Special Issue “Molecular Advances in Heart Disease: Genomics, Proteomics, and Bioinformatics of Heart Research”
1. Introduction
2. Genomics and Bioinformatics
3. Transcriptomics and Gene Regulation
4. RNA Biomarkers
5. Complementary Reviews
6. Summary
Funding
Conflicts of Interest
References
- Netala, V.R.; Teertam, S.K.; Li, H.; Zhang, Z. A Comprehensive Review of Cardiovascular Disease Management: Cardiac Biomarkers, Imaging Modalities, Pharmacotherapy, Surgical Interventions, and Herbal Remedies. Cells 2024, 13, 1471. [Google Scholar] [CrossRef]
- Leopold, J.A.; Maron, B.A.; Loscalzo, J. The application of big data to cardiovascular disease: Paths to precision medicine. J. Clin. Investig. 2020, 130, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Martins, I.L.F.; Almeida, F.V.d.S.; Souza KPd Brito FCFd Rodrigues, G.D.; Scaramello, C.B.V. Reviewing Atrial Fibrillation Pathophysiology from a Network Medicine Perspective: The Relevance of Structural Remodeling, Inflammation, and the Immune System. Life 2023, 13, 1364. [Google Scholar] [CrossRef] [PubMed]
- Ghiassian, S.D.; Menche, J.; Chasman, D.I.; Giulianini, F.; Wang, R.; Ricchiuto, P.; Aikawa, M.; Iwata, H.; Müller, C.; Zeller, T.; et al. Endophenotype Network Models: Common Core of Complex Diseases. Sci. Rep. 2016, 6, 27414. [Google Scholar] [CrossRef]
- Lee, L.Y.; Loscalzo, J. Network Medicine in Pathobiology. Am. J. Pathol. 2019, 189, 1311–1326. [Google Scholar] [CrossRef]
- Hajishah, H.; Kazemi, D.; Safaee, E.; Amini, M.J.; Peisepar, M.; Tanhapour, M.M.; Tavasol, A. Evaluation of machine learning methods for prediction of heart failure mortality and readmission: Meta-analysis. BMC Cardiovasc. Disord. 2025, 25, 264. [Google Scholar] [CrossRef]
- Bukaeva, A.; Ershova, A.; Kharlap, M.; Kiseleva, A.; Kutsenko, V.; Sotnikova, E.; Divashuk, M.; Pokrovskaya, M.; Garbuzova, E.; Blokhina, A.; et al. The Yield of Genetic Testing and Putative Genetic Factors of Disease Heterogeneity in Long QT Syndrome Patients. Int. J. Mol. Sci. 2024, 25, 11976. [Google Scholar] [CrossRef]
- de Oliveira, F.G.; Foletto, J.V.P.; Medeiros, Y.C.S.; Schuler-Faccini, L.; Kowalski, T.W. Bioinformatic Multi-Strategy Profiling of Congenital Heart Defects for Molecular Mechanism Recognition. Int. J. Mol. Sci. 2024, 25, 12052. [Google Scholar] [CrossRef]
- Voskamp, S.M.; Hammonds, M.A.; Knapp, T.M.; Pekmezian, A.L.; Hadley, D.; Nelson, J.S. Meta-analysis reveals differential gene expression in tetralogy of Fallot versus controls. Birth Defects Res. 2024, 116, e2293. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.; Awan, F.M.; Naz, A.; deAndrés-Galiana, E.J.; Alvarez, O.; Cernea, A.; Fernández-Brillet, L.; Fernández-Martínez, J.L.; Kloczkowski, A. Innovations in Genomics and Big Data Analytics for Personalized Medicine and Health Care: A Review. Int. J. Mol. Sci. 2022, 23, 4645. [Google Scholar] [CrossRef]
- Głogowska-Ligus, J.; Dąbek, J.; Wypych-Ślusarska, A.; Oleksiuk, K.; Krupa-Kotara, K.; Sobecko, E.; Czech, E.; Słowiński, J. Zyxin Gene Expression in Patients with Varying Degrees of Coronary Artery Disease. Int. J. Mol. Sci. 2025, 26, 7072. [Google Scholar] [CrossRef] [PubMed]
- Al-Hasani, J.; Sens-Albert, C.; Ghosh, S.; Trogisch, F.A.; Nahar, T.; Friede, P.A.P.; Reil, J.C.; Hecker, M. Zyxin protects from hypertension-induced cardiac dysfunction. Cell Mol. Life Sci. 2022, 79, 93. [Google Scholar] [CrossRef]
- Hasan, M.R.; Kump, A.J.; Stepaniak, E.C.; Panta, M.; Shashidhar, K.; Katariya, R.; Sabbir, M.K.; Schwab, K.R.; Inlow, M.H.; Chen, Y.; et al. Genome-Wide Expression Profiling and Phenotypic Analysis of Downstream Targets Identify the Fox Transcription Factor Jumeau as a Master Regulator of Cardiac Progenitor Cell Division. Int. J. Mol. Sci. 2024, 25, 12933. [Google Scholar] [CrossRef] [PubMed]
- Inoue, D.S.; Pigg, Q.W.; Harris, D.R.; Zhang, D.; Boland, D.J.; Janini Gomes, M. Impact of Aerobic Training on Transcriptomic Changes in Skeletal Muscle of Rats with Cardiac Cachexia. Int. J. Mol. Sci. 2025, 26, 6525. [Google Scholar] [CrossRef] [PubMed]
- Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020, 9, 276. [Google Scholar] [CrossRef]
- Zhou, S.S.; Jin, J.P.; Wang, J.Q.; Zhang, Z.G.; Freedman, J.H.; Zheng, Y.; Cai, L. miRNAS in cardiovascular diseases: Potential biomarkers, therapeutic targets and challenges. Acta Pharmacol. Sin. 2018, 39, 1073–1084. [Google Scholar] [CrossRef]
- Asjad, E.; Dobrzynski, H. MicroRNAs: Midfielders of Cardiac Health, Disease and Treatment. Int. J. Mol. Sci. 2023, 24, 16207. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, G.; Chen, Y.; Liu, W. miR-223-5p serves as a diagnostic biomarker for acute coronary syndrome and its predictive value for the clinical outcome after PCI. BMC Cardiovasc. Disord. 2024, 24, 423. [Google Scholar] [CrossRef]
- Laggerbauer, B.; Engelhardt, S. MicroRNAs as therapeutic targets in cardiovascular disease. J. Clin. Investig. 2022, 132, e159179. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Lee, S.; Park, J.-T.; Lee, S.-J.; Kim, H.-S. Postmortem-Derived Exosomal MicroRNA 486-5p as Potential Biomarkers for Ischemic Heart Disease Diagnosis. Int. J. Mol. Sci. 2024, 25, 9619. [Google Scholar]
- Rayner, K.J.; Sheedy, F.J.; Esau, C.C.; Hussain, F.N.; Temel, R.E.; Parathath, S.; van Gils, J.M.; Rayner, A.J.; Chang, A.N.; Suarez, Y.; et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Investig. 2011, 121, 2921–2931. [Google Scholar] [CrossRef]
- Goedeke, L.; Rotllan, N.; Canfrán-Duque, A.; Aranda, J.F.; Ramírez, C.M.; Araldi, E.; Lin, C.-S.; Anderson, N.N.; Wagschal, A.; de Cabo, R.; et al. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat. Med. 2015, 21, 1280–1289. [Google Scholar] [CrossRef] [PubMed]
- Vickers, K.C.; Landstreet, S.R.; Levin, M.G.; Shoucri, B.M.; Toth, C.L.; Taylor, R.C.; Palmisano, B.T.; Tabet, F.; Cui, H.L.; Rye, K.-A.; et al. MicroRNA-223 coordinates cholesterol homeostasis. Proc. Natl. Acad. Sci. USA 2014, 111, 14518–14523. [Google Scholar] [CrossRef] [PubMed]
- Ganjali, S.; Aghaee-Bakhtiari, S.H.; Reiner, Ž.; Sahebkar, A. Differential Expression of miRNA-223 in Coronary In-Stent Restenosis. J. Clin. Med. 2022, 11, 849. [Google Scholar] [CrossRef]
- Huang, R.; Hu, Z.; Cao, Y.; Li, H.; Zhang, H.; Su, W.; Xu, Y.; Liang, L.; Melgiri, N.D.; Jiang, L. MiR-652-3p inhibition enhances endothelial repair and reduces atherosclerosis by promoting Cyclin D2 expression. eBioMedicine 2019, 40, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, M.A.; de Carvalho, A.E.T.S.; Spadari, R.C. MicroRNAs’ Impact on Heart Diseases. Int. J. Mol. Sci. 2025, 26, 5566. [Google Scholar] [CrossRef]
- Karakasis, P.; Theofilis, P.; Patoulias, D.; Vlachakis, P.K.; Pamporis, K.; Sagris, M.; Ktenopoulos, N.; Kassimis, G.; Antoniadis, A.P.; Fragakis, N. Sodium–Glucose Cotransporter 2 Inhibitors in Aortic Stenosis: Toward a Comprehensive Cardiometabolic Approach. Int. J. Mol. Sci. 2025, 26, 4494. [Google Scholar] [CrossRef]
- Willmer, T.; Mabasa, L.; Sharma, J.; Muller, C.J.F.; Johnson, R. Blood-Based DNA Methylation Biomarkers to Identify Risk and Progression of Cardiovascular Disease. Int. J. Mol. Sci. 2025, 26, 2355. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fert-Bober, J. Special Issue “Molecular Advances in Heart Disease: Genomics, Proteomics, and Bioinformatics of Heart Research”. Int. J. Mol. Sci. 2025, 26, 10492. https://doi.org/10.3390/ijms262110492
Fert-Bober J. Special Issue “Molecular Advances in Heart Disease: Genomics, Proteomics, and Bioinformatics of Heart Research”. International Journal of Molecular Sciences. 2025; 26(21):10492. https://doi.org/10.3390/ijms262110492
Chicago/Turabian StyleFert-Bober, Justyna. 2025. "Special Issue “Molecular Advances in Heart Disease: Genomics, Proteomics, and Bioinformatics of Heart Research”" International Journal of Molecular Sciences 26, no. 21: 10492. https://doi.org/10.3390/ijms262110492
APA StyleFert-Bober, J. (2025). Special Issue “Molecular Advances in Heart Disease: Genomics, Proteomics, and Bioinformatics of Heart Research”. International Journal of Molecular Sciences, 26(21), 10492. https://doi.org/10.3390/ijms262110492

