Special Issue “New Trends in Diabetes, Hypertension and Cardiovascular Diseases: 3rd Edition”
1. Introduction
2. Contribution of This Special Issue to the Field of Research
- Treatment strategies, such as the application of docetaxel [66].
| References | Title | Authors | Main Finding |
|---|---|---|---|
| Reviews | |||
| [61] | Shared Risk Factors and Molecular Mechanisms Between Aortic Stenosis and Atherosclerosis: A Rationale for Therapeutic Repositioning | Cinezan C, Magureanu DC, Hiceag ML, et al. | This article examines the shared risk factors and molecular mechanisms of aortic stenosis and atherosclerosis. It reveals that both diseases are driven by age, hypertension, hyperlipidemia, and diabetes, and involve chronic inflammation, endothelial dysfunction, oxidative stress, lipid accumulation, and calcific remodeling. |
| [62] | ALDH2 Enzyme Deficiency in Diabetic Cardiomyopathy | Hsieh Y-W, Lee A-S, Sung K-T, et al. | This study reviews the molecular basis of how ALDH2 enzyme deficiency contributes to diabetic cardiomyopathy. The article highlights promising therapeutic strategies, including the use of ALDH2 activators and SGLT2 inhibitors, to mitigate disease progression. |
| [63] | Tissue-Resident Macrophages in Cardiovascular Diseases: Heterogeneity and Therapeutic Potential | An T, Guo M, Wang Z, et al. | This article explores the origin, diversity, and roles of cardiac resident macrophages in cardiovascular conditions such as myocardial infarction, heart failure, atherosclerosis, and hypertension. It emphasizes the therapeutic potential of targeting specific macrophage subtypes to modulate disease outcomes. |
| [64] | From DNA Repair to Redox Signaling: The Multifaceted Role of APEX1 (Apurinic/Apyrimidinic Endonuclease 1) in Cardiovascular Health and Disease | Yuan H-H, Yin H, Marincas M, et al. | This study highlights the role of APEX1 in maintaining cardiovascular homeostasis through regulation of innate immunity. The findings suggest APEX1 as a novel therapeutic target for treating various cardiovascular diseases. |
| [65] | Neuroimmune Interactions and Their Role in Immune Cell Trafficking in Cardiovascular Diseases and Cancer | Wang Y, Anesi JC, Panicker IS, et al. | This article outlines key molecular pathways activated by sympathetic nervous system stimulation and their impact on immune cell migration. It proposes that inhibiting sympathetic activity could be a viable therapeutic approach for both cardiovascular disease and cancer. |
| Original research articles | |||
| [66] | Low-Dose Docetaxel Is Effective in Reducing Atherogenic Lipids and Atherosclerosis | Choi HY, Ruel I, Choi S, et al. | This study investigates the effect of docetaxel, a compound that enhances high-density lipoprotein biogenesis, on atherosclerosis in apolipoprotein E-deficient mice. The study shows that docetaxel reduces dyslipidemia-induced atherosclerosis, supporting its potential as an HDL-targeted therapy. |
| [67] | The Genetic Variants Influencing Hypertension Prevalence Based on the Risk of Insulin Resistance as Assessed Using the Metabolic Score for Insulin Resistance (METS-IR) | Shine B-K, Choi J-E, Park Y-J, et al. | This article utilizes data from the Korean Genome and Epidemiology Study and identifies six genetic loci significantly associated with hypertension. It reveals distinct genetic patterns across metabolic profiles, highlighting the interplay between metabolic status and genetic predisposition. |
| [68] | Gut Microbiota and Metabolic Alterations Associated with Heart Failure and Coronary Artery Disease | Yafarova AA, Dementeva EV, Zlobovskaya OA, et al. | This study assesses the role of gut microbiota in cardiovascular disease, identifying microbial features linked to coronary artery disease and heart failure. The findings underscore complex host–microbiome interactions that may influence cardiovascular health and disease progression. |
