Cable Cars to the Nucleus: TM4SF1-Enriched Microdomains Conduct Signaling in Endothelial Cells for Blood Vessel Formation
Abstract
1. TM4SF1 and Its Expression—A Concise Summary
TM4SF1-Enriched Microdomain (TMED) Formation and Cellular Localization—An Introduction of TM4SF1’s Functional Activities
2. TMED-Mediated Cell Signaling
TMEDs as Cable Cars Trafficking from the Cell Surface to the Nucleus
3. Research Directions
- TM4SF1 transcriptional regulation. Why is TM4SF1 expression restricted to endothelial and mesenchymal stem cells among normal cell types, but ubiquitous among the tumor cells of solid cancers? We have identified ERG as the primary transcription factor regulating TM4SF1 expression in cultured endothelial cells (responsible for 60–70% of TM4SF1 expression; paper in preparation). The transcriptional regulation of TM4SF1 in stem cells of mesenchymal or cancer origin, or during the epithelial-to-mesenchymal transition into invasive and metastatic tumor cells [5,38,39], remains largely unknown, as is the mechanism of TM4SF1 suppression in most cell types.
- TMED formation. The density of TMED on the cell surface is directly affected by the expression level of TM4SF1 [8,13]. We have noted that the cultured endothelial cells contain 0.5–1 × 106 copies of TM4SF1 protein molecules on their cell surface [40]; however, the minimum number of TM4SF1 proteins needed on the endothelial cell surface to form TMED has not yet been quantified. Such knowledge will resolve a key difference in endothelial cell biology between the quiescent non-proliferative state versus the angiogenic proliferative state.
- TMED recruited passenger molecules. Mapping the proteins recruited to TMEDs is highly desirable as it will (i) permit a better understanding of how cell signals are transmitted from cell surface to nucleus for gene expression regulation, (ii) elucidate proteins involved in intercellular interactions via nanopodia for the orchestration of blood vessel development, and (iii) open a new gateway for understanding the oncogenic transformation of epithelial cells to tumor cells [38,39].
- TMED internalization and nuclear entry. TMED recruitment of HDAC6, a microtubule-associated deacetylase that shuttles to the nucleus by interacting with importins [41,42,43], likely plays a critical role in the process of TMED internalization along microtubules and ultimate arrival in the nucleoplasm. The observation that αTubulin is highly acetylated after TM4SF1 knockdown, despite normal HDAC6 expression levels, indicates that HDAC6 deacetylation activity is dependent on its transportation via TMEDs in endothelial cells [1]. HDAC6 is upregulated in various cancer types [44] and promotes cancer cell metastasis [45,46], suggesting a potential connection between HDAC6 and TM4SF1 in tumor cells.
- Nanopodia-mediated intercellular interactions and communications. Nanopodia play a vital role in intercellular interactions and molecule/organelle trafficking, in both homotypic endothelial–endothelial and heterotypic endothelial–mesenchymal and endothelial–tumor cell interactions [10,11]. Mitochondria are transferred via tunneling nanotubes in mesenchymal stem cells [47]; we anticipate that these nanotubes form from nanopodia
- The role of TM4SF1 in diseases of pathological angiogenesis. Many human diseases are initiated by a dysfunctional endothelium [48,49]. Conditional TM4SF1 knockout in endothelial cells in mice in vivo is the next step toward understanding not only the role of TM4SF1 in blood vessel development but also how it potentially orchestrates disease progression in vivo.
- Tetraspanin-enriched microdomains (TEMs) versus TMEDs. Some genuine tetraspanins are ubiquitously expressed, while others are exclusively expressed [50]; some are reported to be endocytosed via clathrin-mediated endocytosis with an ultimate destination of endosomes–lysosomes or exosomes [20,21,51], while others internalize into the nucleus [52] with some forming migrasomes for intercellular communications [53,54]. How cells utilize expression level differences in these tetraspanins, both genuine and atypical, to achieve their cellular functions needs to be further explored.
