Current Status of Molecularly Targeted Therapeutics in Blood Cancers
Abstract
1. Introduction
2. Tyrosine Kinase Inhibitors
2.1. First-Generation TKI: Imatinib
| Drug Name | Generation | Potency (IC50) in nM | References |
|---|---|---|---|
| Imatinib | First | 100 | [6] |
| Dasatinib | Second | 1 | [6] |
| Nilotinib | Second | 20 | [6] |
| Bosutinib | Second | 1 | [7] |
| Radotinib | Second | 34 | [8] |
| Ponatinib | Third | 0.37 | [6] |
| Olverembatinib | Third | 0.5 | [9] |
| Asciminib | Third | 3.8 | [10] |
| Vodobatinib | Third | 7 | [11] |
2.2. Second-Generation TKIs: Dasatinib, Nilotinib, Bosutinib, and Radotinib
2.3. Third-Generation TKIs: Ponatinib, Olverembatinib, Asciminib, and Vamotinib
3. FLT3 Inhibitors
3.1. First-Generation FLT3 Inhibitors: Lestaurtinib, Tandutinib, Midostaurin, Sorafenib, and Sunitinib
3.2. Second-Generation FLT3 Inhibitors: Quizartinib and Gilteritinib
3.3. Novel FLT3 Inhibitors
4. Bruton Tyrosine Kinase Inhibitors
4.1. First-Generation BTK Inhibitor: Ibrutinib
4.2. Second-Generation BTK Inhibitors: Acalbrutinib and Zanubrutinib
4.3. Third-Generation BTK Inhibitor: Pirtobrutinib
5. PI3K Inhibitors
6. BCL-2 Inhibitors
7. Selective Inhibitors of Nuclear Export
8. Immune Therapies
8.1. Monoclonal Antibodies
8.1.1. First-Generation Anti-CD20: Rituximab
| Drug Name | Generation | Type | Target Epitope | References |
|---|---|---|---|---|
| Rituximab | First | I | CD20 small extracellular loop | [12] |
| Ofatumumab | Second | I | CD20 small and large extracellular loops | [89] |
| Ocrelizumab | Second | I | CD20 large extracellular loop | [90] |
| Veltuzumab | Second | I | CD20 large extracellular loop | [90] |
| Obinutuzumab | Third | II | CD20 large extracellular loop | [91] |
| Ublituximab | Third | I | CD20 large extracellular loop | [86] |
| Alemtuzumab | First | N/A | CD52 | [92] |
| Epratuzumab | First | N/A | CD22 | [93] |
| (INO) | First | N/A | CD22 | [94] |
| (GO) | First | N/A | CD33 | [95] |
| Tafasitamab | Second | N/A | CD19 | [96] |
| Loncastuximab (ADC) | N/A | N/A | CD19 | [97] |
| Daratumumab | First | N/A | CD38 | [98] |
| Isatuximab | Next-generation | N/A | CD38 | [98] |
| Brentuximab (ADC) | N/A | N/A | CD30 | [99] |
| Elotuzumab | First | N/A | SLAMF7 | [100] |
8.1.2. Second-Generation Anti-CD20: Ofatumumab, Ocrelizumab, and Veltuzumab
8.1.3. Third-Generation Anti-CD20: Obinutuzumab and Ublituximab
8.1.4. Anti-CD52 Antibodies
8.1.5. Anti-CD22 Antibodies
8.1.6. Anti-CD19 Antibodies
8.1.7. Anti-CD33 Antibodies
8.1.8. Anti-CD38 Antibodies
8.1.9. Anti-CD30 Antibodies
8.1.10. Anti-SLAMF7 Antibodies
8.2. Radioimmunoconjugates
8.3. Chimeric Antigen Receptor T-Cells
| Generic Name (Brand) | Target | Indications | References |
|---|---|---|---|
| Tisagenlecleucel (Kymriah) | CD19 | R/R B-ALL R/R LBCL (2L) R/R FL (2L) | [145] |
| Brexucabtagene autoleucel (Tecartus) | CD19 | R/R MCL R/R B-ALL | [146] |
| Obecabtagene autoleucel (Aucatzyl) | CD19 | R/R B-ALL | [150] |
| Lisocabtagene maraleucel (Breyanzi) | CD19 | R/R LBCL (R1) R/R CLL or SLL (2L) R/R FL (2L) R/R MCL (2L) | [151] |
| Axicabtagene ciloleucel (Yescarta) | CD19 | R/R LBCL (R1) | [152] |
| Idecabtagene vicleucel (Abecma) | BCMA | R/R MM (2L) | [153] |
| Ciltacabtagene autoleucel (Carvykti) | BCMA | R/R MM (1L) | [154] |
8.4. Immune Checkpoint Inhibitors
8.5. Bispecific Antibodies (T-Cell Engagers)
8.5.1. TCEs Targeting CD19
8.5.2. TCEs Targeting GPRC5D
8.5.3. TCEs Targeting B-Cell Maturation Antigen
8.5.4. TCEs Targeting CD20
8.6. Immunomodulatory Drugs (IMiDs)
9. Proteasome-Dependent Drugs
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ADC | antibody drug conjugate |
| ADCC | antibody-dependent cell-mediated cytotoxicity |
| ADCP | antibody-dependent cellular phagocytosis |
| AKT | protein kinase B |
| ALCL | anaplastic large cell lymphomas |
| ALK | anaplastic lymphoma kinase |
| ALL | acute lymphoblastic leukemia |
| AML | acute myeloid leukemia |
| ATP | adenosine triphosphate |
| B-ALL | B-cell precursor acute lymphoblastic leukemia |
| BCMA | B-cell maturation antigen |
| Bcl-XL | B-cell lymphoma-extra large |
| BCR | B-cell receptor |
| BCR-ABL | breakpoint cluster region-Abelson |
| BTK | Bruton tyrosine kinase |
| CAR | chimeric antigen receptor |
| CDC | complement-dependent cytotoxicity |
| cHL | classical Hodgkin lymphoma |
| CLL | chronic lymphocytic leukemia |
| CML | chronic myeloid leukemia |
| CRS | cytokine release syndrome |
| DLBCL | diffuse large B-cell lymphoma |
| FL | follicular lymphoma |
| FLT3 | fms-like tyrosine kinase 3 |
| GISTs | gastrointestinal stromal tumors |
| GO | Gemtuzumab ozogamicin |
| HCC | hepatocellular carcinoma |
| IMiDs | immunomodulatory drugs |
| INO | Inotuzumab ozogamicin |
| ITD | internal tandem duplication |
| LBCL | large B-cell lymphoma |
| mAbs | monoclonal antibodies |
| MAPK | mitogen-activated protein kinase |
| MCL | mantle cell lymphoma |
| MM | multiple myeloma |
| MMAE | monomethylauristatin E |
| MRD | minimal residual disease |
| mTOR | mammalian target of rapamycin pathway |
| MZL | marginal zone lymphoma |
| NHL | non-Hodgkin lymphoma |
| PDGFR | platelet-derived growth factor receptor |
| Ph+ CML | Philadelphia chromosome-positive chronic myeloid leukemia |
| Ph+ ALL | Philadelphia chromosome-positive acute lymphoblastic leukemia |
| PI3K | phosphoinositide 3-kinase |
| PML | progressive multifocal leukoencephalopathy |
| RCC | renal cell carcinoma |
| RICs | Radioimmunoconjugates |
| PROTACs | proteolysis targeting chimeras |
| SINEs | selective inhibitors of nuclear export |
| SLL | small lymphocytic lymphoma |
| TCEs | T-cell engagers |
| TKIs | tyrosine kinase inhibitors |
| VEGFR | vascular endothelial growth factor receptor |
| XPO1 | exportin-1 |
References
- Sasca, D.; Guezguez, B.; Kuhn, M.W.M. Next generation epigenetic modulators to target myeloid neoplasms. Curr. Opin. Hematol. 2021, 28, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Boluda, J.C.; Cervantes, F. Imatinib mesylate (Gleevec, Glivec): A new therapy for chronic myeloid leukemia and other malignancies. Drugs Today 2002, 38, 601–613. [Google Scholar] [CrossRef] [PubMed]
- van Outersterp, I.; Boer, J.M.; van de Ven, C.; Reichert, C.E.J.; Boeree, A.; Kruisinga, B.; de Groot-Kruseman, H.A.; Escherich, G.; Sijs-Szabo, A.; Rijneveld, A.W.; et al. Tyrosine kinase inhibitor resistance in de novo BCR::ABL1-positive BCP-ALL beyond kinase domain mutations. Blood Adv. 2024, 8, 1835–1845. [Google Scholar] [CrossRef] [PubMed]
- Lyseng-Williamson, K.; Jarvis, B. Imatinib. Drugs 2001, 61, 1765–1774; discussion 1775–1776. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Q.; Bi, L.; Ren, Y.; Song, S.; Wang, Q.; Wang, Y.S. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol. Cancer 2018, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Braun, T.P.; Eide, C.A.; Druker, B.J. Response and Resistance to BCR-ABL1-Targeted Therapies. Cancer Cell 2020, 37, 530–542. [Google Scholar] [CrossRef]