3. Concluding Remarks
Author Contributions
Conflicts of Interest
References
- Dalakoti, M.; Lin, N.H.Y.; Yap, J.; Cader, A.; Dipanker, P.; Lee, D.; Raja Shariff, R.E.; Cuenza, L.; Honda, S.; Malis, V.; et al. Primary Prevention of Cardiovascular Disease in Asia: Challenges: A Narrative Review. JACC Adv. 2025, 4, 101670. [Google Scholar] [CrossRef] [PubMed]
- Joynt Maddox, K.E.; Elkind, M.S.V.; Aparicio, H.J.; Commodore-Mensah, Y.; de Ferranti, S.D.; Dowd, W.N.; Hernandez, A.F.; Khavjou, O.; Michos, E.D.; Palaniappan, L.; et al. Forecasting the Burden of Cardiovascular Disease and Stroke in the United States Through 2050-Prevalence of Risk Factors and Disease: A Presidential Advisory From the American Heart Association. Circulation 2024, 150, e65–e88. [Google Scholar] [CrossRef] [PubMed]
- Gornik, H.L.; Aronow, H.D.; Goodney, P.P.; Arya, S.; Brewster, L.P.; Byrd, L.; Chandra, V.; Drachman, D.E.; Eaves, J.M.; Ehrman, J.K.; et al. 2024 ACC/AHA/AACVPR/APMA/ABC/SCAI/SVM/SVN/SVS/SIR/VESS Guideline for the Management of Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024, 149, e1313–e1410. [Google Scholar] [CrossRef]
- Razavi, A.C.; Troy, A.L.; Patel, J.; Mehta, L.S.; Spitz, J.A.; Lloyd-Jones, D.; Whelton, S.P.; Johansen, M.C.; Blumenthal, R.S. Future of Stroke Prevention: 7 Updates in the 2024 AHA/ASA Primary Prevention of Stroke Guideline. JACC Adv. 2025, 4, 101724. [Google Scholar] [CrossRef]
- Jackman, K.A.; Brait, V.H.; Wang, Y.; Maghzal, G.J.; Ball, H.J.; McKenzie, G.; De Silva, T.M.; Stocker, R.; Sobey, C.G. Vascular expression, activity and function of indoleamine 2,3-dioxygenase-1 following cerebral ischaemia-reperfusion in mice. Naunyn Schmiedebergs Arch. Pharmacol. 2011, 383, 471–481. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 17 October 2025).
- Joynt Maddox, K.E. Health Economics of Cardiovascular Disease in the United States. Circulation 2024, 150, 419–421. [Google Scholar] [CrossRef]
- Kazi, D.S.; Elkind, M.S.V.; Deutsch, A.; Dowd, W.N.; Heidenreich, P.; Khavjou, O.; Mark, D.; Mussolino, M.E.; Ovbiagele, B.; Patel, S.S.; et al. Forecasting the Economic Burden of Cardiovascular Disease and Stroke in the United States Through 2050: A Presidential Advisory From the American Heart Association. Circulation 2024, 150, e89–e101. [Google Scholar] [CrossRef]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, S.; Hu, X.; Chen, F.; Li, D. A Review of Healthy Dietary Choices for Cardiovascular Disease: From Individual Nutrients and Foods to Dietary Patterns. Nutrients 2023, 15, 4898. [Google Scholar] [CrossRef]
- Han, F.; Li, W.; Duan, N.; Hu, X.; Yao, N.; Yu, G.; Qu, J. Relationship Between Salt Intake and Cardiovascular Disease. J. Clin. Hypertens. 2025, 27, e70078. [Google Scholar] [CrossRef]
- Yao, Y.; Huang, V.; Seah, V.; Kim, J.E. Impact of Quantity and Type of Dietary Protein on Cardiovascular Disease Risk Factors Using Standard and Network Meta-analyses of Randomized Controlled Trials. Nutr. Rev. 2025, 83, e814–e828. [Google Scholar] [CrossRef]
- Kondo, T.; Nakano, Y.; Adachi, S.; Murohara, T. Effects of Tobacco Smoking on Cardiovascular Disease. Circ. J. 2019, 83, 1980–1985. [Google Scholar] [CrossRef] [PubMed]
- Pistilli, M.; Howard, V.J.; Safford, M.M.; Lee, B.K.; Lovasi, G.S.; Cushman, M.; Malek, A.M.; McClure, L.A. Association of secondhand tobacco smoke exposure during childhood on adult cardiovascular disease risk among never-smokers. Ann. Epidemiol. 2019, 32, 28–34.e21. [Google Scholar] [CrossRef]
- Gupta, S.; Ahimsadasan, N.; Dalsania, K.; Jing, L.; Waraich, H.; Gupta, K.; Kaminska, M.; Balamane, S.; Garcia-Zamora, S.; Miranda-Arboleda, A.F.; et al. Alcohol and Cardiovascular Disease. Am. J. Cardiol. 2025, in press. [Google Scholar] [CrossRef]
