzer, C.E.H.; Stoop, R.; Kluivers, K.B.; Oosterwijk, E. Extracellular Matrix Stiffness and Composition Regulate the Myofibroblast Differentiation of Vaginal Fibroblasts. Int. J. Mol. Sci. 2020, 21, 4762. [Google Scholar] [CrossRef]
- Wen, W.; Cheng, J.; Tang, Y. Brain perivascular macrophages: Current understanding and future prospects. Brain 2024, 147, 39–55. [Google Scholar] [CrossRef]
- Mapunda, J.A.; Tibar, H.; Regragui, W.; Engelhardt, B. How Does the Immune System Enter the Brain? Front. Immunol. 2022, 13, 805657. [Google Scholar] [CrossRef]
- Bálint, L.; Jakus, Z. Mechanosensation and Mechanotransduction by Lymphatic Endothelial Cells Act as Important Regulators of Lymphatic Development and Function. Int. J. Mol. Sci. 2021, 22, 3955. [Google Scholar] [CrossRef]
- Juneja, P.; Ruhina Rahman, S.N.; Jakhar, D.; Mourya, A.K.; Tripathi, D.M.; Kaur, I.; Tiwari, V.; Rohilla, S.; Gupta, A.; Rawal, P.; et al. Recombinant VEGF-C (Cys156Ser) improves mesenteric lymphatic drainage and gut immune surveillance in experimental cirrhosis. JHEP Rep. 2023, 5, 100816. [Google Scholar] [CrossRef]
- Bateman, G.A.; Yap, S.L.; Subramanian, G.M.; Bateman, A.R. The incidence of significant venous sinus stenosis and cerebral hyperemia in childhood hydrocephalus: Prognostic value with regards to differentiating active from compensated disease. Fluids Barriers CNS 2020, 17, 33. [Google Scholar] [CrossRef] [PubMed]
- Ameloot, K.; Genbrugge, C.; Meex, I.; Eertmans, W.; Jans, F.; De Deyne, C.; Dens, J.; Mullens, W.; Ferdinande, B.; Dupont, M. Is venous congestion associated with reduced cerebral oxygenation and worse neurological outcome after cardiac arrest? Crit. Care 2016, 20, 146. [Google Scholar] [CrossRef]
- Sorrenti, V.; Cecchetto, C.; Maschietto, M.; Fortinguerra, S.; Buriani, A.; Vassanelli, S. Understanding the Effects of Anesthesia on Cortical Electrophysiological Recordings: A Scoping Review. Int. J. Mol. Sci. 2021, 22, 1286. [Google Scholar] [CrossRef] [PubMed]
- Beslika, E.; Leite-Moreira, A.; De Windt, L.J.; da Costa Martins, P.A. Large animal models of pressure overload-induced cardiac left ventricular hypertrophy to study remodelling of the human heart with aortic stenosis. Cardiovasc. Res. 2024, 120, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Schirge, P.M.; Perneczky, R.; Taoka, T.; Ruiz-Rizzo, A.L.; Ersoezlue, E.; Forbrig, R.; Guersel, S.; Kurz, C.; Brendel, M.; Hellmann-Regen, J.; et al. Perivascular space and white matter hyperintensities in Alzheimer’s disease: Associations with disease progression and cognitive function. Alzheimer’s Res. Ther. 2025, 17, 62. [Google Scholar] [CrossRef]
- Mota, B.; Dos Santos, S.E.; Ventura-Antunes, L.; Jardim-Messeder, D.; Neves, K.; Kazu, R.S.; Noctor, S.; Lambert, K.; Bertelsen, M.F.; Manger, P.R.; et al. White matter volume and white/gray matter ratio in mammalian species as a consequence of the universal scaling of cortical folding. Proc. Natl. Acad. Sci. USA 2019, 116, 15253–15261. [Google Scholar] [CrossRef]
- Chachaj, A.; Gąsiorowski, K.; Szuba, A.; Sieradzki, A.; Leszek, J. The Lymphatic System In The Brain Clearance Mechanisms—New Therapeutic Perspectives For Alzheimer’s Disease. Curr. Neuropharmacol. 2023, 21, 380–391. [Google Scholar] [CrossRef]
- Rijo-Ferreira, F.; Takahashi, J.S. Genomics of circadian rhythms in health and disease. Genome Med. 2019, 11, 82. [Google Scholar] [CrossRef] [PubMed]
- Mrdjen, D.; Cannon, B.J.; Amouzgar, M.; Kim, Y.; Liu, C.; Vijayaragavan, K.; Camacho, C.; Spence, A.; McCaffrey, E.F.; Bharadwaj, A.; et al. Spatial proteomics of Alzheimer’s disease-specific human microglial states. Nat. Immunol. 2025, 26, 1397–1410. [Google Scholar] [CrossRef] [PubMed]
- Boccardi, V.; Mancinetti, F.; Mecocci, P. Oxidative Stress, Advanced Glycation End Products (AGEs), and Neurodegeneration in Alzheimer’s Disease: A Metabolic Perspective. Antioxidants 2025, 14, 1044. [Google Scholar] [CrossRef]
- Helakari, H.; Korhonen, V.; Holst, S.C.; Piispala, J.; Kallio, M.; Väyrynen, T.; Huotari, N.; Raitamaa, L.; Tuunanen, J.; Kananen, J.; et al. Human NREM Sleep Promotes Brain-Wide Vasomotor and Respiratory Pulsations. J. Neurosci. 2022, 42, 2503–2515. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, E.; Chandrasekhar, G.; Chandrasekar, P.; Anbarasu, K.; Vickram, A.S.; Karunakaran, R.; Rajasekaran, R.; Srikumar, P.S. Alpha-Synuclein Aggregation in Parkinson’s Disease. Front. Med. 2021, 8, 736978. [Google Scholar] [CrossRef]
- Bugalho, P.; Meira, B.; Pinho, A.; Ventura, R.; Magriço, M.; Serôdio, M.; Krupka, D.; Ferreira, V.M. REM sleep behavior disorder and Prodromal Parkinson’s Disease in patients with Essential Tremor. Sleep Med. X 2024, 8, 100118. [Google Scholar] [CrossRef]
- Langerscheidt, F.; Wied, T.; Al Kabbani, M.A.; van Eimeren, T.; Wunderlich, G.; Zempel, H. Genetic forms of tauopathies: Inherited causes and implications of Alzheimer’s disease-like TAU pathology in primary and secondary tauopathies. J. Neurol. 2024, 271, 2992–3018. [Google Scholar] [CrossRef]
- Roth, M.; Carlsson, R.; Buizza, C.; Enström, A.; Paul, G. Pericyte response to ischemic stroke precedes endothelial cell death and blood-brain barrier breakdown. J. Cereb. Blood Flow Metab. 2024, 45, 0271678X241261946. [Google Scholar] [CrossRef]
- Lin, P.K.; Davis, G.E. Extracellular matrix remodeling in vascular disease: Defining its regulators and pathological influence. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 1599–1616. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-C.; Harezlak, J.; Elsaid, N.M.H.; Lin, Z.; Wen, Q.; Mustafi, S.M.; Riggen, L.D.; Koch, K.M.; Nencka, A.S.; Meier, T.B.; et al. Longitudinal white-matter abnormalities in sports-related concussion: A diffusion MRI study. Neurology 2020, 95, e781–e792. [Google Scholar] [CrossRef] [PubMed]