- Cortes, J.E.; Kim, D.W.; Saikia, T.; Khattry, N.; Rathnam, K.; Alvarado, Y.; Hannah, G.; Tantravahi, S.K.; Apperley, J.F.; Charbonnier, A.; et al. Vodobatinib for patients with Philadelphia chromosome-positive chronic myeloid leukaemia resistant or intolerant to multiple lines of previous therapy: An open-label, multicentre, phase 1/2 trial. Lancet Haematol. 2025, 12, e201–e213. [Google Scholar] [CrossRef]
- Kim, S.H.; Menon, H.; Jootar, S.; Saikia, T.; Kwak, J.Y.; Sohn, S.K.; Park, J.S.; Jeong, S.H.; Kim, H.J.; Kim, Y.K.; et al. Efficacy and safety of radotinib in chronic phase chronic myeloid leukemia patients with resistance or intolerance to BCR-ABL1 tyrosine kinase inhibitors. Haematologica 2014, 99, 1191–1196. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, Z.; Qin, Y.; Li, W.; Xu, N.; Liu, B.; Zhang, Y.; Meng, L.; Zhu, H.; Du, X.; et al. Correction: Olverembatinib (HQP1351), a well-tolerated and effective tyrosine kinase inhibitor for patients with T315I-mutated chronic myeloid leukemia: Results of an open-label, multicenter phase 1/2 trial. J. Hematol. Oncol. 2022, 15, 159. [Google Scholar] [CrossRef]
- Eide, C.A.; Zabriskie, M.S.; Savage Stevens, S.L.; Antelope, O.; Vellore, N.A.; Than, H.; Schultz, A.R.; Clair, P.; Bowler, A.D.; Pomicter, A.D.; et al. Combining the Allosteric Inhibitor Asciminib with Ponatinib Suppresses Emergence of and Restores Efficacy against Highly Resistant BCR-ABL1 Mutants. Cancer Cell 2019, 36, 431–443.e5. [Google Scholar] [CrossRef]
- Antelope, O.; Vellore, N.A.; Pomicter, A.D.; Patel, A.B.; Van Scoyk, A.; Clair, P.M.; Deininger, M.W.; O’Hare, T. BCR-ABL1 tyrosine kinase inhibitor K0706 exhibits preclinical activity in Philadelphia chromosome-positive leukemia. Exp. Hematol. 2019, 77, 36–40.e2. [Google Scholar] [CrossRef]
- Brunton, L.L.; Knollmann, B.C. Goodman & Gilman’s the Pharmacological Basis of Therapeutics, 14th ed.; [McGraw Hill Medical]: New York, NY, USA, 2022. [Google Scholar]
- Araujo, J.; Logothetis, C. Dasatinib: A potent SRC inhibitor in clinical development for the treatment of solid tumors. Cancer Treat. Rev. 2010, 36, 492–500. [Google Scholar] [CrossRef]
- Luskin, M.R.; Murakami, M.A.; Keating, J.; Flamand, Y.; Winer, E.S.; Garcia, J.S.; Stahl, M.; Stone, R.M.; Wadleigh, M.; Jaeckle, S.L.; et al. Asciminib plus dasatinib and prednisone for Philadelphia chromosome-positive acute leukemia. Blood 2025, 145, 2231, Erratum in: Blood 2025, 145, 577–589. [Google Scholar] [CrossRef]
- Jabbour, E.; Kantarjian, H. Chronic myeloid leukemia: 2022 update on diagnosis, therapy, and monitoring. Am. J. Hematol. 2022, 97, 1236–1256. [Google Scholar] [CrossRef]
- Amsberg, G.K.; Schafhausen, P. Bosutinib in the management of chronic myelogenous leukemia. Biologics 2013, 7, 115–122. [Google Scholar] [CrossRef]
- Garcia-Gutierrez, V.; Hernandez-Boluda, J.C. Tyrosine Kinase Inhibitors Available for Chronic Myeloid Leukemia: Efficacy and Safety. Front. Oncol. 2019, 9, 603. [Google Scholar] [CrossRef]
- Zabriskie, M.S.; Vellore, N.A.; Gantz, K.C.; Deininger, M.W.; O’Hare, T. Radotinib is an effective inhibitor of native and kinase domain-mutant BCR-ABL1. Leukemia 2015, 29, 1939–1942. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.M.; Chifotides, H.T.; Haddad, F.G.; Short, N.J.; Loghavi, S.; Jabbour, E. Ponatinib-review of historical development, current status, and future research. Am. J. Hematol. 2024, 99, 1576–1585. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.M.; Jabbour, E.; Deininger, M.; Abruzzese, E.; Apperley, J.; Cortes, J.; Chuah, C.; DeAngelo, D.J.; DiPersio, J.; Hochhaus, A.; et al. Ponatinib after failure of second-generation tyrosine kinase inhibitor in resistant chronic-phase chronic myeloid leukemia. Am. J. Hematol. 2022, 97, 1419–1426, Correction in Am. J. Hematol. 2023, 98, 991. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Gang, D.; He, X.; Jiang, S. A review of the therapeutic role of the new third-generation TKI olverembatinib in chronic myeloid leukemia. Front. Oncol. 2022, 12, 1036437. [Google Scholar] [CrossRef]
- Costa, A.; Scalzulli, E.; Bisegna, M.L.; Breccia, M. Asciminib in the treatment of chronic myeloid leukemia in chronic phase. Future Oncol. 2025, 21, 815–831. [Google Scholar] [CrossRef]
- Andretta, E.; Costa, C.; Longobardi, C.; Damiano, S.; Giordano, A.; Pagnini, F.; Montagnaro, S.; Quintiliani, M.; Lauritano, C.; Ciarcia, R. Potential Approaches Versus Approved or Developing Chronic Myeloid Leukemia Therapy. Front. Oncol. 2021, 11, 801779. [Google Scholar] [CrossRef]
- Turkina, A.; Vinogradova, O.; Lomaia, E.; Shatokhina, E.; Shukhov, O.; Chelysheva, E.; Shikhbabaeva, D.; Nemchenko, I.; Petrova, A.; Bykova, A.; et al. Phase-1 study of vamotinib (PF-114), a 3rd generation BCR::ABL1 tyrosine kinase-inhibitor, in chronic myeloid leukaemia. Ann. Hematol. 2025, 104, 2707–2715. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.C.; Agarwal, S.; Ahmad, H.; Amin, K.; Bewersdorf, J.P.; Zeidan, A.M. A review of FLT3 inhibitors in acute myeloid leukemia. Blood Rev. 2022, 52, 100905. [Google Scholar] [CrossRef]
- Zarrinkar, P.P.; Gunawardane, R.N.; Cramer, M.D.; Gardner, M.F.; Brigham, D.; Belli, B.; Karaman, M.W.; Pratz, K.W.; Pallares, G.; Chao, Q.; et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood 2009, 114, 2984–2992. [Google Scholar] [CrossRef] [PubMed]
- Larrosa-Garcia, M.; Baer, M.R. FLT3 Inhibitors in Acute Myeloid Leukemia: Current Status and Future Directions. Mol. Cancer Ther. 2017, 16, 991–1001. [Google Scholar] [CrossRef] [PubMed]
- Gebru, M.T.; Wang, H.G. Therapeutic targeting of FLT3 and associated drug resistance in acute myeloid leukemia. J. Hematol. Oncol. 2020, 13, 155. [Google Scholar] [CrossRef]
- Kadia, T.M.; Ravandi, F.; Cortes, J.; Kantarjian, H. Toward Individualized Therapy in Acute Myeloid Leukemia: A Contemporary Review. JAMA Oncol. 2015, 1, 820–828. [Google Scholar] [CrossRef]
- Kennedy, V.E.; Smith, C.C. FLT3 Mutations in Acute Myeloid Leukemia: Key Concepts and Emerging Controversies. Front. Oncol. 2020, 10, 612880. [Google Scholar] [CrossRef]
- Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Dohner, K.; Marcucci, G.; et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N. Engl. J. Med. 2017, 377, 454–464. [Google Scholar] [CrossRef]
- Hu, S.; Niu, H.; Minkin, P.; Orwick, S.; Shimada, A.; Inaba, H.; Dahl, G.V.; Rubnitz, J.; Baker, S.D. Comparison of antitumor effects of multitargeted tyrosine kinase inhibitors in acute myelogenous leukemia. Mol. Cancer Ther. 2008, 7, 1110–1120. [Google Scholar] [CrossRef]
- Fratto, M.E.; Imperatori, M.; Vincenzi, B.; Tomao, F.; Santini, D.; Tonini, G. New perspectives: Role of sunitinib in breast cancer. Clin. Ter. 2010, 161, 475–482. [Google Scholar]