Therapeutic Implications of TMED Trafficking
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Lin, C.I.; Merley, A.; Jaminet, S.S. TM4SF1 is a molecular facilitator that distributes cargo proteins intracellularly in endothelial cells in support of blood vessel formation. J. Cell Commun. Signal. 2024, 18, e12031. [Google Scholar] [CrossRef] [PubMed]
- Marken, J.S.; Schieven, G.L.; Hellstrom, I.; Hellstrom, K.E.; Aruffo, A. Cloning and expression of the tumor-associated antigen L6. Proc. Natl. Acad. Sci. USA 1992, 89, 3503–3507. [Google Scholar] [CrossRef]
- Wright, M.D.; Ni, J.; Rudy, G.B. The L6 membrane proteins—A new four-transmembrane superfamily. Proc. Natl. Acad. Sci. USA 2000, 9, 1594–1600. [Google Scholar] [CrossRef]
- Hellstrom, I.; Beaumier, P.L.; Hellstrom, K.E. Antitumor effects of L6, an IgG2a antibody that reacts with most human carcinomas. Proc. Natl. Acad. Sci. USA 1986, 83, 7059–7063. [Google Scholar]
- Tang, Q.; Chen, J.; Di, Z.; Yuan, W.; Zhou, Z.; Liu, Z.; Han, S.; Liu, Y.; Ying, G.; Shu, X.; et al. TM4SF1 promotes EMT and cancer stemness via the Wnt/β-catenin/SOX2 pathway in colorectal cancer. J. Exp. Clin. Cancer Res. 2020, 39, 232. [Google Scholar] [CrossRef]
- Seo, D.C.; Sung, J.M.; Cho, H.J.; Yi, H.; Seo, K.H.; Choi, I.S.; Kim, D.K.; Kim, J.S.; Abd El-Aty, A.M.; Shin, H.C. Gene expression profiling of cancer stem cell in human lung adenocarcinoma A549 cells. Mol. Cancer 2007, 6, 75. [Google Scholar] [CrossRef]
- Ghandi, M.; Huang, F.W.; Jane-Valbuena, J.; Kryukov, G.V.; Lo, C.C.; McDonald, E.R., 3rd; Barretina, J.; Gelfand, E.T.; Bielski, C.M.; Li, H.; et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 2019, 569, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Shih, S.C.; Zukauskas, A.; Li, D.; Liu, G.; Ang, L.H.; Nagy, J.A.; Brown, L.F.; Dvorak, H.F. The L6 protein TM4SF1 is critical for endothelial cell function and tumor angiogenesis. Cancer Res. 2009, 69, 3272–3277. [Google Scholar] [CrossRef]
- English, S.B.; Shih, S.C.; Ramoni, M.F.; Smith, L.E.; Butte, A.J. Use of Bayesian networks to probabilistically model and improve the likelihood of validation of microarray findings by RT-PCR. J. Biomed. Inform. 2009, 42, 287–295. [Google Scholar] [CrossRef]
- Zukauskas, A.; Merley, A.; Li, D.; Ang, L.H.; Sciuto, T.E.; Salman, S.; Dvorak, A.M.; Dvorak, H.F.; Jaminet, S.C. TM4SF1: A tetraspanin-like protein necessary for nanopodia formation and endothelial cell migration. Angiogenesis 2011, 14, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.I.; Lau, C.Y.; Li, D.; Jaminet, S.C. Nanopodia–thin, fragile membrane projections with roles in cell movement and intercellular interactions. J. Vis. Exp. 2014, 3, e51320. [Google Scholar] [CrossRef]
- Lin, C.I.; Merley, A.; Wada, H.; Zheng, J.; Jaminet, S.S. Transmembrane-4 L-Six Family Member-1 Is Essential for Embryonic Blood Vessel Development. Curr. Issues Mol. Biol. 2024, 46, 13105–13118. [Google Scholar] [CrossRef]