- Oldridge, N.B. Economic burden of physical inactivity: Healthcare costs associated with cardiovascular disease. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 130–139. [Google Scholar] [CrossRef]
- Fletcher, G. Physical inactivity as a risk factor for cardiovascular disease. Am. J. Med. 1999, 107, 10s–11s. [Google Scholar] [CrossRef] [PubMed]
- Dina, C.; Tit, D.M.; Radu, A.; Bungau, G.; Radu, A.F. Obesity, Dietary Patterns, and Cardiovascular Disease: A Narrative Review of Metabolic and Molecular Pathways. Curr. Issues Mol. Biol. 2025, 47, 440. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, Z.H.; Maya, M.F.; Kazim, F.; Amir Ali, Z.; Akber Ali, N.; Khoja, A. Impact of climate change and air pollution on cardiovascular disease: A systematic review and meta-analysis protocol. JRSM Cardiovasc. Dis. 2025, 14, 20480040251380392. [Google Scholar] [CrossRef]
- Islam, F.; Nukala, S.K.; Shrestha, P.; Badgery-Parker, T.; Foo, F. Air pollution and cardiovascular disease: A systematic review of the effects of air pollution, including bushfire smoke, on cardiovascular disease. Am. Heart J. Plus 2025, 54, 100546. [Google Scholar] [CrossRef]
- Arnett Donna, K.; Blumenthal Roger, S.; Albert Michelle, A.; Buroker Andrew, B.; Goldberger Zachary, D.; Hahn Ellen, J.; Himmelfarb Cheryl, D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary. J. Am. Coll. Cardiol. 2019, 74, 1376–1414. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Y.; Witting, P.K.; Charchar, F.J.; Sobey, C.G.; Drummond, G.R.; Golledge, J. Dietary fatty acids and mortality risk from heart disease in US adults: An analysis based on NHANES. Sci. Rep. 2023, 13, 1614. [Google Scholar] [CrossRef]
- Cook, N.R.; Cutler, J.A.; Obarzanek, E.; Buring, J.E.; Rexrode, K.M.; Kumanyika, S.K.; Appel, L.J.; Whelton, P.K. Long term effects of dietary sodium reduction on cardiovascular disease outcomes: Observational follow-up of the trials of hypertension prevention (TOHP). BMJ 2007, 334, 885. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, Z.; Gregg, E.W.; Flanders, W.D.; Merritt, R.; Hu, F.B. Added Sugar Intake and Cardiovascular Diseases Mortality Among US Adults. JAMA Intern. Med. 2014, 174, 516–524. [Google Scholar] [CrossRef]
- Kiage, J.N.; Merrill, P.D.; Robinson, C.J.; Cao, Y.; Malik, T.A.; Hundley, B.C.; Lao, P.; Judd, S.E.; Cushman, M.; Howard, V.J.; et al. Intake of trans fat and all-cause mortality in the Reasons for Geographical and Racial Differences in Stroke (REGARDS) cohort1234. Am. J. Clin. Nutr. 2013, 97, 1121–1128. [Google Scholar] [CrossRef]
- Ekelund, U.; Steene-Johannessen, J.; Brown, W.J.; Fagerland, M.W.; Owen, N.; Powell, K.E.; Bauman, A.; Lee, I.M. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet 2016, 388, 1302–1310. [Google Scholar] [CrossRef]
- Hamer, M.; Chida, Y. Walking and primary prevention: A meta-analysis of prospective cohort studies. Br. J. Sports Med. 2008, 42, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Stone, J.A.; Agarwal, G.; Andrade, J.G.; Bacon, S.L.; Bajaj, H.S.; Baker, B.; Cheng, G.; Dannenbaum, D.; Gelfer, M.; et al. Canadian Cardiovascular Harmonized National Guideline Endeavour (C-CHANGE) guideline for the prevention and management of cardiovascular disease in primary care: 2022 update. CMAJ 2022, 194, e1460–e1480. [Google Scholar] [CrossRef] [PubMed]
- Cowie, M.R.; Lam, C.S.P. Remote monitoring and digital health tools in CVD management. Nat. Rev. Cardiol. 2021, 18, 457–458. [Google Scholar] [CrossRef]
- American Heart Association. Types of Heart Medications. Available online: https://www.heart.org/en/health-topics/heart-attack/treatment-of-a-heart-attack/cardiac-medications (accessed on 2 September 2025).