- McKee, A.C.; Alosco, M.; Huber, B.R. Repetitive Head Impacts and Chronic Traumatic Encephalopathy. Neurosurg. Clin. N. Am. 2016, 27, 529–535. [Google Scholar] [CrossRef]
- Noll, C.; Hiltensperger, M.; Aly, L.; Wicklein, R.; Afzali, A.M.; Mardin, C.; Gasperi, C.; Berthele, A.; Hemmer, B.; Korn, T.; et al. Association of the retinal vasculature, intrathecal immunity, and disability in multiple sclerosis. Front. Immunol. 2022, 13, 997043. [Google Scholar] [CrossRef]
- Stavrou, M.; Yeo, J.M.; Slater, A.D.; Koch, O.; Irani, S.; Foley, P. Case report: Meningitis as a presenting feature of anti-NMDA receptor encephalitis. BMC Infect. Dis. 2020, 20, 21. [Google Scholar] [CrossRef]
- Fang, Y.; Wu, H.; Liu, G.; Li, Z.; Wang, D.; Ning, Y.; Pan, S.; Hu, Y. Secondary immunoreaction in patients with neurosyphilis and its relevance to clinical outcomes. Front. Neurol. 2023, 14, 1201452. [Google Scholar] [CrossRef]
- Valente, O.; Messina, R.; Ingravallo, G.; Bellitti, E.; Zimatore, D.S.; de Gennaro, L.; Abbrescia, P.; Pati, R.; Palazzo, C.; Nicchia, G.P.; et al. Alteration of the translational readthrough isoform AQP4ex induces redistribution and downregulation of AQP4 in human glioblastoma. Cell Mol. Life Sci. 2022, 79, 140. [Google Scholar] [CrossRef]
- Xiao, H.; Hu, F.; Ding, J.; Ye, Z. Cognitive Impairment in Idiopathic Normal Pressure Hydrocephalus. Neurosci. Bull. 2022, 38, 1085–1096, Correction in Neurosci. Bull. 2022, 38, 1121–1122. [Google Scholar] [CrossRef]
- Smagula, S.F.; Krafty, R.T.; Thayer, J.F.; Buysse, D.J.; Hall, M.H. Rest-activity rhythm profiles associated with manic-hypomanic and depressive symptoms. J. Psychiatr. Res. 2018, 102, 238–244. [Google Scholar] [CrossRef]
- Fernandes Silva, L.; Laakso, M. Advances in Metabolomics: A Comprehensive Review of Type 2 Diabetes and Cardiovascular Disease Interactions. Int. J. Mol. Sci. 2025, 26, 3572. [Google Scholar] [CrossRef] [PubMed]
- Sepehrinezhad, A.; Zarifkar, A.; Namvar, G.; Shahbazi, A.; Williams, R. Astrocyte swelling in hepatic encephalopathy: Molecular perspective of cytotoxic edema. Metab. Brain Dis. 2020, 35, 559–578. [Google Scholar] [CrossRef] [PubMed]
- Vezzani, A.; Ravizza, T.; Bedner, P.; Aronica, E.; Steinhäuser, C.; Boison, D. Astrocytes in the initiation and progression of epilepsy. Nat. Rev. Neurol. 2022, 18, 707–722. [Google Scholar] [CrossRef] [PubMed]
- Taoka, T.; Ito, R.; Nakamichi, R.; Kamagata, K.; Sakai, M.; Kawai, H.; Nakane, T.; Abe, T.; Ichikawa, K.; Kikuta, J.; et al. Reproducibility of diffusion tensor image analysis along the perivascular space (DTI-ALPS) for evaluating interstitial fluid diffusivity and glymphatic function: CHanges in Alps index on Multiple conditiON acquIsition eXperiment (CHAMONIX) study. Jpn. J. Radiol. 2022, 40, 147–158. [Google Scholar] [CrossRef]
- Fang, Y.; Sun, Y.; Lai, T.; Song, X.; Hu, T.; Zhao, Y.; Lin, Y.; Bao, Q. Comparative study of 3D-T2WI vs. 3D-T2-FLAIR MRI in displaying human meningeal lymphatics vessels. Clin. Radiol. 2025, 81, 106700. [Google Scholar] [CrossRef]
- Gallina, P.; Nicoletti, C.; Scollato, A.; Lolli, F. The “Glymphatic-Lymphatic System Pathology” and a New Categorization of Neurodegenerative Disorders. Front. Neurosci. 2021, 15, 669681. [Google Scholar] [CrossRef]
- Testa, U.; Castelli, G.; Pelosi, E. Precision Medicine for Older AML Patients. Onco 2025, 5, 42. [Google Scholar] [CrossRef]
- Tufail, M.; Jiang, C.-H.; Li, N. Immune evasion in cancer: Mechanisms and cutting-edge therapeutic approaches. Signal Transduct. Target. Ther. 2025, 10, 227. [Google Scholar] [CrossRef]
- Dagum, P.; Giovangrandi, L.; Levendovszky, S.R.; Winebaum, J.J.; Singh, T.; Cho, Y.; Kaplan, R.M.; Jaffee, M.S.; Lim, M.M.; Vandeweerd, C.; et al. A wireless device for continuous measurement of brain parenchymal resistance tracks glymphatic function in humans. Nat. Biomed. Eng. 2025, 9, 1656–1676. [Google Scholar] [CrossRef]
- Cebull, H.L.; Yang, Y.; Oshinski, J.N. Emerging Trends in Application of Phase Contrast MRI in Vascular Hemodynamics. Curr. Treat. Options Cardio Med. 2025, 27, 61. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Z.; Shi, W.; Wang, M.; Ma, R.; Zhang, W.; Li, X.; Wang, E.; Xie, W.; Zhang, Z.; et al. Advancing insights into in vivo meningeal lymphatic vessels with stereoscopic wide-field photoacoustic microscopy. Light Sci. Appl. 2024, 13, 96. [Google Scholar] [CrossRef]
- Chiu, S.-C.; Perucho, J.A.U.; Fang, Y.-H.D. Motion correction of simultaneous brain PET/MR images based on tracer uptake characteristics. EJNMMI Phys. 2025, 12, 75. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.-H.; Chi, N.-F.; Sheng, W.-Y.; Wang, P.-N.; Sung, Y.-F.; Peng, G.-S.; Hu, H.-H. Ultrasound Evaluation of Internal Jugular Venous Insufficiency and Its Association with Cognitive Decline. Diagnostics 2025, 15, 1427. [Google Scholar] [CrossRef]
- Li, Y.; Yang, H.; Zhang, X.; He, X.; Liuli, A.; Li, R.; Han, X.; Li, Y.; Gao, P. Integrated proteomic and metabolomic profiling identifies distinct molecular signatures and metabolic pathways associated with obesity and potential targets for anti-obesity therapies. Front. Endocrinol. 2025, 16, 1625501. [Google Scholar] [CrossRef]
- Park, C.J.; Kim, S.-Y.; Kim, J.H.; Son, N.-H.; Park, J.Y.; Jeong, Y.H.; Kim, H.J.; Park, J.; Kim, W.J. Evaluation of glymphatic system activity using diffusion tensor image analysis along the perivascular space and amyloid PET in older adults with objectively normal cognition: A preliminary study. Front. Aging Neurosci. 2023, 15, 1221667. [Google Scholar] [CrossRef]
- Lawrence, K.E.; Abaryan, Z.; Laltoo, E.; Hernandez, L.M.; Gandal, M.J.; McCracken, J.T.; Thompson, P.M. White matter microstructure shows sex differences in late childhood: Evidence from 6797 children. Hum. Brain Mapp. 2023, 44, 535–548. [Google Scholar] [CrossRef]
