The Ca2+ Bridge: From Neurons to Circuits in Rett Syndrome
Abstract
1. Introduction
2. Cell-Autonomous Mechanisms and Circuit Consequences
3. Upstream Mecp2 Post-Translational Regulation by Ca2+ Signaling
4. Upstream Mecp2 Post-Transcriptional Regulation by Ca2+ Signaling
5. Downstream Regulation of Ca2+ Signaling by Mecp2
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Neul, J.L.; Zoghbi, H.Y. Rett Syndrome: A Prototypical Neurodevelopmental Disorder. Neuroscientist 2004, 10, 118–128. [Google Scholar] [CrossRef]
- Laurvick, C.L.; de Klerk, N.; Bower, C.; Christodoulou, J.; Ravine, D.; Ellaway, C.; Williamson, S.; Leonard, H. Rett Syndrome in Australia: A Review of the Epidemiology. J. Pediatr. 2006, 148, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Young, D.J.; Bebbington, A.; Anderson, A.; Ravine, D.; Ellaway, C.; Kulkarni, A.; de Klerk, N.; Kaufmann, W.E.; Leonard, H. The Diagnosis of Autism in a Female: Could It Be Rett Syndrome? Eur. J. Pediatr. 2008, 167, 661–669. [Google Scholar] [CrossRef]
- Chahrour, M.; Zoghbi, H.Y. The Story of Rett Syndrome: From Clinic to Neurobiology. Neuron 2007, 56, 422–437. [Google Scholar] [CrossRef] [PubMed]
- Pepe, G.; Coco, R.; Corica, D.; Luppino, G.; Morabito, L.A.; Lugarà, C.; Abbate, T.; Zirilli, G.; Aversa, T.; Stagi, S.; et al. Endocrine Disorders in Rett Syndrome: A Systematic Review of the Literature. Front. Endocrinol. 2024, 15, 1477227. [Google Scholar] [CrossRef]
- Ziemka-Nalecz, M.; Pawelec, P.; Ziabska, K.; Zalewska, T. Sex Differences in Brain Disorders. Int. J. Mol. Sci. 2023, 24, 14571. [Google Scholar] [CrossRef]
- Bird, A. DNA Methylation Patterns and Epigenetic Memory. Genes Dev. 2002, 16, 6–21. [Google Scholar] [CrossRef]
- Guo, J.U.; Ma, D.K.; Mo, H.; Ball, M.P.; Jang, M.-H.; Bonaguidi, M.A.; Balazer, J.A.; Eaves, H.L.; Xie, B.; Ford, E.; et al. Neuronal Activity Modifies the DNA Methylation Landscape in the Adult Brain. Nat. Neurosci. 2011, 14, 1345–1351. [Google Scholar] [CrossRef]
- Free, A.; Wakefield, R.I.D.; Smith, B.O.; Dryden, D.T.F.; Barlow, P.N.; Bird, A.P. DNA Recognition by the Methyl-CpG Binding Domain of MeCP2. J. Biol. Chem. 2001, 276, 3353–3360. [Google Scholar] [CrossRef]
- Amir, R.E.; Van den Veyver, I.B.; Wan, M.; Tran, C.Q.; Francke, U.; Zoghbi, H.Y. Rett Syndrome Is Caused by Mutations in X-Linked MECP2, Encoding Methyl-CpG-Binding Protein 2. Nat. Genet. 1999, 23, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Tillotson, R.; Bird, A. The Molecular Basis of MeCP2 Function in the Brain. J. Mol. Biol. 2020, 432, 1602–1623. [Google Scholar] [CrossRef]
- Dragich, J.M.; Kim, Y.-H.; Arnold, A.P.; Schanen, N.C. Differential Distribution of the MeCP2 Splice Variants in the Postnatal Mouse Brain. J. Comp. Neurol. 2007, 501, 526–542. [Google Scholar] [CrossRef]
- Kerr, B.; Soto C, J.; Saez, M.; Abrams, A.; Walz, K.; Young, J.I. Transgenic Complementation of MeCP2 Deficiency: Phenotypic Rescue of Mecp2-Null Mice by Isoform-Specific Transgenes. Eur. J. Hum. Genet. 2012, 20, 69–76. [Google Scholar] [CrossRef]