- Sciuto, T.E.; Merley, A.; Lin, C.I.; Richardson, D.; Liu, Y.; Li, D.; Dvorak, A.M.; Dvorak, H.F.; Jaminet, S.C. Intracellular distribution of TM4SF1 and internalization of TM4SF1-antibody complex in vascular endothelial cells. Biochem. Biophys. Res. Commun. 2015, 465, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Mattila, P.K.; Lappalainen, P. Filopodia: Molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 2008, 9, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Choi, S.H.; Lee, M.S.; Kurmashev, A.; Lee, H.N.; Ko, Y.G.; Lee, K.; Jeong, S.; Seong, J.; Kang, J.H.; et al. Retraction fibers produced by fibronectin-integrin α5β1 interaction promote motility of brain tumor cells. FASEB J. 2021, 35, e21906. [Google Scholar] [CrossRef]
- Lin, C.I.; Merley, A.; Sciuto, T.E.; Li, D.; Dvorak, A.M.; Melero-Martin, J.M.; Dvorak, H.F.; Jaminet, S.C. TM4SF1: A new vascular therapeutic target in cancer. Angiogenesis 2014, 17, 897–907. [Google Scholar] [CrossRef]
- Huang, Y.; Zucker, B.; Zhang, S.; Elias, S.; Zhu, Y.; Chen, H.; Ding, T.; Li, Y.; Sun, Y.; Lou, J.; et al. Migrasome formation is mediated by assembly of micron-scale tetraspanin macrodomains. Nat. Cell Biol. 2019, 21, 991–1002. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, J.; Ding, Y.; Zhang, J.; Xu, Y.; Xu, J.; Zheng, S.; Yang, H. Migrasome and Tetraspanins in Vascular Homeostasis: Concept, Present, and Future. Front. Cell Dev. Biol. 2020, 8, 438. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, L.; Meng, Y.; Li, B.; Yang, Y.; Gao, F. Migrasome: A new functional extracellular vesicle. Cell Death Discov. 2023, 9, 381. [Google Scholar] [CrossRef]
- Stipp, C.S.; Kolesnikova, T.V.; Hemler, M.E. Functional domains in tetraspanin proteins. Trends Biochem. Sci. 2003, 28, 106–112. [Google Scholar] [CrossRef]
- van Deventer, S.J.; Dunlock, V.E.; van Spriel, A.B. Molecular interactions shaping the tetraspanin web. Biochem. Soc. Trans. 2017, 45, 741–750. [Google Scholar] [CrossRef]
- Susa, K.J.; Kruse, A.C.; Blacklow, S.C. Tetraspanins: Structure, dynamics, and principles of partner-protein recognition. Trends Cell Biol. 2024, 34, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Zuidscherwoude, M.; Gottfert, F.; Dunlock, V.M.; Figdor, C.G.; van den Bogaart, G.; van Spriel, A.B. The tetraspanin web revisited by super-resolution microscopy. Sci. Rep. 2015, 5, 12201. [Google Scholar] [CrossRef]
- Erickson, H.P. Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol. Proced. Online 2009, 11, 32–51. [Google Scholar] [CrossRef]
- Koch, S.; Claesson-Welsh, L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb. Perspect. Med. 2012, 2, a006502. [Google Scholar] [CrossRef]
- Jeltsch, M.; Leppanen, V.M.; Saharinen, P.; Alitalo, K. Receptor tyrosine kinase-mediated angiogenesis. Cold Spring Harb. Perspect. Biol. 2013, 5, a009183. [Google Scholar] [CrossRef]
- Lekishvili, T.; Fromm, E.; Mujoomdar, M.; Berditchevski, F. The tumour-associated antigen L6 (L6-Ag) is recruited to the tetraspanin-enriched microdomains: Implication for tumour cell motility. J. Cell Sci. 2008, 121 Pt 5, 685–694. [Google Scholar] [CrossRef]