- Zhang, X.; Ren, X.; Zhu, T.; Zheng, W.; Shen, C.; Lu, C. A real-world pharmacovigilance study of FDA adverse event reporting system (FAERS) events for sunitinib. Front. Pharmacol. 2024, 15, 1407709. [Google Scholar] [CrossRef]
- Fiedler, W.; Serve, H.; Dohner, H.; Schwittay, M.; Ottmann, O.G.; O’Farrell, A.M.; Bello, C.L.; Allred, R.; Manning, W.C.; Cherrington, J.M.; et al. A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood 2005, 105, 986–993. [Google Scholar] [CrossRef]
- Ostronoff, F.; Estey, E. The role of quizartinib in the treatment of acute myeloid leukemia. Expert Opin. Investig. Drugs 2013, 22, 1659–1669. [Google Scholar] [CrossRef]
- Bhullar, J.; Natarajan, K.; Shukla, S.; Mathias, T.J.; Sadowska, M.; Ambudkar, S.V.; Baer, M.R. The FLT3 inhibitor quizartinib inhibits ABCG2 at pharmacologically relevant concentrations, with implications for both chemosensitization and adverse drug interactions. PLoS ONE 2013, 8, e71266. [Google Scholar] [CrossRef] [PubMed]
- Ferng, T.T.; Terada, D.; Ando, M.; Tarver, T.C.; Chaudhary, F.; Lin, K.C.; Logan, A.C.; Smith, C.C. The Irreversible FLT3 Inhibitor FF-10101 Is Active Against a Diversity of FLT3 Inhibitor Resistance Mechanisms. Mol. Cancer Ther. 2022, 21, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Gozgit, J.M.; Wong, M.J.; Wardwell, S.; Tyner, J.W.; Loriaux, M.M.; Mohemmad, Q.K.; Narasimhan, N.I.; Shakespeare, W.C.; Wang, F.; Druker, B.J.; et al. Potent activity of ponatinib (AP24534) in models of FLT3-driven acute myeloid leukemia and other hematologic malignancies. Mol. Cancer Ther. 2011, 10, 1028–1035. [Google Scholar] [CrossRef]
- Lu, J.W.; Wang, A.N.; Liao, H.A.; Chen, C.Y.; Hou, H.A.; Hu, C.Y.; Tien, H.F.; Ou, D.L.; Lin, L.I. Cabozantinib is selectively cytotoxic in acute myeloid leukemia cells with FLT3-internal tandem duplication (FLT3-ITD). Cancer Lett. 2016, 376, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Hu, C.; Wang, A.; Weisberg, E.L.; Wang, W.; Chen, C.; Zhao, Z.; Yu, K.; Liu, J.; Wu, J.; et al. Ibrutinib selectively targets FLT3-ITD in mutant FLT3-positive AML. Leukemia 2016, 30, 754–757. [Google Scholar] [CrossRef]
- Burger, J.A. Bruton Tyrosine Kinase Inhibitors: Present and Future. Cancer J. 2019, 25, 386–393. [Google Scholar] [CrossRef]
- Pal Singh, S.; Dammeijer, F.; Hendriks, R.W. Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol. Cancer 2018, 17, 57, Correction in Mol. Cancer 2019, 18, 79. [Google Scholar] [CrossRef]
- Schwarzbich, M.A.; Witzens-Harig, M. Ibrutinib. Recent Results Cancer Res. 2014, 201, 259–267. [Google Scholar] [PubMed]
- Xiao, L.; Salem, J.E.; Clauss, S.; Hanley, A.; Bapat, A.; Hulsmans, M.; Iwamoto, Y.; Wojtkiewicz, G.; Cetinbas, M.; Schloss, M.J.; et al. Ibrutinib-Mediated Atrial Fibrillation Attributable to Inhibition of C-Terminal Src Kinase. Circulation 2020, 142, 2443–2455. [Google Scholar] [CrossRef]
- Tam, C.; Thompson, P.A. BTK inhibitors in CLL: Second-generation drugs and beyond. Blood Adv. 2024, 8, 2300–2309. [Google Scholar] [CrossRef] [PubMed]
- Ivanovic, J.; Otasevic, V.; Markovic, K.; Vukovic, V.; Bibic, T.; Tomic Vujovic, K.; Kozarac, S.; Vladicic Masic, J.; Milic, N.; Kulic, J.; et al. Real-world cardiovascular risks of ibrutinib in chronic lymphocytic leukemia: A retrospective study. Front. Oncol. 2025, 15, 1624761. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Q.; Smith, S.M.; Zhang, S.Y.; Lynn Wang, Y. Mechanisms of ibrutinib resistance in chronic lymphocytic leukaemia and non-Hodgkin lymphoma. Br. J. Haematol. 2015, 170, 445–456. [Google Scholar] [CrossRef]
- Redd, R.A.; Ford, J.; Lei, M.; Abramson, J.S.; Soumerai, J.D. Combined analysis of the impact of second-generation BTK inhibitors on patient outcomes. Leuk. Lymphoma 2023, 64, 2296–2305. [Google Scholar] [CrossRef]
- Wang, L.; Tang, J.; Feng, J.; Huang, Y.; Cheng, Y.; Xu, H.; Miao, Y. Case report: Zanubrutinib-induced dermatological toxicities: A single-center experience and review. Front. Oncol. 2022, 12, 941633. [Google Scholar] [CrossRef]
- AstraZeneca CALQUENCE® (Acalabrutinib) Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/210259s011lbl.pdf (accessed on 13 October 2025).
- BeiGene BRUKINSA® (Zanubrutinib) Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/213217s011lbl.pdf (accessed on 13 October 2025).
- Mato, A.R.; Woyach, J.A.; Brown, J.R.; Ghia, P.; Patel, K.; Eyre, T.A.; Munir, T.; Lech-Maranda, E.; Lamanna, N.; Tam, C.S.; et al. Pirtobrutinib after a Covalent BTK Inhibitor in Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 389, 33–44. [Google Scholar] [CrossRef]
- Schultze, M.D.; Reeves, D.J. Pirtobrutinib: A New and Distinctive Treatment Option for B-Cell Malignancies. Ann. Pharmacother. 2024, 58, 1064–1073. [Google Scholar] [CrossRef]
- Javidi-Sharifi, N.; Brown, J.R. Evaluating zanubrutinib for the treatment of adults with chronic lymphocytic leukemia or small lymphocytic lymphoma. Expert Rev. Hematol. 2024, 17, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.T.; Hossain, M.A. Targeting PI3K in cancer treatment: A comprehensive review with insights from clinical outcomes. Eur. J. Pharmacol. 2025, 996, 177432. [Google Scholar] [CrossRef] [PubMed]
- Sirico, M.; D’Angelo, A.; Gianni, C.; Casadei, C.; Merloni, F.; De Giorgi, U. Current State and Future Challenges for PI3K Inhibitors in Cancer Therapy. Cancers 2023, 15, 703. [Google Scholar] [CrossRef]
- Glaviano, A.; Foo, A.S.C.; Lam, H.Y.; Yap, K.C.H.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef]
- Zhao, W.; Qiu, Y.; Kong, D. Class I phosphatidylinositol 3-kinase inhibitors for cancer therapy. Acta Pharm. Sin. B 2017, 7, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Andre, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. N. Engl. J. Med. 2019, 380, 1929–1940. [Google Scholar] [CrossRef]
- Jhaveri, K.L.; Im, S.A.; Saura, C.; Loibl, S.; Kalinsky, K.; Schmid, P.; Loi, S.; Thanopoulou, E.; Shankar, N.; Jin, Y.; et al. Overall Survival with Inavolisib in PIK3CA-Mutated Advanced Breast Cancer. N. Engl. J. Med. 2025, 393, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.D.; Higano, C.S.; de Bono, J.S.; Cook, N.; Rathkopf, D.E.; Wisinski, K.B.; Martin-Liberal, J.; Linch, M.; Heath, E.I.; Baird, R.D.; et al. A Phase I Study Investigating AZD8186, a Potent and Selective Inhibitor of PI3Kbeta/delta, in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2022, 28, 2257–2269. [Google Scholar] [CrossRef]
- Banerjee, T.; Kim, M.S.; Haslam, A.; Prasad, V. Clinical Trials Portfolio and Regulatory History of Idelalisib in Indolent Non-Hodgkin Lymphoma: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2023, 183, 435–441. [Google Scholar] [CrossRef]
- TG Therapeutics, I. UKONIQ® (Umbralisib) Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/213176s000lbl.pdf (accessed on 13 October 2025).