- Rodrigues, D.C.; Mufteev, M.; Ellis, J. Regulation, Diversity and Function of MECP2 Exon and 3′UTR Isoforms. Hum. Mol. Genet. 2020, 29, R89–R99. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Whitfield, T.W.; Bell, G.W.; Guo, R.; Flamier, A.; Young, R.A.; Jaenisch, R. Exploring the Complexity of MECP2 Function in Rett Syndrome. Nat. Rev. Neurosci. 2025, 26, 379–398. [Google Scholar] [CrossRef]
- Chandler, S.P.; Guschin, D.; Landsberger, N.; Wolffe, A.P. The Methyl-CpG Binding Transcriptional Repressor MeCP2 Stably Associates with Nucleosomal DNA. Biochemistry 1999, 38, 7008–7018. [Google Scholar] [CrossRef]
- Nan, X.; Ng, H.-H.; Johnson, C.A.; Laherty, C.D.; Turner, B.M.; Eisenman, R.N.; Bird, A. Transcriptional Repression by the Methyl-CpG-Binding Protein MeCP2 Involves a Histone Deacetylase Complex. Nature 1998, 393, 386–389. [Google Scholar] [CrossRef]
- Chahrour, M.; Jung, S.Y.; Shaw, C.; Zhou, X.; Wong, S.T.C.; Qin, J.; Zoghbi, H.Y. MeCP2, a Key Contributor to Neurological Disease, Activates and Represses Transcription. Science 2008, 320, 1224–1229. [Google Scholar] [CrossRef]
- Mellén, M.; Ayata, P.; Dewell, S.; Kriaucionis, S.; Heintz, N. MeCP2 Binds to 5hmC Enriched within Active Genes and Accessible Chromatin in the Nervous System. Cell 2012, 151, 1417–1430. [Google Scholar] [CrossRef] [PubMed]
- Gabel, H.W.; Kinde, B.Z.; Stroud, H.; Gilbert, C.S.; Harmin, D.A.; Kastan, N.R.; Hemberg, M.; Ebert, D.H.; Greenberg, M.E. Disruption of DNA Methylation-Dependent Long Gene Repression in Rett Syndrome. Nature 2015, 522, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shachar, S.; Chahrour, M.; Thaller, C.; Shaw, C.A.; Zoghbi, H.Y. Mouse Models of MeCP2 Disorders Share Gene Expression Changes in the Cerebellum and Hypothalamus. Hum. Mol. Genet. 2009, 18, 2431–2442. [Google Scholar] [CrossRef]
- Zhao, Y.-T.; Goffin, D.; Johnson, B.S.; Zhou, Z. Loss of MeCP2 Function Is Associated with Distinct Gene Expression Changes in the Striatum. Neurobiol. Dis. 2013, 59, 257–266. [Google Scholar] [CrossRef]
- Kinde, B.; Gabel, H.W.; Gilbert, C.S.; Griffith, E.C.; Greenberg, M.E. Reading the Unique DNA Methylation Landscape of the Brain: Non-CpG Methylation, Hydroxymethylation, and MeCP2. Proc. Natl. Acad. Sci. USA 2015, 112, 6800–6806. [Google Scholar] [CrossRef] [PubMed]
- Schanen, C.; Houwink, E.J.F.; Dorrani, N.; Lane, J.; Everett, R.; Feng, A.; Cantor, R.M.; Percy, A. Phenotypic Manifestations of MECP2 Mutations in Classical and Atypical Rett Syndrome. Am. J. Med. Genet. A 2004, 126A, 129–140. [Google Scholar] [CrossRef]
- Banerjee, A.; Miller, M.T.; Li, K.; Sur, M.; Kaufmann, W.E. Towards a Better Diagnosis and Treatment of Rett Syndrome: A Model Synaptic Disorder. Brain 2019, 142, 239–248. [Google Scholar] [CrossRef]
- Guy, J.; Hendrich, B.; Holmes, M.; Martin, J.E.; Bird, A. A Mouse Mecp2-Null Mutation Causes Neurological Symptoms That Mimic Rett Syndrome. Nat. Genet. 2001, 27, 322–326. [Google Scholar] [CrossRef]
- Li, W.; Pozzo-Miller, L. Beyond Widespread Mecp2 Deletions to Model Rett Syndrome: Conditional Spatio-Temporal Knockout, Single-Point Mutations and Transgenic Rescue Mice. Autism Open Access 2012, 2012, 5. [Google Scholar] [CrossRef]