- Green, C.; Jost, G.; Frenzel, T.; Boyken, J.; Schwenke, C.; Pietsch, H. The Effect of Gadolinium-Based Contrast Agents on Longitudinal Changes of Magnetic Resonance Imaging Signal Intensities and Relaxation Times in the Aging Rat Brain. Investig. Radiol. 2022, 57, 453–462. [Google Scholar] [CrossRef]
- Peltrini, R.; Podda, M.; Castiglioni, S.; Di Nuzzo, M.M.; D’Ambra, M.; Lionetti, R.; Sodo, M.; Luglio, G.; Mucilli, F.; Di Saverio, S.; et al. Intraoperative use of indocyanine green fluorescence imaging in rectal cancer surgery: The state of the art. World J. Gastroenterol. 2021, 27, 6374–6386. [Google Scholar] [CrossRef] [PubMed]
- Mishra, G.D.; Cooper, R.; Tom, S.E.; Kuh, D. Early life circumstances and their impact on menarche and menopause. Women’s Health 2009, 5, 175–190. [Google Scholar] [CrossRef]
- Li, Z.; Wu, M.; Yin, C.; Wang, Z.; Wang, J.; Chen, L.; Zhao, W. Machine learning based on the EEG and structural MRI can predict different stages of vascular cognitive impairment. Front. Aging Neurosci. 2024, 16, 1364808. [Google Scholar] [CrossRef] [PubMed]
- Esmeijer, A.A.; Nasa, P.; Ntoumenopoulos, G.; Battaglini, D.; Juneja, D.; Ball, L.; Ehrmann, S.; Schultz, M.J.; Paulus, F.; Stilma, W. Consensus Statements on Airway Clearance Interventions in Intubated Critically Ill Patients—Protocol for a Delphi Study. Life 2025, 15, 1292. [Google Scholar] [CrossRef]
- Du, L.; Zong, Y.; Li, H.; Wang, Q.; Xie, L.; Yang, B.; Pang, Y.; Zhang, C.; Zhong, Z.; Gao, J. Hyperuricemia and its related diseases: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024, 9, 212. [Google Scholar] [CrossRef]
- Petersen, R.C.; Graf, A.; Atkins, A.S.; Brys, M.; Murphy, J.; Miller, D.S.; Reyderman, L.; Siemers, E.; Smith, J.; Carrillo, M.C.; et al. Understanding the impact of amyloid beta targeted therapies on biomarkers and clinical endpoints in Alzheimer’s disease. Alzheimer’s Dement. 2025, 11, e70069. [Google Scholar] [CrossRef]
- Pannonhalmi, Á.; Sipos, B.; Kurucz, R.I.; Katona, G.; Kemény, L.; Csóka, I. Advancing Regulatory Oversight of Medical Device Trials to Align with Clinical Drug Standards in the European Union. Pharmaceuticals 2025, 18, 876. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zang, R.; Qiu, Y.; Zhang, Y.; Peng, J.; Cheng, Z.; Wei, S.; Liu, M.; Diao, Y. Intranasal Drug Delivery Technology in the Treatment of Central Nervous System Diseases: Challenges, Advances, and Future Research Directions. Pharmaceutics 2025, 17, 775. [Google Scholar] [CrossRef]
- Lorite, P.; Domínguez, J.N.; Palomeque, T.; Torres, M.I. Extracellular Vesicles: Advanced Tools for Disease Diagnosis, Monitoring, and Therapies. Int. J. Mol. Sci. 2025, 26, 189. [Google Scholar] [CrossRef] [PubMed]
- Baquero, F.; Martínez, J.L.; Lanza, V.F.; Rodríguez-Beltrán, J.; Galán, J.C.; San Millán, A.; Cantón, R.; Coque, T.M. Evolutionary Pathways and Trajectories in Antibiotic Resistance. Clin. Microbiol. Rev. 2021, 34, e00050-19. [Google Scholar] [CrossRef]
- Yan, L.; Li, Q.; Fu, K.; Zhou, X.; Zhang, K. Progress in the Application of Artificial Intelligence in Ultrasound-Assisted Medical Diagnosis. Bioengineering 2025, 12, 288. [Google Scholar] [CrossRef]
- Gazerani, P. The neuroplastic brain: Current breakthroughs and emerging frontiers. Brain Res. 2025, 1858, 149643. [Google Scholar] [CrossRef]
- Wang, H.; Serap Monkul Nery, E.; Ardayfio, P.; Khanna, R.; Otero Svaldi, D.; Gueorguieva, I.; Shcherbinin, S.; Andersen, S.W.; Hauck, P.M.; Engle, S.E.; et al. Modified titration of donanemab reduces ARIA risk and maintains amyloid reduction. Alzheimer’s Dement. 2025, 21, e70062, Correction in Alzheimer’s Dement. 2025, 21, e70576. [Google Scholar] [CrossRef]
- Ke, S.-C.; Lo, Y.-H.; Tseng, P. The bidirectional effect of attention on gamma sensory stimulation: 40 Hz entrainment is weakened by externally-induced distraction but enhanced by internally-induced distraction. J. Alzheimer’s Dis. 2025, 13872877251376383. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, V.; Hebron, H.; Wong, S.; Atzori, G.; Bartsch, U.; Dijk, D.-J.; Violante, I.R. Closed-loop auditory stimulation targeting alpha and theta oscillations during rapid eye movement sleep induces phase-dependent power and frequency changes. Sleep 2024, 47, zsae193. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Allwin, C.; Bassous, M.G.; Pouliopoulos, A.N. Focused ultrasound-mediated enhancement of blood-brain barrier permeability for brain tumor treatment: A systematic review of clinical trials. J. Neurooncol. 2024, 170, 235–252. [Google Scholar] [CrossRef] [PubMed]
- Grønning, R.; Jeppsson, A.; Hellström, P.; Andrén, K.; Laurell, K.; Farahmand, D.; Zetterberg, H.; Blennow, K.; Wikkelsø, C.; Tullberg, M. Postoperative changes in ventricular cerebrospinal fluid biomarkers with correlation to clinical outcome in idiopathic normal pressure hydrocephalus. J. Alzheimer’s Dis. 2025, 106, 1036–1048. [Google Scholar] [CrossRef]
- Baser, K.H.C.; Haskologlu, I.C.; Erdag, E. Molecular Links Between Circadian Rhythm Disruption, Melatonin, and Neurodegenerative Diseases: An Updated Review. Molecules 2025, 30, 1888. [Google Scholar] [CrossRef]
- Matsumoto, S.; Ohama, R.; Hoei, T.; Tojo, R.; Nakamura, T. Two Cases Showing That Cilostazol Administration Leads to an Increase in Cerebral Blood Flow and Has a Positive Effect on Rehabilitation. Cureus 2024, 16, e56376. [Google Scholar] [CrossRef]
- Seidu, S.; Alabraba, V.; Davies, S.; Newland-Jones, P.; Fernando, K.; Bain, S.C.; Diggle, J.; Evans, M.; James, J.; Kanumilli, N.; et al. SGLT2 Inhibitors—The New Standard of Care for Cardiovascular, Renal and Metabolic Protection in Type 2 Diabetes: A Narrative Review. Diabetes Ther. 2024, 15, 1099–1124. [Google Scholar] [CrossRef]
- Yu, L.; Shu, L.; Gao, S.; Li, L. CPAP improves sleep stability and attenuates acute nocturnal hypertension (NBPF) in OSA, with maximal benefits in severe cases. Front. Neurol. 2025, 16, 1587127. [Google Scholar] [CrossRef]