- Figtree, G.A.; Broadfoot, K.; Casadei, B.; Califf, R.; Crea, F.; Drummond, G.R.; Freedman, J.E.; Guzik, T.J.; Harrison, D.; Hausenloy, D.J.; et al. A Call to Action for New Global Approaches to Cardiovascular Disease Drug Solutions. Circulation 2021, 144, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Khakoo, A.Y.; Yurgin, N.R.; Eisenberg, P.R.; Fonarow, G.C. Overcoming Barriers to Development of Novel Therapies for Cardiovascular Disease: Insights From the Oncology Drug Development Experience. JACC Basic Transl. Sci. 2019, 4, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.H.; Hsieh, A.; Dicklin, M.R.; Maki, K.C. The Imperative to Enhance Cost-Effectiveness for Cardiovascular Therapeutic Development. JACC Basic Transl. Sci. 2024, 9, 1029–1040. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.C. The grand challenge of discovering new cardiovascular drugs. Front. Drug Discov. 2022, 2, 1027401. [Google Scholar] [CrossRef]
- Lippi, M.; Stadiotti, I.; Pompilio, G.; Sommariva, E. Human Cell Modeling for Cardiovascular Diseases. Int. J. Mol. Sci. 2020, 21, 6388. [Google Scholar] [CrossRef]
- Thomas, D.; Choi, S.; Alamana, C.; Parker, K.K.; Wu, J.C. Cellular and Engineered Organoids for Cardiovascular Models. Circ. Res. 2022, 130, 1780–1802. [Google Scholar] [CrossRef]
- Wang, Y.; Panicker, I.S.; Anesi, J.; Sargisson, O.; Atchison, B.; Habenicht, A.J.R. Animal Models, Pathogenesis, and Potential Treatment of Thoracic Aortic Aneurysm. Int. J. Mol. Sci. 2024, 25, 901. [Google Scholar] [CrossRef]
- Kwan, E.; Ghafoori, E.; Good, W.; Regouski, M.; Moon, B.; Fish, J.M.; Hsu, E.; Polejaeva, I.A.; MacLeod, R.S.; Dosdall, D.J.; et al. Diffuse functional and structural abnormalities in fibrosis: Potential structural basis for sustaining atrial fibrillation. Heart Rhythm 2025, 22, 1820–1828. [Google Scholar] [CrossRef]
- Le Lay, J.E.; Du, Q.; Mehta, M.B.; Bhagroo, N.; Hummer, B.T.; Falloon, J.; Carlson, G.; Rosenbaum, A.I.; Jin, C.; Kimko, H.; et al. Blocking endothelial lipase with monoclonal antibody MEDI5884 durably increases high density lipoprotein in nonhuman primates and in a phase 1 trial. Sci. Transl. Med. 2021, 13, eabb0602. [Google Scholar] [CrossRef]
- van Doorn, E.C.H.; Amesz, J.H.; Sadeghi, A.H.; de Groot, N.M.S.; Manintveld, O.C.; Taverne, Y.J.H.J. Preclinical Models of Cardiac Disease: A Comprehensive Overview for Clinical Scientists. Cardiovasc. Eng. Technol. 2024, 15, 232–249. [Google Scholar] [CrossRef]
- World Health Organisation. Hypertension. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension (accessed on 20 October 2025).
