Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitor Therapy Reduces the Level of DNA Damage in Patients with Heterozygous Familial Hypercholesterolemia
Abstract
1. Introduction
2. Results
2.1. HeFH Patients Demonstrated Lower Levels of DNA Damage After PCSK9i Treatment Compared to Before Treatment
2.2. Both Evolocumab and Alirocumab Significantly Reduce DNA Damage Levels
2.3. Significantly Lower LDL, Non-HDL, Total Cholesterol, TG, and Lp(a) Levels Are Significantly Lower After Treatment with PCSK9 Inhibitors
2.4. Serum Levels of PCSK9 Protein Are Significantly Lower in Patients After Treatment with PCSK9 Inhibitors
2.5. DNA Damage Positively Correlates with PCSK9 Protein Levels After PCSK9i Therapy
3. Discussion
4. Materials and Methods
4.1. Patients with HeFH and Controls with Normolipidemia
4.2. Sample Collection and Diagnostic Laboratory Methods
4.3. Enzyme-Linked Immunosorbent Assay (ELISA)
4.4. Particle-Enhanced Immunoturbidimetric Assay
4.5. Comet Assay
4.5.1. Alkaline Version
4.5.2. Comets Assay
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vallejo-Vaz, A.J.; Ray, K.K. Epidemiology of Familial Hypercholesterolaemia: Community and Clinical. Atherosclerosis 2018, 277, 289–297. [Google Scholar] [CrossRef]
- Movahedan, M.; Ellis, U.M.; Barry, A.R. Efficacy of Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors in Patients with Heterozygous Familial Hypercholesterolemia: A Meta-Analysis. Am. J. Cardiovasc. Drugs 2025, 25, 47–55. [Google Scholar] [CrossRef]
- Lewek, J.; Sosnowska, B.; Starostecka, E.; Konopka, A.; Gach, A.; Rutkowska, L.; Adach, W.; Mierczak, K.; Bielecka-Dąbrowa, A.; Banach, M. Clinical Reality and Challenges with Familial Hypercholesterolemia Patients’ Management. 2024 Results from the Regional Center for Rare Diseases (RCRD) Registry in Poland. Int. J. Cardiol. 2025, 15, 132667. [Google Scholar] [CrossRef]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner–La Rocca, H.-P.; Choi, D.-J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
- Kuzmich, N.; Andresyuk, E.; Porozov, Y.; Tarasov, V.; Samsonov, M.; Preferanskaya, N.; Veselov, V.; Alyautdin, R. PCSK9 as a Target for Development of a New Generation of Hypolipidemic Drugs. Molecules 2022, 27, 434. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef]
- D’Onofrio, N.; Prattichizzo, F.; Marfella, R.; Sardu, C.; Martino, E.; Scisciola, L.; Marfella, L.; La Grotta, R.; Frigé, C.; Paolisso, G.; et al. SIRT3 Mediates the Effects of PCSK9 Inhibitors on Inflammation, Autophagy, and Oxidative Stress in Endothelial Cells. Theranostics 2023, 13, 531–542. [Google Scholar] [CrossRef]
- Basiak, M.; Kosowski, M.; Cyrnek, M.; Bułdak, Ł.; Maligłówka, M.; Machnik, G.; Okopień, B. Pleiotropic Effects of Pcsk-9 Inhibitors. Int. J. Mol. Sci. 2021, 22, 3144. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.V.; Pandey, A.; De Lemos, J.A. Conceptual Framework for Addressing Residual Atherosclerotic Cardiovascular Disease Risk in the Era of Precision Medicine. Circulation 2018, 137, 2551–2553. [Google Scholar] [CrossRef]
- Ridker, P.M.; MacFadyen, J.G.; Thuren, T.; Everett, B.; Libby, P.; Glynn, R.J.; Lorenzatti, A.; Krum, H.; Varigos, J.; Siostrzonek, P.; et al. Effect of Interleukin-1β Inhibition with Canakinumab on Incident Lung Cancer in Patients with Atherosclerosis: Exploratory Results from a Randomised, Double-Blind, Placebo-Controlled Trial. Lancet 2017, 390, 1833–1842. [Google Scholar] [CrossRef]