- Xie, L.; Kang, H.; Xu, Q.; Chen, M.J.; Liao, Y.; Thiyagarajan, M.; O’Donnell, J.; Christensen, D.J.; Nicholson, C.; Iliff, J.J.; et al. Sleep Drives Metabolite Clearance from the Adult Brain. Science 2013, 342, 373–377. [Google Scholar] [CrossRef]
- Jourde, H.R.; Merlo, R.; Brooks, M.; Rowe, M.; Coffey, E.B.J. The neurophysiology of closed-loop auditory stimulation in sleep: A magnetoencephalography study. Eur. J. Neurosci. 2024, 59, 613–640. [Google Scholar] [CrossRef]
- Sériès, F.; Marc, I. Importance of sleep stage- and body position-dependence of sleep apnoea in determining benefits to auto-CPAP therapy. Eur. Respir. J. 2001, 18, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Boivin, D.B.; Boudreau, P.; Kosmadopoulos, A. Disturbance of the Circadian System in Shift Work and Its Health Impact. J. Biol. Rhythm. 2022, 37, 3–28. [Google Scholar] [CrossRef]
- Radić, J.; Vučković, M.; Đogaš, H.; Gelemanović, A.; Belančić, A.; Radić, M. Is Arterial Stiffness Interconnected with Cardiovascular Drug Prescription Patterns, Body Composition Parameters, and the Quality of Blood Pressure Regulation in Hypertensive Patients? Biomedicines 2024, 12, 2062. [Google Scholar] [CrossRef] [PubMed]
- Farley, G.; Riggs, D.W.; Bhatnagar, A.; Hellmann, J. Omega-3 polyunsaturated fatty acids modify the inverse association between systemic inflammation and cardiovascular fitness. Clin. Nutr. 2021, 40, 4097–4105. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, Y.; Liu, L.; Li, C.; Hao, X. Deciphering aquaporin-4’s influence on perivascular diffusion indices using DTI in rat stroke studies. Front. Neurosci. 2025, 19, 1566957. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, H.; Besnier, F.; Vincent, T.; Fraser, S.; Nigam, A.; Lesage, F.; Bherer, L. The pulsatile brain, pulse pressure, cognition, and antihypertensive treatments in older adults: A functional NIRS study. J. Hum. Hypertens. 2025, 39, 217–225. [Google Scholar] [CrossRef]
- Cai, Z.-Y.; Yan, Y.; Chen, R. Minocycline reduces astrocytic reactivation and neuroinflammation in the hippocampus of a vascular cognitive impairment rat model. Neurosci. Bull. 2010, 26, 28–36. [Google Scholar] [CrossRef]
- van Hattem, T.; Verkaar, L.; Krugliakova, E.; Adelhöfer, N.; Zeising, M.; Drinkenburg, W.H.I.M.; Claassen, J.A.H.R.; Bódizs, R.; Dresler, M.; Rosenblum, Y. Targeting Sleep Physiology to Modulate Glymphatic Brain Clearance. Physiology 2025, 40, 271–290. [Google Scholar] [CrossRef]
- Vosskuhl, J.; Strüber, D.; Herrmann, C.S. Non-invasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations. Front. Hum. Neurosci. 2018, 12, 211. [Google Scholar] [CrossRef]
- He, C.; Wu, Z.; Zhuang, M.; Li, X.; Xue, S.; Xu, S.; Xu, J.; Wu, Z.; Lu, M. Focused ultrasound-mediated blood-brain barrier opening combined with magnetic targeting cytomembrane based biomimetic microbubbles for glioblastoma therapy. J. Nanobiotechnol. 2023, 21, 297. [Google Scholar] [CrossRef]
- Bowman, T.; Gervasoni, E.; Arienti, C.; Lazzarini, S.G.; Negrini, S.; Crea, S.; Cattaneo, D.; Carrozza, M.C. Wearable Devices for Biofeedback Rehabilitation: A Systematic Review and Meta-Analysis to Design Application Rules and Estimate the Effectiveness on Balance and Gait Outcomes in Neurological Diseases. Sensors 2021, 21, 3444. [Google Scholar] [CrossRef] [PubMed]
- Lalou, A.D.; Czosnyka, M.; Placek, M.M.; Smielewski, P.; Nabbanja, E.; Czosnyka, Z. CSF Dynamics for Shunt Prognostication and Revision in Normal Pressure Hydrocephalus. J. Clin. Med. 2021, 10, 1711. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Li, J.; Li, X.; Zhang, S. Therapeutic approaches to CNS diseases via the meningeal lymphatic and glymphatic system: Prospects and challenges. Front. Cell Dev. Biol. 2024, 12, 1467085. [Google Scholar] [CrossRef]
- Li, Z.-H.; Wang, J.; Xu, J.-P.; Wang, J.; Yang, X. Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research. Mil. Med. Res. 2023, 10, 12. [Google Scholar] [CrossRef]
- Fercana, G.R.; Yerneni, S.; Billaud, M.; Hill, J.C.; VanRyzin, P.; Richards, T.D.; Sicari, B.M.; Johnson, S.A.; Badylak, S.F.; Campbell, P.G.; et al. Perivascular extracellular matrix hydrogels mimic native matrix microarchitecture and promote angiogenesis via basic fibroblast growth factor. Biomaterials 2017, 123, 142–154. [Google Scholar] [CrossRef]
- Smith, E.E.; Phillips, N.A.; Feldman, H.H.; Borrie, M.; Ganesh, A.; Henri-Bhargava, A.; Desmarais, P.; Frank, A.; Badhwar, A.; Barlow, L.; et al. Use of lecanemab and donanemab in the Canadian healthcare system: Evidence, challenges, and areas for future research. J. Prev. Alzheimer’s Dis. 2025, 12, 100068. [Google Scholar] [CrossRef]
- Berry, D.A. Adaptive Bayesian Clinical Trials: The Past, Present, and Future of Clinical Research. J. Clin. Med. 2025, 14, 5267. [Google Scholar] [CrossRef]
- Uddin, F.; Rudin, C.M.; Sen, T. CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future. Front. Oncol. 2020, 10, 1387. [Google Scholar] [CrossRef] [PubMed]
- Ayta, S. The Effect of Air Pollution and Climate Change on Sleep. Noropsikiyatr. Ars. 2024, 61, 73–76. [Google Scholar] [CrossRef]
- Sundman, M.H.; Liu, Y.; Chen, N.; Chou, Y. The glymphatic system as a therapeutic target: TMS-induced modulation in older adults. Front. Aging Neurosci. 2025, 17, 1597311. [Google Scholar] [CrossRef]
- Abhinav, V.; Basu, P.; Verma, S.S.; Verma, J.; Das, A.; Kumari, S.; Yadav, P.R.; Kumar, V. Advancements in Wearable and Implantable BioMEMS Devices: Transforming Healthcare Through Technology. Micromachines 2025, 16, 522. [Google Scholar] [CrossRef] [PubMed]
- Duraj, T.; Kalamian, M.; Zuccoli, G.; Maroon, J.C.; D’Agostino, D.P.; Scheck, A.C.; Poff, A.; Winter, S.F.; Hu, J.; Klement, R.J.; et al. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med. 2024, 22, 578. [Google Scholar] [CrossRef] [PubMed]