- World Health Organization. Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 20 October 2025).
- Li, Z.; Kang, S.; Kang, H. Development and validation of nomograms for predicting cardiovascular disease risk in patients with prediabetes and diabetes. Sci. Rep. 2024, 14, 20909. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. Postprandial Plasma Glucose Measured from Blood Taken between 4 and 7.9 h Is Positively Associated with Mortality from Hypertension and Cardiovascular Disease. J. Cardiovasc. Dev. Dis. 2024, 11, 53. [Google Scholar] [CrossRef]
- Wang, Y. Stage 1 hypertension and risk of cardiovascular disease mortality in United States adults with or without diabetes. J. Hypertens. 2022, 40, 794–803. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Y. Postabsorptive homeostasis model assessment for insulin resistance is a reliable biomarker for cardiovascular disease mortality and all-cause mortality. Diabetes Epidemiol. Manag. 2021, 6, 100045. [Google Scholar] [CrossRef]
- Marx, N.; Federici, M.; Schütt, K.; Müller-Wieland, D.; Ajjan, R.A.; Antunes, M.J.; Christodorescu, R.M.; Crawford, C.; Di Angelantonio, E.; Eliasson, B. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes: Developed by the task force on the management of cardiovascular disease in patients with diabetes of the European Society of Cardiology (ESC). Eur. Heart J. 2023, 44, 4043–4140. [Google Scholar] [CrossRef]
- McEvoy, J.W.; McCarthy, C.P.; Bruno, R.M.; Brouwers, S.; Canavan, M.D.; Ceconi, C.; Christodorescu, R.M.; Daskalopoulou, S.S.; Ferro, C.J.; Gerdts, E.; et al. 2024 ESC Guidelines for the management of elevated blood pressure and hypertension: Developed by the task force on the management of elevated blood pressure and hypertension of the European Society of Cardiology (ESC) and endorsed by the European Society of Endocrinology (ESE) and the European Stroke Organisation (ESO). Eur. Heart J. 2024, 45, 3912–4018. [Google Scholar] [CrossRef]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020, 75, 1334–1357. [Google Scholar] [CrossRef]
- GBD 2023 Disease and Injury and Risk Factor Collaborators. Burden of 375 diseases and injuries, risk-attributable burden of 88 risk factors, and healthy life expectancy in 204 countries and territories, including 660 subnational locations, 1990–2023: A systematic analysis for the Global Burden of Disease Study 2023. Lancet 2025, 406, 1873–1922. [Google Scholar] [CrossRef] [PubMed]
- World Bank Group. The Disability-Adjusted Life Year (DALY) Definition, Measurement and Potential Use (English). Available online: https://documents.worldbank.org/en/publication/documents-reports/documentdetail/482351468764408897/the-disability-adjusted-life-year-daly-definition-measurement-and-potential-use (accessed on 20 October 2025).