- Woźniak, E.; Broncel, M.; Woźniak, A.; Satała, J.; Pawlos, A.; Bukowska, B.; Gorzelak-Pabiś, P. Lipoprotein(a) Is Associated with DNA Damage in Patients with Heterozygous Familial Hypercholesterolemia. Sci. Rep. 2024, 14, 2564. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Valko, R.; Fresser, L.; Nepovimova, E.; Kuca, K. Interplay of Oxidative Stress and Antioxidant Mechanisms in Cancer Development and Progression; Springer: Berlin, Germany, 2025; Volume 2021, ISBN 0123456789. [Google Scholar]
- Panagopoulos, A.; Stout, M.; Kilic, S.; Leary, P.; Vornberger, J.; Pasti, V.; Galarreta, A.; Lezaja, A.; Kirschenbühler, K.; Imhof, R.; et al. Multigenerational Cell Tracking of DNA Replication and Heritable DNA Damage. Nature 2025, 642, 785–795. [Google Scholar] [CrossRef]
- Martinet, W.; Knaapen, M.W.M.; De Meyer, G.R.Y.; Herman, A.G.; Kockx, M.M. Oxidative DNA Damage and Repair in Experimental Atherosclerosis Are Reversed by Dietary Lipid Lowering. Circ. Res. 2001, 88, 733–739. [Google Scholar] [CrossRef]
- Martinet, W.; Knaapen, M.W.M.; De Meyer, G.R.Y.; Herman, A.G.; Kockx, M.M. Elevated Levels of Oxidative DNA Damage and DNA Repair Enzymes in Human Atherosclerotic Plaques. Circulation 2002, 106, 927–932. [Google Scholar] [CrossRef]
- Robinson, J.G.; Farnier, M.; Kastelein, J.J.P.; Roth, E.M.; Taskinen, M.R.; Colhoun, H.M.; Brunet, A.; DiCioccio, A.T.; Lecorps, G.; Pordy, R.; et al. Relationship between Alirocumab, PCSK9, and LDL-C Levels in Four Phase 3 ODYSSEY Trials Using 75 and 150 Mg Doses. J. Clin. Lipidol. 2019, 13, 979–988.e10. [Google Scholar] [CrossRef]
- Shapiro, M.D.; Minnier, J.; Tavori, H.; Kassahun, H.; Flower, A.; Somaratne, R.; Fazio, S. Relationship between Low-Density Lipoprotein Cholesterol and Lipoprotein(A) Lowering in Response to PCSK9 Inhibition with Evolocumab. J. Am. Heart Assoc. 2019, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Dounousi, E.; Tellis, C.; Pavlakou, P.; Duni, A.; Liakopoulos, V.; Mark, P.B.; Papagianni, A.; Tselepis, A.D. Association between PCSK9 Levels and Markers of Inflammation, Oxidative Stress, and Endothelial Dysfunction in a Population of Nondialysis Chronic Kidney Disease Patients. Oxidative Med. Cell. Longev. 2021, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Punch, E.; Klein, J.; Diaba-Nuhoho, P.; Morawietz, H.; Garelnabi, M. Effects of PCSK9 Targeting: Alleviating Oxidation, Inflammation, and Atherosclerosis. J. Am. Heart Assoc. 2022, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Liu, S.; Wang, X.; Deng, X.; Fan, Y.; Sun, C.; Wang, Y.; Mehta, J.L. Hemodynamic Shear Stress via ROS Modulates PCSK9 Expression in Human Vascular Endothelial and Smooth Muscle Cells and along the Mouse Aorta. Antioxid. Redox Signal. 2015, 22, 760–771. [Google Scholar] [CrossRef]
- Magwenzi, S.; Woodward, C.; Wraith, K.S.; Aburima, A.; Raslan, Z.; Jones, H.; McNeil, C.; Wheatcroft, S.; Yuldasheva, N.; Febbriao, M.; et al. Oxidized LDL Activates Blood Platelets through CD36/NOX2-Mediated Inhibition of the CGMP/Protein Kinase G Signaling Cascade. Blood 2015, 125, 2693–2703. [Google Scholar] [CrossRef]