- Zanif, U.; Lai, A.S.; Parks, J.; Roenningen, A.; McLeod, C.B.; Ayas, N.; Wang, X.; Lin, Y.; Zhang, J.J.; Bhatti, P. Melatonin supplementation and oxidative DNA damage repair capacity among night shift workers: A randomised placebo-controlled trial. Occup. Environ. Med. 2025, 82, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Forero, A.; Foustoukos, G.; Cardis, R.; Cherrad, N.; Devenoges, C.; Fernandez, L.M.J.; Lüthi, A. Infraslow noradrenergic locus coeruleus activity fluctuations are gatekeepers of the NREM-REM sleep cycle. Nat. Neurosci. 2025, 28, 84–96. [Google Scholar] [CrossRef]
- Hablitz, L.M.; Nedergaard, M. The Glymphatic System: A Novel Component of Fundamental Neurobiology. J. Neurosci. 2021, 41, 7698–7711. [Google Scholar] [CrossRef]
- Ruch, S.; Schmidig, F.J.; Knüsel, L.; Henke, K. Closed-loop modulation of local slow oscillations in human NREM sleep. Neuroimage 2022, 264, 119682. [Google Scholar] [CrossRef]
- Lanni, I.; Chiacchierini, G.; Papagno, C.; Santangelo, V.; Campolongo, P. Treating Alzheimer’s disease with brain stimulation: From preclinical models to non-invasive stimulation in humans. Neurosci. Biobehav. Rev. 2024, 165, 105831. [Google Scholar] [CrossRef]
- Merino, E.C.; Sun, Q.; Van Hulle, M.M. The phase of slow wave oscillations couples with high gamma power in human electrocorticography during performed and imagined repetitive movements. Cereb. Cortex 2025, 35, bhaf226. [Google Scholar] [CrossRef]
- He, Y.; Guan, J.; Lai, L.; Zhang, X.; Chen, B.; Wang, X.; Wu, R. Imaging of brain clearance pathways via MRI assessment of the glymphatic system. Aging 2023, 15, 14945–14956. [Google Scholar] [CrossRef]
- Ashton, E.; Riek, J. Advanced MR techniques in multicenter clinical trials. J. Magn. Reson. Imaging JMRI 2013, 37, 761–769. [Google Scholar] [CrossRef]
- Matt, E.; Radjenovic, S.; Mitterwallner, M.; Beisteiner, R. Current state of clinical ultrasound neuromodulation. Front. Neurosci. 2024, 18, 1420255. [Google Scholar] [CrossRef] [PubMed]
- Entzian, K.; Aigner, A. Drug Delivery by Ultrasound-Responsive Nanocarriers for Cancer Treatment. Pharmaceutics 2021, 13, 1135. [Google Scholar] [CrossRef] [PubMed]
- Foti, G.; Longo, C. Deep learning and AI in reducing magnetic resonance imaging scanning time: Advantages and pitfalls in clinical practice. Pol. J. Radiol. 2024, 89, e443–e451. [Google Scholar] [CrossRef]
- Stankovic, Z.; Allen, B.D.; Garcia, J.; Jarvis, K.B.; Markl, M. 4D flow imaging with MRI. Cardiovasc. Diagn. Ther. 2014, 4, 173–192. [Google Scholar] [CrossRef]
- Sun, T.; He, X.; Song, X.; Shu, L.; Li, Z. The Digital Twin in Medicine: A Key to the Future of Healthcare? Front. Med. 2022, 9, 907066. [Google Scholar] [CrossRef]
- Lauffenburger, J.C.; Choudhry, N.K.; Russo, M.; Glynn, R.J.; Ventz, S.; Trippa, L. Designing and conducting adaptive trials to evaluate interventions in health services and implementation research: Practical considerations. BMJ Med. 2022, 1, e000158. [Google Scholar] [CrossRef]
- Hussain, R.; Graham, U.; Elder, A.; Nedergaard, M. Air pollution, Glymphatic Impairment, and Alzheimer’s Disease. Trends Neurosci. 2023, 46, 901–911. [Google Scholar] [CrossRef]
- Palanivel, R.; Vinayachandran, V.; Biswal, S.; Deiuliis, J.A.; Padmanabhan, R.; Park, B.; Gangwar, R.S.; Durieux, J.C.; Ebreo Cara, E.A.; Das, L.; et al. Exposure to Air Pollution Disrupts Circadian Rhythm through Alterations in Chromatin Dynamics. iScience 2020, 23, 101728. [Google Scholar] [CrossRef]
- Sun, H.; Cao, Q.; He, X.; Du, X.; Jiang, X.; Wu, T.; Xiao, M. Melatonin Mitigates Sleep Restriction-Induced Cognitive and Glymphatic Dysfunction Via Aquaporin-4 Polarization. Mol. Neurobiol. 2025, 62, 11443–11465. [Google Scholar] [CrossRef] [PubMed]
- Umscheid, C.A.; Margolis, D.J.; Grossman, C.E. Key Concepts of Clinical Trials: A Narrative Review. Postgrad. Med. 2011, 123, 194–204. [Google Scholar] [CrossRef]
- Hendriks, S.; Grady, C.; Chiong, W.; Fins, J.J.; Ford, P.; Goering, S.; Greely, H.T.; Hutchison, K.; Kelly, M.L.; Kim, S.Y.H.; et al. Ethical Challenges of Risk, Informed Consent, and Posttrial Responsibilities in Human Research with Neural Devices: A Review. JAMA Neurol. 2019, 76, 1506–1514. [Google Scholar] [CrossRef] [PubMed]
- Dyke, S.O.M.; Connor, K.; Nembaware, V.; Munung, N.S.; Reinold, K.; Kerry, G.; Mbiyavanga, M.; Zass, L.; Moldes, M.; Das, S.; et al. Consent Codes: Maintaining Consent in an Ever-expanding Open Science Ecosystem. Neuroinformatics 2023, 21, 89–100. [Google Scholar] [CrossRef]
- Spencer, F.S.E.; Elsworthy, R.J.; Breen, L.; Bishop, J.; Morrissey, S.; Aldred, S. The Relationship Between Physical Activity and Non-Modifiable Risk Factors on Alzheimer’s Disease and Brain Health Markers: A UK Biobank Study. J. Alzheimer’s Dis. 2024, 101, 1029–1042. [Google Scholar] [CrossRef]
- Palihati, M.; Das, J.P.; Yeh, R.; Capaccione, K. Emerging PET Imaging Agents and Targeted Radioligand Therapy: A Review of Clinical Applications and Trials. Tomography 2025, 11, 83. [Google Scholar] [CrossRef]
- Ball, E.L.; Shah, M.; Ross, E.; Sutherland, R.; Squires, C.; Mead, G.E.; Wardlaw, J.M.; Quinn, T.J.; Religa, D.; Lundström, E.; et al. Predictors of post-stroke cognitive impairment using acute structural MRI neuroimaging: A systematic review and meta-analysis. Int. J. Stroke Off. J. Int. Stroke Soc. 2023, 18, 543–554. [Google Scholar] [CrossRef]
- Campagnini, S.; Sodero, A.; Baccini, M.; Hakiki, B.; Grippo, A.; Macchi, C.; Mannini, A.; Cecchi, F. Prediction of the functional outcome of intensive inpatient rehabilitation after stroke using machine learning methods. Sci. Rep. 2025, 15, 16083. [Google Scholar] [CrossRef]
- Orenuga, S.; Jordache, P.; Mirzai, D.; Monteros, T.; Gonzalez, E.; Madkoor, A.; Hirani, R.; Tiwari, R.K.; Etienne, M. Traumatic Brain Injury and Artificial Intelligence: Shaping the Future of Neurorehabilitation—A Review. Life 2025, 15, 424. [Google Scholar] [CrossRef]