- Blair, H.A. Duvelisib: First Global Approval. Drugs 2018, 78, 1847–1853. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, Q.; Zhang, Y. Noncanonical PI3Kgamma signaling addiction is a therapeutic target in a subset of leukemias. Innovation 2024, 5, 100706. [Google Scholar]
- Brown, J.R.; Hamadani, M.; Hayslip, J.; Janssens, A.; Wagner-Johnston, N.; Ottmann, O.; Arnason, J.; Tilly, H.; Millenson, M.; Offner, F.; et al. Voxtalisib (XL765) in patients with relapsed or refractory non-Hodgkin lymphoma or chronic lymphocytic leukaemia: An open-label, phase 2 trial. Lancet Haematol. 2018, 5, e170–e180, Correction in Lancet Haematol. 2018, 5, e240. [Google Scholar] [CrossRef]
- Reed, J.C.; Zha, H.; Aime-Sempe, C.; Takayama, S.; Wang, H.G. Structure-function analysis of Bcl-2 family proteins. Regulators of programmed cell death. Adv. Exp. Med. Biol. 1996, 406, 99–112. [Google Scholar] [PubMed]
- Inc. A.I. A. G. VENCLEXTA® (Venetoclax Tablets) Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/208573s020s021lbl.pdf (accessed on 13 October 2025).
- Thau, S.; Poulsen, C.B.; Larsen, M.K.; Pedersen, L.M. Real-World Safety and Efficacy of Venetoclax in Chronic Lymphocytic Leukemia: A Single-Center Comparative Analysis With Randomized Clinical Trials. Adv. Hematol. 2025, 2025, 3910332. [Google Scholar] [CrossRef]
- Nayyar, M.; Menezes, R.C.B.; Ailawadhi, S.; Parrondo, R.D. Chronic Lymphocytic Leukemia: Novel Therapeutic Targets Under Investigation. Cancers 2025, 17, 2298. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Yu, L.; Yang, L. Mechanisms of venetoclax resistance and solutions. Front. Oncol. 2022, 12, 1005659. [Google Scholar] [CrossRef]
- Ujjani, C. Dual-targeted regimens for the frontline treatment of CLL. Hematol. Am. Soc. Hematol. Educ. Program. 2023, 2023, 421–426. [Google Scholar] [CrossRef]
- Daido, Y.; Sugiura, H.; Ishikawa, T.; Kuroi, T.; Okamoto, S.; Nomura, N.; Masunari, T.; Sezaki, N.; Nannya, Y.; Ogawa, S.; et al. Venetoclax-Azacitidine Bridging PTCy-haplo-PBSCT for Refractory Acute Myeloid Leukemia with IDH2 Mutations. Case Rep. Oncol. 2023, 16, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Lipsky, A.H.; Lamanna, N. Novel combination approaches with targeted agents in frontline chronic lymphocytic leukemia. Cancer 2023, 129, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Ravikrishnan, J.; Diaz-Rohena, D.Y.; Muhowski, E.; Mo, X.; Lai, T.H.; Misra, S.; Williams, C.D.; Sanchez, J.; Mitchell, A.; Satpati, S.; et al. LP-118 is a novel B-cell lymphoma 2/extra-large inhibitor that demonstrates efficacy in models of venetoclaxresistant chronic lymphocytic leukemia. Haematologica 2025, 110, 78–91. [Google Scholar] [CrossRef]
- Ashkenazi, A.; Fairbrother, W.J.; Leverson, J.D.; Souers, A.J. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat. Rev. Drug Discov. 2017, 16, 273–284. [Google Scholar] [CrossRef]
- Leverson, J.D.; Phillips, D.C.; Mitten, M.J.; Boghaert, E.R.; Diaz, D.; Tahir, S.K.; Belmont, L.D.; Nimmer, P.; Xiao, Y.; Ma, X.M.; et al. Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. Sci. Transl. Med. 2015, 7, 279ra40. [Google Scholar] [CrossRef]
- Parikh, K.; Cang, S.; Sekhri, A.; Liu, D. Selective inhibitors of nuclear export (SINE)—A novel class of anti-cancer agents. J. Hematol. Oncol. 2014, 7, 78. [Google Scholar] [CrossRef]
- Walker, C.J.; Oaks, J.J.; Santhanam, R.; Neviani, P.; Harb, J.G.; Ferenchak, G.; Ellis, J.J.; Landesman, Y.; Eisfeld, A.K.; Gabrail, N.Y.; et al. Preclinical and clinical efficacy of XPO1/CRM1 inhibition by the karyopherin inhibitor KPT-330 in Ph+ leukemias. Blood 2013, 122, 3034–3044. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Hattori, N.; Chien, W.; Sun, Q.; Sudo, M.; GL, E.L.; Ding, L.; Lim, S.L.; Shacham, S.; Kauffman, M.; et al. KPT-330 has antitumour activity against non-small cell lung cancer. Br. J. Cancer 2014, 111, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Argueta, C.; Kashyap, T.; Klebanov, B.; Unger, T.J.; Guo, C.; Harrington, S.; Baloglu, E.; Lee, M.; Senapedis, W.; Shacham, S.; et al. Selinexor synergizes with dexamethasone to repress mTORC1 signaling and induce multiple myeloma cell death. Oncotarget 2018, 9, 25529–25544. [Google Scholar] [CrossRef]
- Kashyap, T.; Argueta, C.; Aboukameel, A.; Unger, T.J.; Klebanov, B.; Mohammad, R.M.; Muqbil, I.; Azmi, A.S.; Drolen, C.; Senapedis, W.; et al. Selinexor, a Selective Inhibitor of Nuclear Export (SINE) compound, acts through NF-kappaB deactivation and combines with proteasome inhibitors to synergistically induce tumor cell death. Oncotarget 2016, 7, 78883–78895. [Google Scholar] [CrossRef] [PubMed]
- Bahlis, N.J.; Sutherland, H.; White, D.; Sebag, M.; Lentzsch, S.; Kotb, R.; Venner, C.P.; Gasparetto, C.; Del Col, A.; Neri, P.; et al. Selinexor plus low-dose bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma. Blood 2018, 132, 2546–2554. [Google Scholar] [CrossRef]
- Chagas, G.G.; Pimenta, R.; Viana, N.I. Advances and challenges in leukemia treatment: A focus on monoclonal antibodies and emerging therapies. Oncol. Res. 2025, 33, 1283–1288. [Google Scholar] [CrossRef]
- Klein, C.; Jamois, C.; Nielsen, T. Anti-CD20 treatment for B-cell malignancies: Current status and future directions. Expert. Opin. Biol. Ther. 2021, 21, 161–181. [Google Scholar] [CrossRef]
- Boross, P.; Leusen, J.H. Mechanisms of action of CD20 antibodies. Am. J. Cancer Res. 2012, 2, 676–690. [Google Scholar]
- U.S. Food and Drug Administration. Highlights of Prescribing Information: Rituxan. In Center for Drug Evaluation and Research (CDER); U.S. Food and Drug Administration: Silver Spring, MD, USA, 2021. [Google Scholar]
- Lin, T.S. Ofatumumab: A novel monoclonal anti-CD20 antibody. Pharmgenom. Pers. Med. 2010, 3, 51–59. [Google Scholar] [CrossRef]
- Cang, S.; Mukhi, N.; Wang, K.; Liu, D. Novel CD20 monoclonal antibodies for lymphoma therapy. J. Hematol. Oncol. 2012, 5, 64. [Google Scholar] [CrossRef] [PubMed]
- Luan, C.; Chen, B. Clinical application of obinutuzumab for treating chronic lymphocytic leukemia. Drug Des. Devel Ther. 2019, 13, 2899–2909. [Google Scholar] [CrossRef] [PubMed]
- Osterborg, A.; Werner, A.; Halapi, E.; Lundin, J.; Harmenberg, U.; Wigzell, H.; Mellstedt, H. Clonal CD8+ and CD52- T cells are induced in responding B cell lymphoma patients treated with Campath-1H (anti-CD52). Eur. J. Haematol. 1997, 58, 5–13. [Google Scholar] [CrossRef]
- Franca, R.; Favretto, D.; Granzotto, M.; Decorti, G.; Rabusin, M.; Stocco, G. Epratuzumab and Blinatumomab as Therapeutic Antibodies for Treatment of Pediatric Acute Lymphoblastic Leukemia: Current Status and Future Perspectives. Curr. Med. Chem. 2017, 24, 1050–1065. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.M.; DeAngelo, D.J.; Stelljes, M.; Liedtke, M.; Stock, W.; Gokbuget, N.; O’Brien, S.M.; Jabbour, E.; Wang, T.; Liang White, J.; et al. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia: Final report and long-term survival follow-up from the randomized, phase 3 INO-VATE study. Cancer 2019, 125, 2474–2487. [Google Scholar] [CrossRef]