- Devleesschauwer, B.; Havelaar, A.H.; Maertens de Noordhout, C.; Haagsma, J.A.; Praet, N.; Dorny, P.; Duchateau, L.; Torgerson, P.R.; Van Oyen, H.; Speybroeck, N. DALY calculation in practice: A stepwise approach. Int. J. Public Health 2014, 59, 571–574. [Google Scholar] [CrossRef]
- Szili-Torok, T.; Xu, Y.; de Borst, M.H.; Bakker, S.J.L.; Tietge, U.J.F. Normal Fasting Triglyceride Levels and Incident Hypertension in Community-Dwelling Individuals Without Metabolic Syndrome. J. Am. Heart Assoc. 2023, 12, e028372. [Google Scholar] [CrossRef] [PubMed]
- Tomita, Y.; Sakata, S.; Arima, H.; Yamato, I.; Ibaraki, A.; Ohtsubo, T.; Matsumura, K.; Fukuhara, M.; Goto, K.; Kitazono, T. Relationship between casual serum triglyceride levels and the development of hypertension in Japanese. J. Hypertens. 2021, 39, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. Triglycerides, Glucose Metabolism, and Type 2 Diabetes. Int. J. Mol. Sci. 2025, 26, 9910. [Google Scholar] [CrossRef]
- Wang, Y. Higher fasting triglyceride predicts higher risks of diabetes mortality in US adults. Lipids Health Dis. 2021, 20, 181. [Google Scholar] [CrossRef]
- Aberra, T.; Peterson, E.D.; Pagidipati, N.J.; Mulder, H.; Wojdyla, D.M.; Philip, S.; Granowitz, C.; Navar, A.M. The association between triglycerides and incident cardiovascular disease: What is “optimal”? J. Clin. Lipidol. 2020, 14, 438–447.e433. [Google Scholar] [CrossRef] [PubMed]
- Scherer, D.J.; Nicholls, S.J. Lowering triglycerides to modify cardiovascular risk: Will icosapent deliver? Vasc. Health Risk Manag. 2015, 11, 203–209. [Google Scholar] [CrossRef]
- Farnier, M.; Zeller, M.; Masson, D.; Cottin, Y. Triglycerides and risk of atherosclerotic cardiovascular disease: An update. Arch. Cardiovasc. Dis. 2021, 114, 132–139. [Google Scholar] [CrossRef]
- Cinezan, C.; Magureanu, D.C.; Hiceag, M.L.; Rus, C.B.; Ilias, I.T.; Bogdan, I.D.; Buzle, A.M.; Cozma, A. Shared Risk Factors and Molecular Mechanisms Between Aortic Stenosis and Atherosclerosis: A Rationale for Therapeutic Repositioning. Int. J. Mol. Sci. 2025, 26, 8163. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.-W.; Lee, A.-S.; Sung, K.-T.; Chen, X.-R.; Lai, H.-H.; Chen, Y.-F.; Chien, C.-Y.; Yeh, H.-I.; Chen, C.-H.; Hung, C.-L. ALDH2 Enzyme Deficiency in Diabetic Cardiomyopathy. Int. J. Mol. Sci. 2025, 26, 5516. [Google Scholar] [CrossRef]
- An, T.; Guo, M.; Wang, Z.; Liu, K. Tissue-Resident Macrophages in Cardiovascular Diseases: Heterogeneity and Therapeutic Potential. Int. J. Mol. Sci. 2025, 26, 4524. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.-H.; Yin, H.; Marincas, M.; Xie, L.-L.; Bu, L.-L.; Guo, M.-H.; Zheng, X.-L. From DNA Repair to Redox Signaling: The Multifaceted Role of APEX1 (Apurinic/Apyrimidinic Endonuclease 1) in Cardiovascular Health and Disease. Int. J. Mol. Sci. 2025, 26, 3034. [Google Scholar] [CrossRef]
- Wang, Y.; Anesi, J.C.; Panicker, I.S.; Cook, D.; Bista, P.; Fang, Y.; Oqueli, E. Neuroimmune Interactions and Their Role in Immune Cell Trafficking in Cardiovascular Diseases and Cancer. Int. J. Mol. Sci. 2025, 26, 2553. [Google Scholar] [CrossRef]
- Choi, H.Y.; Ruel, I.; Choi, S.; Iatan, I.; Choi, S.; Lee, J.-Y.; Genest, J. Low-Dose Docetaxel Is Effective in Reducing Atherogenic Lipids and Atherosclerosis. Int. J. Mol. Sci. 2025, 26, 1484. [Google Scholar] [CrossRef]
- Shine, B.-K.; Choi, J.-E.; Park, Y.-J.; Hong, K.-W. The Genetic Variants Influencing Hypertension Prevalence Based on the Risk of Insulin Resistance as Assessed Using the Metabolic Score for Insulin Resistance (METS-IR). Int. J. Mol. Sci. 2024, 25, 12690. [Google Scholar] [CrossRef]