- Zedde, M.; Piazza, F.; Pascarella, R. Traumatic Brain Injury and Chronic Traumatic Encephalopathy: Not Only Trigger for Neurodegeneration but Also for Cerebral Amyloid Angiopathy? Biomedicines 2025, 13, 881. [Google Scholar] [CrossRef]
- Turner, J.R.; Viera, A.J.; Shimbo, D. Ambulatory Blood Pressure Monitoring in Clinical Practice: A Review. Am. J. Med. 2015, 128, 14–20. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, C.; Chen, Y.; Gong, T.; Zhuo, M.; Zhao, C.; Sun, Z.; Chen, W.; Xiang, Y.; Wang, G. Glymphatic dysfunction exacerbates cognitive decline by triggering cortical degeneration in Parkinson’s disease: Evidence from diffusion-tensor MRI. Brain Commun. 2025, 7, fcaf029. [Google Scholar] [CrossRef]
- Vijiaratnam, N.; Lawton, M.; Heslegrave, A.J.; Guo, T.; Tan, M.; Jabbari, E.; Real, R.; Woodside, J.; Grosset, K.; Chelban, V.; et al. Combining biomarkers for prognostic modelling of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2022, 93, 707–715. [Google Scholar] [CrossRef]
- Xiong, H.; Yin, P.; Li, X.; Yang, C.; Zhang, D.; Huang, X.; Tang, Z. The features of cerebral permeability and perfusion detected by dynamic contrast-enhanced magnetic resonance imaging with Patlak model in relapsing-remitting multiple sclerosis. Ther. Clin. Risk Manag. 2019, 15, 233–240. [Google Scholar] [CrossRef]
- Korfiatis, P.; Kline, T.L.; Meyer, H.M.; Khalid, S.; Leiner, T.; Loufek, B.T.; Blezek, D.; Vidal, D.E.; Hartman, R.P.; Joppa, L.J.; et al. Implementing Artificial Intelligence Algorithms in the Radiology Workflow: Challenges and Considerations. Mayo Clin. Proc. Digit. Health 2024, 3, 100188. [Google Scholar] [CrossRef]
- Thavarajasingam, S.G.; El-Khatib, M.; Vemulapalli, K.; Iradukunda, H.A.S.; Sajeenth, V.K.; Borchert, R.; Russo, S.; Eide, P.K. Radiological predictors of shunt response in the diagnosis and treatment of idiopathic normal pressure hydrocephalus: A systematic review and meta-analysis. Acta Neurochir. 2023, 165, 369–419. [Google Scholar] [CrossRef]
- Edelbach, B.; Sharafeddin, F.; Hawy, E.; Winters, T.; Pillai, P. Dural Venous Sinus Stenting in Pediatric Refractory Idiopathic Intracranial Hypertension: A Case Series and Literature Review. World Neurosurg. 2025, 201, 124321. [Google Scholar] [CrossRef]
- Esperto, F.; Prata, F.; Autrán-Gómez, A.M.; Rivas, J.G.; Socarras, M.; Marchioni, M.; Albisinni, S.; Cataldo, R.; Scarpa, R.M.; Papalia, R. New Technologies for Kidney Surgery Planning 3D, Impression, Augmented Reality 3D, Reconstruction: Current Realities and Expectations. Curr. Urol. Rep. 2021, 22, 35. [Google Scholar] [CrossRef]
- Khurshid, K.A. Comorbid Insomnia and Psychiatric Disorders. Innov. Clin. Neurosci. 2018, 15, 28–32. [Google Scholar]
- Xu, H.; Garcia-Ptacek, S.; Trevisan, M.; Evans, M.; Lindholm, B.; Eriksdotter, M.; Carrero, J.J. Kidney Function, Kidney Function Decline, and the Risk of Dementia in Older Adults. Neurology 2021, 96, e2956–e2965. [Google Scholar] [CrossRef]
- Kamzayeva, N.; Bapayeva, G.; Terzic, M.; Primbetov, B.; Imankulova, B.; Kim, Y.; Sultanova, A.; Kongrtay, K.; Kadroldinova, N.; Ukybassova, T. Enhancing Cervical Cancer Screening: New Diagnostic Methodologies, Triage, and Risk Stratification in Prevention and Treatment. Life 2025, 15, 367. [Google Scholar] [CrossRef]
- Mekala, A.; Qiu, H. Interplay Between Vascular Dysfunction and Neurodegenerative Pathology: New Insights into Molecular Mechanisms and Management. Biomolecules 2025, 15, 712. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Q.; Chen, B.; Zhou, J.; Li, Z.; Liao, W.; Liu, J.; Yang, A. Two cases of Amyloid-Related Imaging Abnormalities (ARIA) following lecanemab treatment for alzheimer’s disease and a literature review. BMC Neurol. 2025, 25, 281. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, W.; Zhang, X.; Cheng, H.; Zhang, Z.; Gao, S.; Zheng, J.; Yu, L.; Wang, P.; Geng, Y.; et al. Glymphatic dysfunction as a biomarker for post-stroke cognitive impairment. Sci. Rep. 2025, 15, 19382. [Google Scholar] [CrossRef]
- Al-Rubaie, A. Traumatic Brain Injury and Dementia: Mechanisms, Risk Stratification, and Clinical Management. J. Clin. Neurol. 2025, 21, 265–276. [Google Scholar] [CrossRef]
- Goldman, J.G.; Jagota, P.; Matar, E. Managing cognitive impairment in Parkinson’s disease: An update of the literature. Expert. Rev. Neurother. 2025, 25, 189–209. [Google Scholar] [CrossRef]
- Elberling, F.; Mahler, M.R.; Pontieri, L.; Sellebjerg, F.; Magyari, M. De-Escalation of Disease-Modifying Therapy in Multiple Sclerosis—A Danish Nationwide Cohort Study. Eur. J. Neurol. 2025, 32, e70042. [Google Scholar] [CrossRef]
- Hilvert, A.M.; Gauhar, F.; Longo, M.; Grimaudo, H.; Dugan, J.; Mummareddy, N.; Chitale, R.; Froehler, M.T.; Fusco, M.R. Venous sinus stenting versus ventriculoperitoneal shunting: Comparing clinical outcomes for idiopathic intracranial hypertension. J. Neurointerv. Surg. 2024, 16, 1264–1267. [Google Scholar] [CrossRef]
- Vaessen, T.J.A.; Mark, R.E.; Overeem, S.; Sitskoorn, M.M. Cognitive Complaints in Patients with Suspected Obstructive Sleep Apnea Are Associated with Sleepiness, Fatigue, and Anxiety, Not with Final Diagnosis or Objective Cognitive Impairment. Clocks Sleep 2025, 7, 12. [Google Scholar] [CrossRef]
- Dubin, R.F.; Deo, R.; Ren, Y.; Wang, J.; Pico, A.R.; Mychaleckyj, J.C.; Kozlitina, J.; Arthur, V.; Lee, H.; Shah, A.; et al. Incident heart failure in chronic kidney disease: Proteomics informs biology and risk stratification. Eur. Heart J. 2024, 45, 2752–2767. [Google Scholar] [CrossRef]