- Halik, A.; Arends, C.M.; Bullinger, L.; Damm, F.; Frick, M. Refining AML Treatment: The Role of Genetics in Response and Resistance Evaluation to New Agents. Cancers 2022, 14, 1689. [Google Scholar] [CrossRef]
- Salles, G.; Dlugosz-Danecka, M.; Ghesquieres, H.; Jurczak, W. Tafasitamab for the treatment of relapsed or refractory diffuse large B-cell lymphoma. Expert Opin. Biol. Ther. 2021, 21, 455–463. [Google Scholar] [CrossRef]
- Lownik, J.; Boiarsky, J.; Birhiray, R.; Merchant, A.; Mead, M. Sequencing of Anti-CD19 Therapies in the Management of Diffuse Large B-Cell Lymphoma. Clin. Cancer Res. 2024, 30, 2895–2904. [Google Scholar] [CrossRef]
- Shen, F.; Shen, W. Isatuximab in the Treatment of Multiple Myeloma: A Review and Comparison With Daratumumab. Technol. Cancer Res. Treat. 2022, 21, 15330338221106563. [Google Scholar] [CrossRef] [PubMed]
- van der Weyden, C.A.; Pileri, S.A.; Feldman, A.L.; Whisstock, J.; Prince, H.M. Understanding CD30 biology and therapeutic targeting: A historical perspective providing insight into future directions. Blood Cancer J. 2017, 7, e603. [Google Scholar] [CrossRef] [PubMed]
- Kurdi, A.T.; Glavey, S.V.; Bezman, N.A.; Jhatakia, A.; Guerriero, J.L.; Manier, S.; Moschetta, M.; Mishima, Y.; Roccaro, A.; Detappe, A.; et al. Antibody-Dependent Cellular Phagocytosis by Macrophages is a Novel Mechanism of Action of Elotuzumab. Mol. Cancer Ther. 2018, 17, 1454–1463. [Google Scholar] [CrossRef] [PubMed]
- Robak, T. Novel monoclonal antibodies for the treatment of chronic lymphocytic leukemia. Curr. Cancer Drug Targets 2008, 8, 156–171. [Google Scholar] [CrossRef]
- Du, J.; Yang, H.; Guo, Y.; Ding, J. Structure of the Fab fragment of therapeutic antibody Ofatumumab provides insights into the recognition mechanism with CD20. Mol. Immunol. 2009, 46, 2419–2423. [Google Scholar] [CrossRef]
- Morschhauser, F.; Marlton, P.; Vitolo, U.; Linden, O.; Seymour, J.F.; Crump, M.; Coiffier, B.; Foa, R.; Wassner, E.; Burger, H.U.; et al. Results of a phase I/II study of ocrelizumab, a fully humanized anti-CD20 mAb, in patients with relapsed/refractory follicular lymphoma. Ann. Oncol. 2010, 21, 1870–1876. [Google Scholar] [CrossRef]
- Stahnke, A.M.; Holt, K.M. Ocrelizumab: A New B-cell Therapy for Relapsing Remitting and Primary Progressive Multiple Sclerosis. Ann. Pharmacother. 2018, 52, 473–483. [Google Scholar] [CrossRef]
- Kalaycio, M.E.; George Negrea, O.; Allen, S.L.; Rai, K.R.; Abbasi, R.M.; Horne, H.; Wegener, W.A.; Goldenberg, D.M. Subcutaneous injections of low doses of humanized anti-CD20 veltuzumab: A phase I study in chronic lymphocytic leukemia. Leuk. Lymphoma 2016, 57, 803–811. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Veltuzumab—Orphan Drug Designation #486915. Available online: https://www.accessdata.fda.gov/scripts/opdlisting/oopd/detailedIndex.cfm?cfgridkey=486915 (accessed on 22 July 2025).
- Rioufol, C.; Salles, G. Obinutuzumab for chronic lymphocytic leukemia. Expert Rev. Hematol. 2014, 7, 533–543. [Google Scholar] [CrossRef]
- Roeker, L.E.; Feldman, T.A.; Soumerai, J.D.; Falco, V.; Panton, G.; Dorsey, C.; Zelenetz, A.D.; Falchi, L.; Park, J.H.; Straus, D.J.; et al. Adding Umbralisib and Ublituximab (U2) to Ibrutinib in Patients with CLL: A Phase II Study of an MRD-Driven Approach. Clin. Cancer Res. 2022, 28, 3958–3964. [Google Scholar] [CrossRef]
- Sawas, A.; Farber, C.M.; Schreeder, M.T.; Khalil, M.Y.; Mahadevan, D.; Deng, C.; Amengual, J.E.; Nikolinakos, P.G.; Kolesar, J.M.; Kuhn, J.G.; et al. A phase 1/2 trial of ublituximab, a novel anti-CD20 monoclonal antibody, in patients with B-cell non-Hodgkin lymphoma or chronic lymphocytic leukaemia previously exposed to rituximab. Br. J. Haematol. 2017, 177, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Bowen, A.L.; Zomas, A.; Emmett, E.; Matutes, E.; Dyer, M.J.; Catovsky, D. Subcutaneous CAMPATH-1H in fludarabine-resistant/relapsed chronic lymphocytic and B-prolymphocytic leukaemia. Br. J. Haematol. 1997, 96, 617–619. [Google Scholar] [CrossRef] [PubMed]
- Osterborg, A.; Dyer, M.J.; Bunjes, D.; Pangalis, G.A.; Bastion, Y.; Catovsky, D.; Mellstedt, H. Phase II multicenter study of human CD52 antibody in previously treated chronic lymphocytic leukemia. European Study Group of CAMPATH-1H Treatment in Chronic Lymphocytic Leukemia. J. Clin. Oncol. 1997, 15, 1567–1574. [Google Scholar] [CrossRef]
- Pawson, R.; Dyer, M.J.; Barge, R.; Matutes, E.; Thornton, P.D.; Emmett, E.; Kluin-Nelemans, J.C.; Fibbe, W.E.; Willemze, R.; Catovsky, D. Treatment of T-cell prolymphocytic leukemia with human CD52 antibody. J. Clin. Oncol. 1997, 15, 2667–2672. [Google Scholar] [CrossRef] [PubMed]
- Kyriakidis, I.; Vasileiou, E.; Rossig, C.; Roilides, E.; Groll, A.H.; Tragiannidis, A. Invasive Fungal Diseases in Children with Hematological Malignancies Treated with Therapies That Target Cell Surface Antigens: Monoclonal Antibodies, Immune Checkpoint Inhibitors and CAR T-Cell Therapies. J. Fungi 2021, 7, 186. [Google Scholar] [CrossRef]
- Short, N.J.; Jabbour, E.; Jain, N.; Kantarjian, H. Inotuzumab ozogamicin for the treatment of adult acute lymphoblastic leukemia: Past progress, current research and future directions. J. Hematol. Oncol. 2024, 17, 32. [Google Scholar] [CrossRef]
- Del Nagro, C.J.; Otero, D.C.; Anzelon, A.N.; Omori, S.A.; Kolla, R.V.; Rickert, R.C. CD19 function in central and peripheral B-cell development. Immunol. Res. 2005, 31, 119–131. [Google Scholar] [CrossRef]
- Salles, G.; Duell, J.; Gonzalez Barca, E.; Tournilhac, O.; Jurczak, W.; Liberati, A.M.; Nagy, Z.; Obr, A.; Gaidano, G.; Andre, M.; et al. Tafasitamab plus lenalidomide in relapsed or refractory diffuse large B-cell lymphoma (L-MIND): A multicentre, prospective, single-arm, phase 2 study. Lancet Oncol. 2020, 21, 978–988. [Google Scholar] [CrossRef]
- Lambert, J.; Pautas, C.; Terre, C.; Raffoux, E.; Turlure, P.; Caillot, D.; Legrand, O.; Thomas, X.; Gardin, C.; Gogat-Marchant, K.; et al. Gemtuzumab ozogamicin for de novo acute myeloid leukemia: Final efficacy and safety updates from the open-label, phase III ALFA-0701 trial. Haematologica 2019, 104, 113–119. [Google Scholar] [CrossRef]
- Feldman, E.J.; Brandwein, J.; Stone, R.; Kalaycio, M.; Moore, J.; O’Connor, J.; Wedel, N.; Roboz, G.J.; Miller, C.; Chopra, R.; et al. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. J. Clin. Oncol. 2005, 23, 4110–4116. [Google Scholar] [CrossRef]
- Walter, R.B. Investigational CD33-targeted therapeutics for acute myeloid leukemia. Expert Opin. Investig. Drugs 2018, 27, 339–348. [Google Scholar] [CrossRef]
- Lokhorst, H.M.; Plesner, T.; Laubach, J.P.; Nahi, H.; Gimsing, P.; Hansson, M.; Minnema, M.C.; Lassen, U.; Krejcik, J.; Palumbo, A.; et al. Targeting CD38 with Daratumumab Monotherapy in Multiple Myeloma. N. Engl. J. Med. 2015, 373, 1207–1219. [Google Scholar] [CrossRef] [PubMed]