- Chang, Y.W.; Chen, S.C.; Cheng, E.C.; Ko, Y.P.; Lin, Y.C.; Kao, Y.R.; Tsay, Y.G.; Yang, P.C.; Wu, C.W.; Roffler, S.R. CD13 (aminopeptidase N) can associate with tumor-associated antigen L6 and enhance the motility of human lung cancer cells. Int. J. Cancer 2005, 116, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Luo, X.; Wu, J.; Liu, Y.; Liu, L.; Ma, S.; Xie, R.; Wang, S.; Ji, W. TM4SF1, a binding protein of DVL2 in hepatocellular carcinoma, positively regulates beta-catenin/TCF signalling. J. Cell. Mol. Med. 2019, 25, 2356–2364. [Google Scholar] [CrossRef]
- Borrell-Pages, M.; Fernandez-Larrea, J.; Borroto, A.; Rojo, F.; Baselga, J.; Arribas, J. The carboxy-terminal cysteine of the tetraspanin L6 antigen is required for its interaction with SITAC, a novel PDZ protein. Mol. Biol. Cell 2000, 11, 4217–4225. [Google Scholar] [CrossRef] [PubMed]
- Gadiya, M.; Chakraborty, G. Signaling by discoidin domain receptor 1 in cancer metastasis. Cell Adhes. Migr. 2018, 12, 315–323. [Google Scholar] [CrossRef]
- Chen, D.; Simons, M. Emerging roles of PLCγ1 in endothelial biology. Sci. Signal. 2021, 14, eabc6612. [Google Scholar] [CrossRef]
- Ji, Q.S.; Winnier, G.E.; Niswender, K.D.; Horstman, D.; Wisdom, R.; Magnuson, M.A.; Carpenter, G. Essential role of the tyrosine kinase substrate phospholipase C-gamma1 in mammalian growth and development. Proc. Natl. Acad. Sci. USA 1997, 94, 2999–3003. [Google Scholar] [CrossRef]
- Takahashi, T.; Yamaguchi, S.; Chida, K.; Shibuya, M. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J. 2001, 20, 2768–2778. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, Y.; Ohgimoto, K.; Kataoka, Y.; Yoshida, N.; Shibuya, M. Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc. Natl. Acad. Sci. USA 2005, 102, 1076–1081. [Google Scholar] [CrossRef]
- Rubin, D.B.; Drab, E.A.; Bauer, K.D. Endothelial cell subpopulations in vitro: Cell volume, cell cycle, and radiosensitivity. J. Appl. Physiol. 1989, 67, 1585–1590. [Google Scholar] [CrossRef] [PubMed]
- Milo, R. What is the total number of protein molecules per cell volume? A call to rethink some published values. BioEssays 2013, 35, 1050–1055. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, Y.; Xu, J.; Lu, D.; Wang, J. Role of TM4SF1 in regulating breast cancer cell migration and apoptosis through PI3K/AKT/mTOR pathway. Int. J. Clin. Exp. Pathol. 2015, 8, 9081–9088. [Google Scholar] [PubMed]
- Cao, J.; Yang, J.C.; Ramachandran, V.; Arumugam, T.; Deng, D.F.; Li, Z.S.; Xu, L.M.; Logsdon, C.D. TM4SF1 Regulates Pancreatic Cancer Migration and Invasion In Vitro and In Vivo. Cell. Physiol. Biochem. 2016, 39, 740–750. [Google Scholar] [CrossRef]
- Visintin, A.; Knowlton, K.; Tyminski, E.; Lin, C.I.; Zheng, X.; Marquette, K.; Jain, S.; Tchistiakova, L.; Li, D.; O’Donnell, C.J.; et al. Novel Anti-TM4SF1 Antibody-Drug Conjugates with Activity against Tumor Cells and Tumor Vasculature. Mol. Cancer Ther. 2015, 14, 1868–1876. [Google Scholar] [CrossRef]
- Hubbert, C.; Guardiola, A.; Shao, R.; Kawaguchi, Y.; Ito, A.; Nixon, A.; Yoshida, M.; Wang, X.F.; Yao, T.P. HDAC6 is a microtubule-associated deacetylase. Nature 2002, 417, 455–458. [Google Scholar] [CrossRef]