- Benveniste, H.; Liu, X.; Koundal, S.; Sanggaard, S.; Lee, H.; Wardlaw, J. The Glymphatic System and Waste Clearance with Brain Aging: A Review. Gerontology 2019, 65, 106–119. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, J.; She, Y.; He, X.; Feng, H.; Li, X.; Wei, Y.; Fan, Y.; Zhao, W.-E.; Yin, M.; et al. Long-term exercise enhances meningeal lymphatic vessel plasticity and drainage in a mouse model of Alzheimer’s disease. Transl. Neurodegener. 2025, 14, 37. [Google Scholar] [CrossRef]
- Li, Y. Editorial: CSF clearance in Alzheimer’s disease and related dementias: Exploring mechanisms and implications. Front. Aging Neurosci. 2025, 17, 1581223. [Google Scholar] [CrossRef]
- Xiao, W.; Jiang, W.; Chen, Z.; Huang, Y.; Mao, J.; Zheng, W.; Hu, Y.; Shi, J. Advance in peptide-based drug development: Delivery platforms, therapeutics and vaccines. Signal Transduct. Target. Ther. 2025, 10, 74. [Google Scholar] [CrossRef]
- Holstein-Rønsbo, S.; Gan, Y.; Giannetto, M.J.; Rasmussen, M.K.; Sigurdsson, B.; Beinlich, F.R.M.; Rose, L.; Untiet, V.; Hablitz, L.M.; Kelley, D.H.; et al. Glymphatic influx and clearance are accelerated by neurovascular coupling. Nat. Neurosci. 2023, 26, 1042–1053, Correction in Nat. Neurosci. 2023, 26, 2036. [Google Scholar] [CrossRef]
- Roehrs, T.; Roth, T. Drug-related Sleep Stage Changes: Functional Significance and Clinical Relevance. Sleep Med. Clin. 2010, 5, 559–570. [Google Scholar] [CrossRef]
- Gubin, D.; Weinert, D.; Stefani, O.; Otsuka, K.; Borisenkov, M.; Cornelissen, G. Wearables in Chronomedicine and Interpretation of Circadian Health. Diagnostics 2025, 15, 327. [Google Scholar] [CrossRef] [PubMed]
- Durham, P.G.; Butnariu, A.; Alghorazi, R.; Pinton, G.; Krishna, V.; Dayton, P.A. Current clinical investigations of focused ultrasound blood-brain barrier disruption: A review. Neurotherapeutics 2024, 21, e00352. [Google Scholar] [CrossRef]
- Blanco-Duque, C.; Chan, D.; Kahn, M.C.; Murdock, M.H.; Tsai, L.H. Audiovisual gamma stimulation for the treatment of neurodegeneration. J. Intern. Med. 2024, 295, 146–170. [Google Scholar] [CrossRef]
- Fehér, K.D.; Wunderlin, M.; Maier, J.G.; Hertenstein, E.; Schneider, C.L.; Mikutta, C.; Züst, M.A.; Klöppel, S.; Nissen, C. Shaping the slow waves of sleep: A systematic and integrative review of sleep slow wave modulation in humans using non-invasive brain stimulation. Sleep Med. Rev. 2021, 58, 101438. [Google Scholar] [CrossRef]
- Sohn, M.; Lim, S. The Role of Cilostazol, a Phosphodiesterase-3 Inhibitor, in the Development of Atherosclerosis and Vascular Biology: A Review with Meta-Analysis. Int. J. Mol. Sci. 2024, 25, 2593. [Google Scholar] [CrossRef]
- Savard, M.F.; Ibrahim, M.; Saunders, D.; Pond, G.R.; Ng, T.L.; Awan, A.A.; Sehdev, S.; Alqahtani, N.; Vandermeer, L.; MacDonald, F.; et al. A pragmatic, multicenter, randomized trial comparing morning versus evening dosing of adjuvant endocrine therapy (REaCT-CHRONO Study). NPJ Breast Cancer 2025, 11, 49. [Google Scholar] [CrossRef] [PubMed]
- Licastro, E.; Pignataro, G.; Iliff, J.J.; Xiang, Y.; Lo, E.H.; Hayakawa, K.; Esposito, E. Glymphatic and lymphatic communication with systemic responses during physiological and pathological conditions in the central nervous system. Commun. Biol. 2024, 7, 229. [Google Scholar] [CrossRef] [PubMed]
- Baracaldo-Santamaría, D.; Feliciano-Alfonso, J.E.; Ramirez-Grueso, R.; Rojas-Rodríguez, L.C.; Dominguez-Dominguez, C.A.; Calderon-Ospina, C.A. Making Sense of Composite Endpoints in Clinical Research. J. Clin. Med. 2023, 12, 4371. [Google Scholar] [CrossRef]
- Wilson, I.; Julious, S.; Yap, C.; Todd, S.; Dimairo, M. Response adaptive randomisation in clinical trials: Current practice, gaps and future directions. Stat. Methods Med. Res. 2025, 34, 9622802251348183. [Google Scholar] [CrossRef]
- Hunter, P. The controversy around anti-amyloid antibodies for treating Alzheimer’s disease. EMBO Rep. 2024, 25, 5227–5231. [Google Scholar] [CrossRef]
- Solé-Guardia, G.; Li, H.; Willemse, L.; Lebenberg, J.; Jouvent, E.; Tuladhar, A.M. Imaging brain fluid dynamics and waste clearance involving perivascular spaces in cerebral small vessel disease. Alzheimer’s Dement. 2025, 21, e70212. [Google Scholar] [CrossRef]
- Taher, R.; Hall, C.L.; Bergin, A.D.G.; Gupta, N.; Heaysman, C.; Jacobsen, P.; Kabir, T.; Kalnad, N.; Keppens, J.; Hsu, C.-W.; et al. Developing a process for assessing the safety of a digital mental health intervention and gaining regulatory approval: A case study and academic’s guide. Trials 2024, 25, 604. [Google Scholar] [CrossRef]
- Papachristou, K.; Katsakiori, P.F.; Papadimitroulas, P.; Strigari, L.; Kagadis, G.C. Digital Twins’ Advancements and Applications in Healthcare, Towards Precision Medicine. J. Pers. Med. 2024, 14, 1101. [Google Scholar] [CrossRef]
- Labarca, G.; Schmidt, A.; Dreyse, J.; Jorquera, J.; Barbe, F. Telemedicine interventions for CPAP adherence in obstructive sleep apnea patients: Systematic review and meta-analysis. Sleep Med. Rev. 2021, 60, 101543. [Google Scholar] [CrossRef]
- Wellmann, N.; Ancusa, V.M.; Marc, M.S.; Trusculescu, A.A.; Pescaru, C.C.; Martis, F.G.; Ciortea, I.; Crisan, A.F.; Maritescu, A.; Balica, M.A.; et al. Telemedicine-Supported CPAP Therapy in Patients with Obstructive Sleep Apnea: Association with Treatment Adherence and Clinical Outcomes. J. Clin. Med. 2025, 14, 5339. [Google Scholar] [CrossRef] [PubMed]
- Bouloukaki, I.; Daskalaki, E.; Mavroudi, E.; Moniaki, V.; Schiza, S.E.; Tsiligianni, I. A Dietary and Lifestyle Intervention Improves Treatment Adherence and Clinical Outcomes in Overweight and Obese Patients with Obstructive Sleep Apnea: A Randomized, Controlled Trial. Life 2023, 13, 1755. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, K.; Zhu, J. Glymphatic system: An emerging therapeutic approach for neurological disorders. Front. Mol. Neurosci. 2023, 16, 1138769. [Google Scholar] [CrossRef] [PubMed]
- Ayyar, V.S.; Sukumaran, S. Circadian rhythms: Influence on physiology, pharmacology, and therapeutic interventions. J. Pharmacokinet. Pharmacodyn. 2021, 48, 321–338. [Google Scholar] [CrossRef] [PubMed]