- Facon, T.; Moreau, P.; Weisel, K.; Goldschmidt, H.; Usmani, S.Z.; Chari, A.; Plesner, T.; Orlowski, R.Z.; Bahlis, N.; Basu, S.; et al. Daratumumab/lenalidomide/dexamethasone in transplant-ineligible newly diagnosed myeloma: MAIA long-term outcomes. Leukemia 2025, 39, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Mateos, M.V.; Cavo, M.; Blade, J.; Dimopoulos, M.A.; Suzuki, K.; Jakubowiak, A.; Knop, S.; Doyen, C.; Lucio, P.; Nagy, Z.; et al. Overall survival with daratumumab, bortezomib, melphalan, and prednisone in newly diagnosed multiple myeloma (ALCYONE): A randomised, open-label, phase 3 trial. Lancet 2020, 395, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Sonneveld, P.; Dimopoulos, M.A.; Boccadoro, M.; Quach, H.; Ho, P.J.; Beksac, M.; Hulin, C.; Antonioli, E.; Leleu, X.; Mangiacavalli, S.; et al. Daratumumab, Bortezomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2024, 390, 301–313. [Google Scholar] [CrossRef]
- Corre, J.; Vincent, L.; Moreau, P.; Hebraud, B.; Hulin, C.; Bene, M.C.; Broijl, A.; Caillot, D.; Delforge, M.; Dejoie, T.; et al. Daratumumab-bortezomib-thalidomide-dexamethasone for newly diagnosed myeloma: CASSIOPEIA minimal residual disease results. Blood 2025, 146, 679–692. [Google Scholar] [CrossRef]
- Dima, D.; Dower, J.; Comenzo, R.L.; Varga, C. Evaluating Daratumumab in the Treatment of Multiple Myeloma: Safety, Efficacy and Place in Therapy. Cancer Manag. Res. 2020, 12, 7891–7903. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, L.; Acharya, C.; An, G.; Wen, K.; Qiu, L.; Munshi, N.C.; Tai, Y.T.; Anderson, K.C. Targeting CD38 Suppresses Induction and Function of T Regulatory Cells to Mitigate Immunosuppression in Multiple Myeloma. Clin. Cancer Res. 2017, 23, 4290–4300. [Google Scholar] [CrossRef]
- Attal, M.; Richardson, P.G.; Rajkumar, S.V.; San-Miguel, J.; Beksac, M.; Spicka, I.; Leleu, X.; Schjesvold, F.; Moreau, P.; Dimopoulos, M.A.; et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): A randomised, multicentre, open-label, phase 3 study. Lancet 2019, 394, 2096–2107, Correction in Lancet 2019, 394, 2072. [Google Scholar] [CrossRef]
- Moreau, P.; Dimopoulos, M.A.; Mikhael, J.; Yong, K.; Capra, M.; Facon, T.; Hajek, R.; Spicka, I.; Baker, R.; Kim, K.; et al. Isatuximab, carfilzomib, and dexamethasone in relapsed multiple myeloma (IKEMA): A multicentre, open-label, randomised phase 3 trial. Lancet 2021, 397, 2361–2371. [Google Scholar] [CrossRef] [PubMed]
- Facon, T.; Dimopoulos, M.A.; Leleu, X.P.; Beksac, M.; Pour, L.; Hajek, R.; Liu, Z.; Minarik, J.; Moreau, P.; Romejko-Jarosinska, J.; et al. Isatuximab, Bortezomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2024, 391, 1597–1609. [Google Scholar] [CrossRef]
- Tian, Z.G.; Longo, D.L.; Funakoshi, S.; Asai, O.; Ferris, D.K.; Widmer, M.; Murphy, W.J. In vivo antitumor effects of unconjugated CD30 monoclonal antibodies on human anaplastic large-cell lymphoma xenografts. Cancer Res. 1995, 55, 5335–5341. [Google Scholar]
- Pfeifer, W.; Levi, E.; Petrogiannis-Haliotis, T.; Lehmann, L.; Wang, Z.; Kadin, M.E. A murine xenograft model for human CD30+ anaplastic large cell lymphoma. Successful growth inhibition with an anti-CD30 antibody (HeFi-1). Am. J. Pathol. 1999, 155, 1353–1359. [Google Scholar] [CrossRef]
- Al-Rohil, R.N.; Torres-Cabala, C.A.; Patel, A.; Tetzlaff, M.T.; Ivan, D.; Nagarajan, P.; Curry, J.L.; Miranda, R.N.; Duvic, M.; Prieto, V.G.; et al. Loss of CD30 expression after treatment with brentuximab vedotin in a patient with anaplastic large cell lymphoma: A novel finding. J. Cutan. Pathol. 2016, 43, 1161–1166. [Google Scholar] [CrossRef]
- Nielson, C.; Fischer, R.; Fraga, G.; Aires, D. Loss of CD30 Expression in Anaplastic Large Cell Lymphoma Following Brentuximab Therapy. J. Drugs Dermatol. 2016, 15, 894–895. [Google Scholar]
- Chen, R.; Hou, J.; Newman, E.; Kim, Y.; Donohue, C.; Liu, X.; Thomas, S.H.; Forman, S.J.; Kane, S.E. CD30 Downregulation, MMAE Resistance, and MDR1 Upregulation Are All Associated with Resistance to Brentuximab Vedotin. Mol. Cancer Ther. 2015, 14, 1376–1384. [Google Scholar] [CrossRef]
- Buller, C.W.; Mathew, P.A.; Mathew, S.O. Roles of NK Cell Receptors 2B4 (CD244), CS1 (CD319), and LLT1 (CLEC2D) in Cancer. Cancers 2020, 12, 1755. [Google Scholar] [CrossRef] [PubMed]
- Richardson, K.; Keam, S.P.; Zhu, J.J.; Meyran, D.; D’Souza, C.; Macdonald, S.; Campbell, K.; Robbins, M.; Bezman, N.A.; Todd, K.; et al. The efficacy of combination treatment with elotuzumab and lenalidomide is dependent on crosstalk between natural killer cells, monocytes and myeloma cells. Haematologica 2023, 108, 83–97. [Google Scholar] [CrossRef]
- Walter, R.B. Where do we stand with radioimmunotherapy for acute myeloid leukemia? Expert Opin. Biol. Ther. 2022, 22, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.N.; Sokol, L. Targeting CD22 for the Treatment of B-Cell Malignancies. Immunotargets Ther. 2021, 10, 225–236. [Google Scholar] [CrossRef]
- Morschhauser, F.; Kraeber-Bodere, F.; Wegener, W.A.; Harousseau, J.L.; Petillon, M.O.; Huglo, D.; Trumper, L.H.; Meller, J.; Pfreundschuh, M.; Kirsch, C.M.; et al. High rates of durable responses with anti-CD22 fractionated radioimmunotherapy: Results of a multicenter, phase I/II study in non-Hodgkin’s lymphoma. J. Clin. Oncol. 2010, 28, 3709–3716. [Google Scholar] [CrossRef] [PubMed]
- Witzig, T.E.; Tomblyn, M.B.; Misleh, J.G.; Kio, E.A.; Sharkey, R.M.; Wegener, W.A.; Goldenberg, D.M. Anti-CD22 90Y-epratuzumab tetraxetan combined with anti-CD20 veltuzumab: A phase I study in patients with relapsed/refractory, aggressive non-Hodgkin lymphoma. Haematologica 2014, 99, 1738–1745. [Google Scholar] [CrossRef] [PubMed]
- Jurcic, J.G.; Larson, S.M.; Sgouros, G.; McDevitt, M.R.; Finn, R.D.; Divgi, C.R.; Ballangrud, A.M.; Hamacher, K.A.; Ma, D.; Humm, J.L.; et al. Targeted alpha particle immunotherapy for myeloid leukemia. Blood 2002, 100, 1233–1239. [Google Scholar] [CrossRef]
- Gyurkocza, B.; Seropian, S.; Choe, H.; Litzow, M.; Abboud, C.; Koshy, N.; Stiff, P.; Tomlinson, B.; Abhyankar, S.; Foran, J.M.; et al. S248: SIERRA trial results with a targeted radiotherapy, IOMAB-B, a myeloablative conditioning with reduced intensity tolerability yields high CR, long term survival in HSCT ineligible active R/R AML. Hemasphere 2023, 7, e2941723. [Google Scholar] [CrossRef]
- Sterner, R.C.; Sterner, R.M. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Huang, X.; Huang, J. CAR-T cell therapy for hematological malignancies: Limitations and optimization strategies. Front. Immunol. 2022, 13, 1019115. [Google Scholar] [CrossRef]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef]
- Shah, B.D.; Ghobadi, A.; Oluwole, O.O.; Logan, A.C.; Boissel, N.; Cassaday, R.D.; Leguay, T.; Bishop, M.R.; Topp, M.S.; Tzachanis, D.; et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: Phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 2021, 398, 491–502. [Google Scholar] [CrossRef]