- Bobrowska, A.; Paganetti, P.; Matthias, P.; Bates, G.P. Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington’s disease. PLoS ONE 2011, 6, e20696. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Peng, L.; Seto, E.; Huang, S.; Qiu, Y. Modulation of histone deacetylase 6 (HDAC6) nuclear import and tubulin deacetylase activity through acetylation. J. Biol. Chem. 2012, 287, 29168–29174. [Google Scholar] [CrossRef]
- Asaad, L.; Pepperrell, B.; McErlean, E.; Furlong, F. Regulation of HDAC6 Catalytic Activity in Cancer: The Role of Post-Translational Modifications and Protein-Protein Interactions. Int. J. Mol. Sci. 2025, 26, 1274. [Google Scholar] [CrossRef]
- Oliveira-Silva, J.M.; de Oliveira, L.S.; Taglieri, J.V.M.; Lopes, L.B.; de Souza, C.V.E.; Batistao, H.K.A.; Castro-Gamero, A.M. HDAC6: Tumor Progression and Beyond. Curr. Cancer Drug Targets 2025, 26, 1–17. [Google Scholar] [CrossRef]
- Mangaonkar, S.; Nath, S.; Chatterji, B.P. Microtubule dynamics in cancer metastasis: Harnessing the underappreciated potential for therapeutic interventions. Pharmacol. Ther. 2024, 263, 108726. [Google Scholar] [CrossRef]
- Li, C.; Cheung, M.K.H.; Han, S.; Zhang, Z.; Chen, L.; Chen, J.; Zeng, H.; Qiu, J. Mesenchymal stem cells and their mitochondrial transfer: A double-edged sword. Biosci. Rep. 2019, 39, BSR20182417. [Google Scholar] [CrossRef]
- Rajendran, P.; Rengarajan, T.; Thangavel, J.; Nishigaki, Y.; Sakthisekaran, D.; Sethi, G.; Nishigaki, I. The vascular endothelium and human diseases. Int. J. Biol. Sci. 2013, 9, 1057–1069. [Google Scholar] [CrossRef]
- Augustin, H.G.; Koh, G.Y. A systems view of the vascular endothelium in health and disease. Cell 2024, 187, 4833–4858. [Google Scholar] [CrossRef] [PubMed]
- Hemler, M.E. Tetraspanin functions and associated microdomains. Nat. Rev. Mol. Cell Biol. 2005, 6, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.T.; Owen, D.J. Endocytic sorting of transmembrane protein cargo. Curr. Opin. Cell Biol. 2011, 23, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, J.; Du, W.; Li, S.; Li, Y.; Qu, H.; Xv, J.; Yu, L.; Zhu, R.; Wang, H. Nuclear translocation of the 4-pass transmembrane protein Tspan8. Cell Res. 2021, 31, 1218–1221. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, T.; Zhang, R.; Zhang, Z.; Tan, S. Migrasomes and tetraspanins in hepatocellular carcinoma: Current status and future prospects. Future Sci. OA 2023, 9, FSO890. [Google Scholar] [CrossRef]
- Tan, Z.; Yang, C.; Fu, S.; Wu, J.; Huang, Y.; Li, H.; Gong, C.; Lv, D.; Wang, J.; Ding, M.; et al. Migrasomes, critical players in intercellular communication. Cancer Cell Int. 2025, 25, 113. [Google Scholar] [CrossRef] [PubMed]
- Goodman, G.E.; Hellstrom, I.; Brodzinsky, L.; Nicaise, C.; Kulander, B.; Hummel, D.; Hellstrom, K.E. Phase I trial of murine monoclonal antibody L6 in breast, colon, ovarian, and lung cancer. J. Clin. Oncol. 1990, 8, 1083–1092. [Google Scholar] [CrossRef] [PubMed]