| Modality | Readout | Setting/Resolution | Clearance Endpoint | Key 2024–2025 Reference | 
|---|---|---|---|---|
| Wireless impedance-EEG (wearable) | Parenchymal resistance during sleep | Overnight, home, ms–s resolution | Nocturnal CSF-linked impedance changes correlated with MRI tracer uptake | [88] | 
| 4D-Flow MRI Super-Resolution | CSF/venous pulsatility and vorticity | 1–2 mm voxels, 8–20 min | Peak velocity, pulsatility index, flow patterns | [89] | 
| Stereoscopic Photoacoustic Microscopy (mLV) | Meningeal lymphatic drainage dynamics | µm resolution, mm depth | Drainage volume and peak outflow timing (20–40 min) | [90] | 
| PET–MRI dynamic tracer imaging | Tracer influx/efflux Kinetics | 30–90 min scans | Inflow/outflow asymmetry, T½ | [91] | 
| Jugular Doppler Ultrasound | Venous outflow impedance | 5–10 min leverages neck vessel Doppler | Velocity, collapsibility indices | [92] | 
| Proteomic/Metabolomic Panels | Molecular clearance signatures | Days per sample | Combined biomarker signatures | [93] | 
| Intervention | Target | Timing | Expected Effect | Key 2024–2025 Reference | 
|---|---|---|---|---|
| Donanemab/Lecanemab + clearance adjunct | Amyloid removal + efflux enhancement | Infusion → nocturnal adjunct | Reduced ARIA risk, accelerated clearance | [109] | 
| 40 Hz Gamma Sensory Entrainment | Vasomotion and microglia engagement | Evening sessions | Increased perivascular transport, plaque clearance | [110] | 
| Closed-loop SWS Stimulation | Sleep microarchitecture | Overnight auditory phase-locking | Enhanced nocturnal CSF flux | [111] | 
| Focused Ultrasound (FUS) ± Microbubbles | Vasomotion modulation + transient BBB opening | Tuned sessions, daytime | Increased clearance and drug penetration | [112] | 
| Venous Sinus Stenting | Outflow resistance reduction | Procedure-standard | Improved tracer efflux | [14] | 
| CSF Shunting | Bulk CSF clearance | Shunt surgery | ~40% flux increase post-op | [113] | 
| Melatonin/Circadian Support | AQP4 polarity, rhythm stabilization | Evening dosing | Preservation of clearance rhythms | [114] | 
| Cilostazol (PDE3 inhibitor) | Arterial pulsatility enhancement | Daily dosing | Increased glymphatic inflow | [115] | 
| SGLT2 inhibitors (repurposed) | Vascular compliance, edema mitigation | Standard dosing | Improved vascular milieu | [116] | 
| CPAP in OSA | Nocturnal airflow and vascular tone | Nightly adherence | Restored nocturnal clearance functions | [117] | 
| Aerobic Exercise (structured) | Systemic vascular health | Weekly ≥150 min | ALPS index improvement (~0.1 unit) | [15] | 
| VEGF-C Lymphangiogenesis | Meningeal lymphatic expansion | Experimental delivery | Enhanced drainage volume | [24] | 
| CRISPR/AAV polarity repair | Astroglial structural integrity | Targeted gene therapy | Restored AQP4 localization and clearance | [41] | 
| Disease/Syndrome | Biomarker | Prognostic/Decision Impact | Example Use | Reference | 
|---|---|---|---|---|
| Alzheimer’s Disease | PVS burden, nocturnal clearance metrics | 30–40% elevated risk of cognitive decline | Stratify antibody therapy; ARIA risk counseling | [180] | 
| CSVD/Vascular Cognitive Impairment | PVS/4D-Flow pulsatility | Predict WMH growth and cognitive decline | Guide therapy intensity and follow-up | [37] | 
| Acute Ischemic Stroke | CSF flow metrics/nocturnal clearance | Predict edema resolution and rehab response | Tailor rehab and care levels | [181] | 
| TBI | Nocturnal clearance deficits | 2× risk of long-term cognitive decline | Inform return-to-activity protocols | [182] | 
| Parkinson’s Disease | ALPS flux decline | Dementia conversion risk stratification | Guide neurocognitive management | [183] | 
| Multiple Sclerosis | DCE perivascular clearance near plaques | Predict relapse frequency/progression | Guide escalation of DMT | [184] | 
| NPH/IIH | Clearance flux; venous pressure response | Anticipate surgical benefit | Select NPH shunt candidates; IIH stent sizing | [185] | 
| Psychiatric/OSA-related | PVS, nocturnal clearance proxies | Tracks depressive or cognitive symptoms | Inform sleep/cognitive therapies | [186] | 
| CKD/HF/Metabolic Disease | Proteomic signatures; outflow metrics | Dementia risk stratification | Scaffold preventive strategies | [187] | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costea, D.; Dobrin, N.; Tataru, C.-I.; Toader, C.; Șerban, M.; Covache-Busuioc, R.-A.; Munteanu, O.; Diaconescu, I.B. The Glymphatic–Venous Axis in Brain Clearance Failure: Aquaporin-4 Dysfunction, Biomarker Imaging, and Precision Therapeutic Frontiers. Int. J. Mol. Sci. 2025, 26, 10546. https://doi.org/10.3390/ijms262110546
Costea D, Dobrin N, Tataru C-I, Toader C, Șerban M, Covache-Busuioc R-A, Munteanu O, Diaconescu IB. The Glymphatic–Venous Axis in Brain Clearance Failure: Aquaporin-4 Dysfunction, Biomarker Imaging, and Precision Therapeutic Frontiers. International Journal of Molecular Sciences. 2025; 26(21):10546. https://doi.org/10.3390/ijms262110546
Chicago/Turabian StyleCostea, Daniel, Nicolaie Dobrin, Catalina-Ioana Tataru, Corneliu Toader, Matei Șerban, Răzvan-Adrian Covache-Busuioc, Octavian Munteanu, and Ionut Bogdan Diaconescu. 2025. "The Glymphatic–Venous Axis in Brain Clearance Failure: Aquaporin-4 Dysfunction, Biomarker Imaging, and Precision Therapeutic Frontiers" International Journal of Molecular Sciences 26, no. 21: 10546. https://doi.org/10.3390/ijms262110546
APA StyleCostea, D., Dobrin, N., Tataru, C.-I., Toader, C., Șerban, M., Covache-Busuioc, R.-A., Munteanu, O., & Diaconescu, I. B. (2025). The Glymphatic–Venous Axis in Brain Clearance Failure: Aquaporin-4 Dysfunction, Biomarker Imaging, and Precision Therapeutic Frontiers. International Journal of Molecular Sciences, 26(21), 10546. https://doi.org/10.3390/ijms262110546
 
        

 
       