- Yafarova, A.A.; Dementeva, E.V.; Zlobovskaya, O.A.; Sheptulina, A.F.; Lopatukhina, E.V.; Timofeev, Y.S.; Glazunova, E.V.; Lyundup, A.V.; Doludin, Y.V.; Kiselev, A.R.; et al. Gut Microbiota and Metabolic Alterations Associated with Heart Failure and Coronary Artery Disease. Int. J. Mol. Sci. 2024, 25, 11295. [Google Scholar] [CrossRef]
- Javaid, A.; Zghyer, F.; Kim, C.; Spaulding, E.M.; Isakadze, N.; Ding, J.; Kargillis, D.; Gao, Y.; Rahman, F.; Brown, D.E.; et al. Medicine 2032: The future of cardiovascular disease prevention with machine learning and digital health technology. Am. J. Prev. Cardiol. 2022, 12, 100379. [Google Scholar] [CrossRef]
- Subramani, S.; Varshney, N.; Anand, M.V.; Soudagar, M.E.M.; Al-Keridis, L.A.; Upadhyay, T.K.; Alshammari, N.; Saeed, M.; Subramanian, K.; Anbarasu, K.; et al. Cardiovascular diseases prediction by machine learning incorporation with deep learning. Front. Med. 2023, 10, 1150933. [Google Scholar] [CrossRef]
- Saba, L.; Maindarkar, M.; Johri, A.M.; Mantella, L.; Laird, J.R.; Khanna, N.N.; Paraskevas, K.I.; Ruzsa, Z.; Kalra, M.K.; Fernandes, J.F.E.; et al. UltraAIGenomics: Artificial Intelligence-Based Cardiovascular Disease Risk Assessment by Fusion of Ultrasound-Based Radiomics and Genomics Features for Preventive, Personalized and Precision Medicine: A Narrative Review. Rev. Cardiovasc. Med. 2024, 25, 184. [Google Scholar] [CrossRef]
- Sethi, Y.; Patel, N.; Kaka, N.; Kaiwan, O.; Kar, J.; Moinuddin, A.; Goel, A.; Chopra, H.; Cavalu, S. Precision Medicine and the future of Cardiovascular Diseases: A Clinically Oriented Comprehensive Review. J. Clin. Med. 2023, 12, 1799. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Y.; Magliano, D.J.; Charchar, F.J.; Sobey, C.G.; Drummond, G.R.; Golledge, J. Fasting triglycerides are positively associated with cardiovascular mortality risk in people with diabetes. Cardiovasc. Res. 2023, 119, 826–834. [Google Scholar] [CrossRef]
- Filipovic, M.G.; Luedi, M.M. Cardiovascular Biomarkers: Current Status and Future Directions. Cells 2023, 12, 2647. [Google Scholar] [CrossRef]
- van Trier, T.J.; Mohammadnia, N.; Snaterse, M.; Peters, R.J.G.; Jørstad, H.T.; Bax, W.A. Lifestyle management to prevent atherosclerotic cardiovascular disease: Evidence and challenges. Neth. Heart J. 2022, 30, 3–14. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Sapp, P.A.; Riley, T.M.; Davis, K.M.; Hart, T.; Lawler, O. The Dynamic Interplay of Healthy Lifestyle Behaviors for Cardiovascular Health. Curr. Atheroscler. Rep. 2022, 24, 969–980. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Magliano, D.J. Special Issue “New Trends in Diabetes, Hypertension and Cardiovascular Diseases: 3rd Edition”. Int. J. Mol. Sci. 2025, 26, 10536. https://doi.org/10.3390/ijms262110536
Wang Y, Magliano DJ. Special Issue “New Trends in Diabetes, Hypertension and Cardiovascular Diseases: 3rd Edition”. International Journal of Molecular Sciences. 2025; 26(21):10536. https://doi.org/10.3390/ijms262110536
Chicago/Turabian StyleWang, Yutang, and Dianna J. Magliano. 2025. "Special Issue “New Trends in Diabetes, Hypertension and Cardiovascular Diseases: 3rd Edition”" International Journal of Molecular Sciences 26, no. 21: 10536. https://doi.org/10.3390/ijms262110536
APA StyleWang, Y., & Magliano, D. J. (2025). Special Issue “New Trends in Diabetes, Hypertension and Cardiovascular Diseases: 3rd Edition”. International Journal of Molecular Sciences, 26(21), 10536. https://doi.org/10.3390/ijms262110536