- Pastori, D.; Nocella, C.; Farcomeni, A.; Bartimoccia, S.; Santulli, M.; Vasaturo, F.; Carnevale, R.; Menichelli, D.; Violi, F.; Pignatelli, P.; et al. Relationship of PCSK9 and Urinary Thromboxane Excretion to Cardiovascular Events in Patients With Atrial Fibrillation. J. Am. Coll. Cardiol. 2017, 70, 1455–1462. [Google Scholar] [CrossRef]
- Banach, M.; Jankowski, P.; Joíwiak, J.; Cybulska, B.; Windak, A.; Guzik, T.; Mamcarz, A.; Broncel, M.; Tomasik, T.; Rysz, J.; et al. PoLA/CFPiP/PCS Guidelines for the Management of Dyslipidaemias for Family Physicians 2016. Arch. Med. Sci. 2017, 13, 1–45. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ma, X.; Niu, D.; Sun, Y.; Chai, X.; Deng, Y.; Wang, J.; Dong, J. PCSK9 Inhibitors Suppress Oxidative Stress and Inflammation in Atherosclerotic Development by Promoting Macrophage Autophagy. Am. J. Transl. Res. 2023, 15, 5129–5144. [Google Scholar] [PubMed]
- Quagliariello, V.; Buccolo, S.; Iovine, M.; Paccone, A.; Bonelli, A.; Cavalcanti, E.; Rea, D.; De Laurentiis, M.; Botti, G.; Maurea, N. PCSK9 Inhibitor Evolocumab to Increase Anticancer Activities and Reduce Cardiotoxicity during Doxorubicin and Trastuzumab, as Sequential Treatment, through MyD88/NF-KB/MTORC1 Pathways. J. Clin. Oncol. 2021, 39, e15039. [Google Scholar] [CrossRef]
- Nicola, M.; Martina, I.; Simona, B.; Andrea, P.; Francesca, C.; Quagliariello, V. Abstract 9384: Evolocumab, a Proprotein Convertase Subtilisin-Kexin Type 9 Inhibitor, Reduces Doxorubicin, Trastuzumab and Nivolumab Induced Cardiotoxicity Through Mtorc1 and Myd88 Related Pathways. Circulation 2021, 144. [Google Scholar] [CrossRef]
- Maurea, N.; Canale, M.L.; Scherillo, M.; Bisceglia, I.; Palma, G.; Luciano, A.; Bruzzese, F.; Paccone, A.; Iovine, M.; Florio, F.; et al. SGLT2i Dapagliflozin Decreases NLRP3, IL-1 and PCSK9 Expression in Preclinical Models of Short-Term Doxorubicin Cardiotoxicity. Eur. Heart J. 2023, 44, 1. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Visseren, F.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Tsimikas, S.; Karwatowska-Prokopczuk, E.; Gouni-Berthold, I.; Tardif, J.-C.; Baum, S.J.; Steinhagen-Thiessen, E.; Shapiro, M.D.; Stroes, E.S.; Moriarty, P.M.; Nordestgaard, B.G.; et al. Lipoprotein(a) Reduction in Persons with Cardiovascular Disease. N. Engl. J. Med. 2020, 382, 244–255. [Google Scholar] [CrossRef]
- O’Donoghue, M.L.; Rosenson, R.S.; Gencer, B.; López, J.A.G.; Lepor, N.E.; Baum, S.J.; Stout, E.; Gaudet, D.; Knusel, B.; Kuder, J.F.; et al. Small Interfering RNA to Reduce Lipoprotein(a) in Cardiovascular Disease. N. Engl. J. Med. 2022, 387, 1855–1864. [Google Scholar] [CrossRef] [PubMed]
- Gorzelak-Pabiś, P.; Broncel, M.; Pawlos, A.; Wojdan, K.; Gajewski, A.; Chałubiński, M.; Woźniak, E. Dabigatran: Its Protective Effect against Endothelial Cell Damage by Oxysterol. Biomed. Pharmacother. 2022, 147, 112679. [Google Scholar] [CrossRef] [PubMed]





| Parameter Median/(IQR) | Controls, n = 20 | Patients with HeFH, n = 36 | p Value Control vs. HeFH |
|---|---|---|---|
| Sex, n (%) | p > 0.05 | ||
| Female | 16 (85%) | 22 (61.1%) | |
| Male | 4 (20%) | 14 (38.9%) | |
| Age (y) | 48 (33; 53) | 57 (45; 68) | p < 0.01 |
| Cardiovascular diseases: | |||
| Acute coronary syndrome | 0 (0%) | 8 (22.2%) | p < 0.05 |