- Tambaro, F.P.; Singh, H.; Jones, E.; Rytting, M.; Mahadeo, K.M.; Thompson, P.; Daver, N.; DiNardo, C.; Kadia, T.; Garcia-Manero, G.; et al. Autologous CD33-CAR-T cells for treatment of relapsed/refractory acute myelogenous leukemia. Leukemia 2021, 35, 3282–3286. [Google Scholar] [CrossRef]
- Li, H.; Lu, Q.; Yu, Z.; Wu, Z.; Zhu, Z.; Li, J.; Zhang, Z.; Wang, Z.; Yang, N.; Chen, Y.; et al. CRISPR/Cas9-engineered universal CD123/B7-H3 tandem CAR-T cell for the treatment of acute myeloid leukemia. Chin. Med. J. 2025. [Google Scholar] [CrossRef]
- Munshi, N.C.; Anderson, L.D., Jr.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Roddie, C.; Sandhu, K.S.; Tholouli, E.; Logan, A.C.; Shaughnessy, P.; Barba, P.; Ghobadi, A.; Guerreiro, M.; Yallop, D.; Abedi, M.; et al. Obecabtagene Autoleucel in Adults with B-Cell Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2024, 391, 2219–2230. [Google Scholar] [CrossRef]
- Siddiqi, T.; Maloney, D.G.; Kenderian, S.S.; Brander, D.M.; Dorritie, K.; Soumerai, J.; Riedell, P.A.; Shah, N.N.; Nath, R.; Fakhri, B.; et al. Lisocabtagene maraleucel in chronic lymphocytic leukaemia and small lymphocytic lymphoma (TRANSCEND CLL 004): A multicentre, open-label, single-arm, phase 1-2 study. Lancet 2023, 402, 641–654. [Google Scholar] [CrossRef]
- Locke, F.L.; Miklos, D.B.; Jacobson, C.A.; Perales, M.A.; Kersten, M.J.; Oluwole, O.O.; Ghobadi, A.; Rapoport, A.P.; McGuirk, J.; Pagel, J.M.; et al. Axicabtagene Ciloleucel as Second-Line Therapy for Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 640–654. [Google Scholar] [CrossRef]
- Rodriguez-Otero, P.; Ailawadhi, S.; Arnulf, B.; Patel, K.; Cavo, M.; Nooka, A.K.; Manier, S.; Callander, N.; Costa, L.J.; Vij, R.; et al. Ide-cel or Standard Regimens in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2023, 388, 1002–1014. [Google Scholar] [CrossRef] [PubMed]
- Mina, R.; Mylin, A.K.; Yokoyama, H.; Magen, H.; Alsdorf, W.; Minnema, M.C.; Shune, L.; Isufi, I.; Harrison, S.J.; Shah, U.A.; et al. Patient-reported outcomes following ciltacabtagene autoleucel or standard of care in patients with lenalidomide-refractory multiple myeloma (CARTITUDE-4): Results from a randomised, open-label, phase 3 trial. Lancet Haematol. 2025, 12, e45–e56. [Google Scholar] [CrossRef]
- Munari, E.; Mariotti, F.R.; Quatrini, L.; Bertoglio, P.; Tumino, N.; Vacca, P.; Eccher, A.; Ciompi, F.; Brunelli, M.; Martignoni, G.; et al. PD-1/PD-L1 in Cancer: Pathophysiological, Diagnostic and Therapeutic Aspects. Int. J. Mol. Sci. 2021, 22, 5123. [Google Scholar] [CrossRef]
- Salik, B.; Smyth, M.J.; Nakamura, K. Targeting immune checkpoints in hematological malignancies. J. Hematol. Oncol. 2020, 13, 111. [Google Scholar] [CrossRef]
- Hoelzer, D.; Gokbuget, N. Chemoimmunotherapy in acute lymphoblastic leukemia. Blood Rev. 2012, 26, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Nagorsen, D.; Baeuerle, P.A. Immunomodulatory therapy of cancer with T cell-engaging BiTE antibody blinatumomab. Exp. Cell Res. 2011, 317, 1255–1260. [Google Scholar] [CrossRef]
- d’Argouges, S.; Wissing, S.; Brandl, C.; Prang, N.; Lutterbuese, R.; Kozhich, A.; Suzich, J.; Locher, M.; Kiener, P.; Kufer, P.; et al. Combination of rituximab with blinatumomab (MT103/MEDI-538), a T cell-engaging CD19-/CD3-bispecific antibody, for highly efficient lysis of human B lymphoma cells. Leuk. Res. 2009, 33, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Topp, M.S.; Kufer, P.; Gokbuget, N.; Goebeler, M.; Klinger, M.; Neumann, S.; Horst, H.A.; Raff, T.; Viardot, A.; Schmid, M.; et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J. Clin. Oncol. 2011, 29, 2493–2498. [Google Scholar] [CrossRef] [PubMed]
- Litzow, M.R. Novel therapeutic approaches for acute lymphoblastic leukemia. Hematol. Oncol. Clin. N. Am. 2011, 25, 1303–1317. [Google Scholar] [CrossRef]
- Haddad, F.G.; Kantarjian, H.; Short, N.J.; Jain, N.; Senapati, J.; Ravandi, F.; Jabbour, E. Incorporation of Immunotherapy into Adult B-Cell Acute Lymphoblastic Leukemia Therapy. J. Natl. Compr. Canc Netw. 2025, 23, e257050. [Google Scholar] [CrossRef]
- Verkleij, C.P.M.; Broekmans, M.E.C.; van Duin, M.; Frerichs, K.A.; Kuiper, R.; de Jonge, A.V.; Kaiser, M.; Morgan, G.; Axel, A.; Boominathan, R.; et al. Preclinical activity and determinants of response of the GPRC5DxCD3 bispecific antibody talquetamab in multiple myeloma. Blood Adv. 2021, 5, 2196–2215. [Google Scholar] [CrossRef]
- Costa, B.A.; Ortiz, R.J.; Lesokhin, A.M.; Richter, J. Soluble B-cell maturation antigen in multiple myeloma. Am. J. Hematol. 2024, 99, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.C.; Bumma, N.; Richter, J.; Zonder, J.A.; Hoffman, J.E.; Zhou, Z.Y.; Garcia-Horton, V.; Fillbrunn, M.; Wang, H.; Mattera, M.; et al. Indirect Comparison of Linvoseltamab Versus Teclistamab for the Treatment of Triple-Class Exposed Relapsed/Refractory Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2025. online ahead of print. [Google Scholar] [CrossRef]
- Bumma, N.; Richter, J.; Jagannath, S.; Lee, H.C.; Hoffman, J.E.; Suvannasankha, A.; Zonder, J.A.; Shah, M.R.; Lentzsch, S.; Baz, R.; et al. Linvoseltamab for Treatment of Relapsed/Refractory Multiple Myeloma. J. Clin. Oncol. 2024, 42, 2702–2712, Erratum in J. Clin. Oncol. 2024, 42, 4001. [Google Scholar] [CrossRef]
- Zhu, M.; Guan, X.; Ganguly, S.; Welf, E.; Davis, J.D. CD20xCD3 Bispecific Antibodies in B-NHL: A Review of Translational Science, Pharmacokinetics, Pharmacodynamics, and Dose Strategy in Clinical Research. Clin. Transl. Sci. 2025, 18, e70250. [Google Scholar] [CrossRef]
- Galustian, C.; Labarthe, M.C.; Bartlett, J.B.; Dalgleish, A.G. Thalidomide-derived immunomodulatory drugs as therapeutic agents. Expert. Opin. Biol. Ther. 2004, 4, 1963–1970. [Google Scholar] [CrossRef]
- Adams, J. Potential for proteasome inhibition in the treatment of cancer. Drug Discov. Today 2003, 8, 307–315. [Google Scholar] [CrossRef]
- Furtado, M.; Johnson, R.; Kruger, A.; Turner, D.; Rule, S. Addition of bortezomib to standard dose chop chemotherapy improves response and survival in relapsed mantle cell lymphoma. Br. J. Haematol. 2015, 168, 55–62. [Google Scholar] [CrossRef]
- Kuhn, D.J.; Chen, Q.; Voorhees, P.M.; Strader, J.S.; Shenk, K.D.; Sun, C.M.; Demo, S.D.; Bennett, M.K.; van Leeuwen, F.W.; Chanan-Khan, A.A.; et al. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 2007, 110, 3281–3290. [Google Scholar] [CrossRef] [PubMed]
- Okazuka, K.; Ishida, T. Proteasome inhibitors for multiple myeloma. Jpn. J. Clin. Oncol. 2018, 48, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, D.; Tian, Z.; Zhou, B.; Kuhn, D.; Orlowski, R.; Raje, N.; Richardson, P.; Anderson, K.C. In vitro and in vivo selective antitumor activity of a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma cells. Clin. Cancer Res. 2011, 17, 5311–5321. [Google Scholar] [CrossRef]