- DeNardo, S.J.; Warhoe, K.A.; O’Grady, L.F.; Hellstrom, I.; Hellstrom, K.E.; Mills, S.L.; Macey, D.J.; Goodnight, J.E.; DeNardo, G.L. Radioimmunotherapy for breast cancer: Treatment of a patient with I-131 L6 chimeric monoclonal antibody. Int. J. Biol. Markers 1991, 6, 221–230. [Google Scholar] [CrossRef]
- DeNardo, S.J.; Mirick, G.R.; Kroger, L.A.; O’Grady, L.F.; Erickson, K.L.; Yuan, A.; Lamborn, K.R.; Hellstrom, I.; Hellstrom, K.E.; DeNardo, G.L. The biologic window for chimeric L6 radioimmunotherapy. Cancer 1994, 73 (Suppl. S3), 1023–1032. [Google Scholar] [CrossRef]
- Richman, C.M.; DeNardo, S.J.; O’Grady, L.F.; DeNardo, G.L. Radioimmunotherapy for breast cancer using escalating fractionated doses of 131I-labeled chimeric L6 antibody with peripheral blood progenitor cell transfusions. Cancer Res. 1995, 55 (Suppl. S23), 5916s–5920s. [Google Scholar]

| Research Directions: | Investigates the Mechanisms Regarding: | |
|---|---|---|
| 1 | TM4SF1 transcriptional regulation | The regulation of TM4SF1 transcription in angiogenic endothelial cells, mesenchymal stem cells, and tumor cells. |
| 2 | TMED formation | The number of TM4SF1 protein copies needed to enable the recruitment of proteins to form a TMED. |
| 3 | TMED recruited passenger molecules | The identity of proteins recruited to TMED, and the TM4SF1-enabled signaling networks involved in blood vessel formation and the oncogenic transformation of epithelial cells. |
| 4 | TMED internalization and nuclear entry | The destinations of TMED passenger molecules and their influence on cell biology. |
| 5 | Nanopodia-mediated intercellular interactions and communications | Nanopodia formation, and roles of nanopodia in intercellular interactions and molecule and organelle trafficking. |
| 6 | The role of TM4SF1 in diseases of pathological angiogenesis | TM4SF1 expression variations in blood vessel development in mice in vivo through the conditional knockout approach. |
| 7 | Tetraspanin-enriched microdomains (TEMs) versus TMEDs | The coordination between TEMs and TMEDs for the maintenance of cellular functions. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaminet, S.-C. Cable Cars to the Nucleus: TM4SF1-Enriched Microdomains Conduct Signaling in Endothelial Cells for Blood Vessel Formation. Int. J. Mol. Sci. 2025, 26, 10491. https://doi.org/10.3390/ijms262110491
Jaminet S-C. Cable Cars to the Nucleus: TM4SF1-Enriched Microdomains Conduct Signaling in Endothelial Cells for Blood Vessel Formation. International Journal of Molecular Sciences. 2025; 26(21):10491. https://doi.org/10.3390/ijms262110491
Chicago/Turabian StyleJaminet, Shou-Ching. 2025. "Cable Cars to the Nucleus: TM4SF1-Enriched Microdomains Conduct Signaling in Endothelial Cells for Blood Vessel Formation" International Journal of Molecular Sciences 26, no. 21: 10491. https://doi.org/10.3390/ijms262110491
APA StyleJaminet, S.-C. (2025). Cable Cars to the Nucleus: TM4SF1-Enriched Microdomains Conduct Signaling in Endothelial Cells for Blood Vessel Formation. International Journal of Molecular Sciences, 26(21), 10491. https://doi.org/10.3390/ijms262110491