| Chronic coronary syndrome | 0 (0%) | 16 (44.4%) | p < 0.001 |
| Lower extremity arterial disease (LEAD) | 0 (0%) | 5 (13.9%) | p > 0.05 |
| Carotid Atherosclerosis (CAS) | 0 (0%) | 23 (63.9%) | p < 0.0001 |
| Stroke | 0 (0%) | 2 (5.6%) | p > 0.05 |
| Myocardial infarction | 0 (0%) | 5 (13.9%) | p > 0.05 |
| Hypertension | 0 (0%) | 20 (55.6%) | p < 0.0001 |
| Diabetes mellitus | 0 (0%) | 3 (8.3%) | p > 0.05 |
| Smoking | 0 (0%) | 5 (13.9%) | p > 0.05 |
| Chronic kidney disease | 0 (0%) | 4 (11.1%) | p > 0.05 |
| Non-alcoholic fatty liver disease | 0 (0%) | 2 (5.6%) | p > 0.05 |
| DCLN score | 0 (0%) | 22 (61.1%) | N/A |
| Patients genotype: | |||
| LDLR mutation | 0 (0%) | 13 (36.1%) | |
| ApoB mutation | 0 (0%) | 1 (2.8%) | |
| PCSK9 mutation | 0 (0%) | 0 (0%) | |
| Corneal arcus | 0 (0%) | 7 (19.4%) | N/A |
| Tendon Xanthomas | 0 (0%) | 7 (19.4%) | N/A |
| Xantelasma | 0 (0%) | 1 (2.8%) | N/A |
| Alirocumab | 0 (0%) | 17 (47.2%) | N/A |
| Evolokumab | 0 (0%) | 19 (52.8%) | N/A |
| Lipid Parameters Median (IQR) | Controls, n = 20 | Patients with HeFH, Before PCSK9i Treatment, n = 36 | Patients with HeFH, After PCSK9i Treatment, n = 36 | p Value HeFH vs. HeFH on PCSK9i | % Reduction or Increase |
|---|---|---|---|---|---|
| Total cholesterol | 192.5 (163.8; 229) | 235 (179; 275) | 130.5 (110.3;170.5) | <0.0001 | 44.5% |
| HDL-C | 61.7 (48.6; 68.3) | 54.3 (44.9; 63) | 58.6 (50.2; 67.9) | <0.05 | 7.3% |
| Non-HDL | 134 (117.5; 156.3) | 171.5 (121.5; 220.8) | 76 (51; 109) | <0.0001 | 55.7% |
| LDL-C | 112.5 (95.5; 137) | 151.5 (104.3; 196.5) | 51.5 (31.7; 70.7) | <0.0001 | 66% |
| Triglycerides | 131 (84; 194.8) | 120.5 (91.5; 172) | 94 (75; 132) | <0.01 | 22% |
| Lp(a) | 10.7 (3.85; 23.9) | 120.1 (17; 315.3) | 96.7 (8.4; 210.9) | <0.0001 | 32.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woźniak, E.; Woźniak, A.; Pawlos, A.; Broncel, M.; Satała, J.; Bukowska, B.; Gorzelak-Pabiś, P. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitor Therapy Reduces the Level of DNA Damage in Patients with Heterozygous Familial Hypercholesterolemia. Int. J. Mol. Sci. 2025, 26, 10529. https://doi.org/10.3390/ijms262110529
Woźniak E, Woźniak A, Pawlos A, Broncel M, Satała J, Bukowska B, Gorzelak-Pabiś P. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitor Therapy Reduces the Level of DNA Damage in Patients with Heterozygous Familial Hypercholesterolemia. International Journal of Molecular Sciences. 2025; 26(21):10529. https://doi.org/10.3390/ijms262110529
Chicago/Turabian StyleWoźniak, Ewelina, Agnieszka Woźniak, Agnieszka Pawlos, Marlena Broncel, Joanna Satała, Bożena Bukowska, and Paulina Gorzelak-Pabiś. 2025. "Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitor Therapy Reduces the Level of DNA Damage in Patients with Heterozygous Familial Hypercholesterolemia" International Journal of Molecular Sciences 26, no. 21: 10529. https://doi.org/10.3390/ijms262110529
APA StyleWoźniak, E., Woźniak, A., Pawlos, A., Broncel, M., Satała, J., Bukowska, B., & Gorzelak-Pabiś, P. (2025). Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitor Therapy Reduces the Level of DNA Damage in Patients with Heterozygous Familial Hypercholesterolemia. International Journal of Molecular Sciences, 26(21), 10529. https://doi.org/10.3390/ijms262110529