- Zinzani, P.L.; Musuraca, G.; Tani, M.; Stefoni, V.; Marchi, E.; Fina, M.; Pellegrini, C.; Alinari, L.; Derenzini, E.; de Vivo, A.; et al. Phase II trial of proteasome inhibitor bortezomib in patients with relapsed or refractory cutaneous T-cell lymphoma. J. Clin. Oncol. 2007, 25, 4293–4297. [Google Scholar] [CrossRef] [PubMed]
- Attar, E.C.; Johnson, J.L.; Amrein, P.C.; Lozanski, G.; Wadleigh, M.; DeAngelo, D.J.; Kolitz, J.E.; Powell, B.L.; Voorhees, P.; Wang, E.S.; et al. Bortezomib added to daunorubicin and cytarabine during induction therapy and to intermediate-dose cytarabine for consolidation in patients with previously untreated acute myeloid leukemia age 60 to 75 years: CALGB (Alliance) study 10502. J. Clin. Oncol. 2013, 31, 923–929. [Google Scholar] [CrossRef]
- Kaspers, G.J.L.; Niewerth, D.; Wilhelm, B.A.J.; Scholte-van Houtem, P.; Lopez-Yurda, M.; Berkhof, J.; Cloos, J.; de Haas, V.; Mathot, R.A.; Attarbaschi, A.; et al. An effective modestly intensive re-induction regimen with bortezomib in relapsed or refractory paediatric acute lymphoblastic leukaemia. Br. J. Haematol. 2018, 181, 523–527. [Google Scholar] [CrossRef]
- Vicente, A.T.S.; Salvador, J.A.R. PROteolysis-Targeting Chimeras (PROTACs) in leukemia: Overview and future perspectives. MedComm 2024, 5, e575. [Google Scholar] [CrossRef]
- Chen, Y.; Yuan, X.; Tang, M.; Shi, M.; Yang, T.; Liu, K.; Deng, D.; Chen, L. Degrading FLT3-ITD protein by proteolysis targeting chimera (PROTAC). Bioorg. Chem. 2022, 119, 105508. [Google Scholar] [CrossRef]
- Burslem, G.M.; Song, J.; Chen, X.; Hines, J.; Crews, C.M. Enhancing Antiproliferative Activity and Selectivity of a FLT-3 Inhibitor by Proteolysis Targeting Chimera Conversion. J. Am. Chem. Soc. 2018, 140, 16428–16432. [Google Scholar] [CrossRef]
- Cao, S.; Ma, L.; Liu, Y.; Wei, M.; Yao, Y.; Li, C.; Wang, R.; Liu, N.; Dong, Z.; Li, X.; et al. Proteolysis-Targeting Chimera (PROTAC) Modification of Dovitinib Enhances the Antiproliferative Effect against FLT3-ITD-Positive Acute Myeloid Leukemia Cells. J. Med. Chem. 2021, 64, 16497–16511. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Cui, Z.; Sun, Y.; Zhou, H.; Rong, Q.; Wang, D.; Jin, J.; Zhang, Q.; Kang, D.; Hu, L.; et al. Discovery of a potent Gilteritinib-based FLT3-PROTAC degrader for the treatment of Acute myeloid leukemia. Bioorg. Chem. 2024, 149, 107477. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Xin, L.; Wang, Q.; Xu, R.; Tong, X.; Chen, G.; Ma, L.; Yang, F.; Jiang, H.; Zhang, N.; et al. FLT3-selective PROTAC: Enhanced safety and increased synergy with Venetoclax in FLT3-ITD mutated acute myeloid leukemia. Cancer Lett. 2024, 592, 216933. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yao, Q.; Song, D.; Tang, K.; Tang, Z.; Hu, M.; Luo, Y.; Xie, Y. Discovery of degrader for FLT3, GSPT1 and IKZF1/3 proteins merging PROTAC and molecular glue targeting FLT3-ITD mutant acute myeloid leukemia. Eur. J. Med. Chem. 2025, 296, 117893. [Google Scholar] [CrossRef]
- Wang, J.; Rong, Q.; Ye, L.; Fang, B.; Zhao, Y.; Sun, Y.; Zhou, H.; Wang, D.; He, J.; Cui, Z.; et al. Discovery of a Novel Orally Bioavailable FLT3-PROTAC Degrader for Efficient Treatment of Acute Myeloid Leukemia and Overcoming Resistance of FLT3 Inhibitors. J. Med. Chem. 2024, 67, 7197–7223. [Google Scholar] [CrossRef]
- Burslem, G.M.; Schultz, A.R.; Bondeson, D.P.; Eide, C.A.; Savage Stevens, S.L.; Druker, B.J.; Crews, C.M. Targeting BCR-ABL1 in Chronic Myeloid Leukemia by PROTAC-Mediated Targeted Protein Degradation. Cancer Res. 2019, 79, 4744–4753. [Google Scholar] [CrossRef]
- Khan, S.; Zhang, X.; Lv, D.; Zhang, Q.; He, Y.; Zhang, P.; Liu, X.; Thummuri, D.; Yuan, Y.; Wiegand, J.S.; et al. A selective BCL-X(L) PROTAC degrader achieves safe and potent antitumor activity. Nat. Med. 2019, 25, 1938–1947. [Google Scholar] [CrossRef]
- Kang, C.H.; Lee, D.H.; Lee, C.O.; Du Ha, J.; Park, C.H.; Hwang, J.Y. Induced protein degradation of anaplastic lymphoma kinase (ALK) by proteolysis targeting chimera (PROTAC). Biochem. Biophys. Res. Commun. 2018, 505, 542–547. [Google Scholar] [CrossRef]
- Ju, Y.; Song, H.; He, Y.; Lo, Y.; Fan, Z.; Lu, J. Development of a Selective and Potent PRMT4 PROTAC Degrader with Efficacy Against Multiple Myeloma In Vitro and In Vivo. J. Med. Chem. 2025, 68, 13973–13989. [Google Scholar] [CrossRef]
- Kim, S.; Hwang, I.; Kim, Y.K.; Kim, D.S.; Choi, Y.J.; Jeung, E.B. Treatment of dexamethasone and lenalidomide-resistant multiple myeloma via RAD51 degradation using PROTAC and synergistic effects with chemotherapy. J. Physiol. Pharmacol. 2024, 75, 705–717. [Google Scholar]
- Garcha, H.K.; Olaoye, O.O.; Sedighi, A.; Poloske, D.; Hariri, P.; Yu, W.; Abdallah, D.I.; Moriggl, R.; de Araujo, E.D.; Gunning, P.T. Monoselective Histone Deacetylase 6 PROTAC Degrader Shows In Vivo Tractability. J. Med. Chem. 2025, 68, 6165–6177. [Google Scholar] [CrossRef] [PubMed]
- Quist-Lokken, I.; Tilseth, M.; Andersson-Rusch, C.; Hanif, M.A.; Walz, M.; Moen, J.F.N.; Vik, M.A.; Slordahl, T.S.; Sundan, A.; Hausch, F.; et al. Novel PROTAC to target FKBP12: The potential to enhance bone morphogenetic protein activity and apoptosis in multiple myeloma. Haematologica 2025, 110, 2487–2492. [Google Scholar] [CrossRef] [PubMed]
- Cornu, M.; Lemaitre, T.; Kieffer, C.; Voisin-Chiret, A.S. PROTAC 2.0: Expanding the frontiers of targeted protein degradation. Drug Discov. Today 2025, 30, 104376. [Google Scholar] [CrossRef]
- Surveillance Research Program, N.C.I. SEER*Explorer: An Interactive Website for SEER Cancer Statistics. Available online: https://seer.cancer.gov/statistics-network/explorer/ (accessed on 21 October 2025).



| Drug Name | Generation | Type | Potency (IC50) in nM |
|---|---|---|---|
| Lestaurtinib | First | I | 3 |
| Tandutinib | First | II | 220 |
| Midostaurin | First | I | 6.3 |
| Sorafenib | First | II | 58 |
| Sunitinib | First | I | 7 |
| Quizartinib | Second | II | 1.6 |
| Gilteritinib | Second | I | 0.29 |
| Crenolanib | Second | I | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumala, C.; Vu, L.; Fandy, T.E. Current Status of Molecularly Targeted Therapeutics in Blood Cancers. Int. J. Mol. Sci. 2025, 26, 10512. https://doi.org/10.3390/ijms262110512
Kumala C, Vu L, Fandy TE. Current Status of Molecularly Targeted Therapeutics in Blood Cancers. International Journal of Molecular Sciences. 2025; 26(21):10512. https://doi.org/10.3390/ijms262110512
Chicago/Turabian StyleKumala, Caitlin, Lynh Vu, and Tamer E. Fandy. 2025. "Current Status of Molecularly Targeted Therapeutics in Blood Cancers" International Journal of Molecular Sciences 26, no. 21: 10512. https://doi.org/10.3390/ijms262110512
APA StyleKumala, C., Vu, L., & Fandy, T. E. (2025). Current Status of Molecularly Targeted Therapeutics in Blood Cancers. International Journal of Molecular Sciences, 26(21), 10512. https://doi.org/10.3390/ijms262110512