- Asaka, Y.; Jugloff, D.G.M.; Zhang, L.; Eubanks, J.H.; Fitzsimonds, R.M. Hippocampal Synaptic Plasticity Is Impaired in the Mecp2-Null Mouse Model of Rett Syndrome. Neurobiol. Dis. 2006, 21, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Kerr, B.; Silva, P.A.; Walz, K.; Young, J.I. Unconventional Transcriptional Response to Environmental Enrichment in a Mouse Model of Rett Syndrome. PLoS ONE 2010, 5, e11534. [Google Scholar] [CrossRef] [PubMed]
- Bach, S.; Shovlin, S.; Moriarty, M.; Bardoni, B.; Tropea, D. Rett Syndrome and Fragile X Syndrome: Different Etiology With Common Molecular Dysfunctions. Front. Cell Neurosci. 2021, 15, 764761. [Google Scholar] [CrossRef]
- Belichenko, P.V.; Oldfors, A.; Hagberg, B.; Dahlström, A. Rett Syndrome: 3-D Confocal Microscopy of Cortical Pyramidal Dendrites and Afferents. Neuroreport 1994, 5, 1509–1513. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.V.C.; Du, F.; Felice, C.A.; Shan, X.; Nigam, A.; Mandel, G.; Robinson, J.K.; Ballas, N. MeCP2 Is Critical for Maintaining Mature Neuronal Networks and Global Brain Anatomy during Late Stages of Postnatal Brain Development and in the Mature Adult Brain. J. Neurosci. 2012, 32, 10021–10034. [Google Scholar] [CrossRef]
- Torres, R.F.; Hidalgo, C.; Kerr, B. Mecp2 Mediates Experience-Dependent Transcriptional Upregulation of Ryanodine Receptor Type-3. Front. Mol. Neurosci. 2017, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Landi, S.; Putignano, E.; Boggio, E.M.; Giustetto, M.; Pizzorusso, T.; Ratto, G.M. The Short-Time Structural Plasticity of Dendritic Spines Is Altered in a Model of Rett Syndrome. Sci. Rep. 2011, 1, 45. [Google Scholar] [CrossRef]
- Zoghbi, H.Y. Postnatal Neurodevelopmental Disorders: Meeting at the Synapse? Science 2003, 302, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Miller, E.C.; Pozzo-Miller, L. Dendritic Spine Dysgenesis in Rett Syndrome. Front. Neuroanat. 2014, 8, 97. [Google Scholar] [CrossRef]
- Luikenhuis, S.; Giacometti, E.; Beard, C.F.; Jaenisch, R. Expression of MeCP2 in Postmitotic Neurons Rescues Rett Syndrome in Mice. Proc. Natl. Acad. Sci. USA. 2004, 101, 6033–6038. [Google Scholar] [CrossRef]
- Powers, S.; Likhite, S.; Gadalla, K.K.; Miranda, C.J.; Huffenberger, A.J.; Dennys, C.; Foust, K.D.; Morales, P.; Pierson, C.R.; Rinaldi, F.; et al. Novel MECP2 Gene Therapy Is Effective in a Multicenter Study Using Two Mouse Models of Rett Syndrome and Is Safe in Non-Human Primates. Mol. Ther. 2023, 31, 2767–2782. [Google Scholar] [CrossRef]
- Torres, R.F.; Kouro, R.; Kerr, B. Writers and Readers of DNA Methylation/Hydroxymethylation in Physiological Aging and Its Impact on Cognitive Function. Neural Plast. 2019, 2019, 5982625. [Google Scholar] [CrossRef]
- Bajikar, S.S.; Zhou, J.; O’Hara, R.; Tirumala, H.P.; Durham, M.A.; Trostle, A.J.; Dias, M.; Shao, Y.; Chen, H.; Wang, W.; et al. Acute MeCP2 Loss in Adult Mice Reveals Transcriptional and Chromatin Changes That Precede Neurological Dysfunction and Inform Pathogenesis. Neuron 2024, 113, 380–395.e8. [Google Scholar] [CrossRef]
- Cheval, H.; Guy, J.; Merusi, C.; De Sousa, D.; Selfridge, J.; Bird, A. Postnatal Inactivation Reveals Enhanced Requirement for MeCP2 at Distinct Age Windows. Hum. Mol. Genet. 2012, 21, 3806–3814. [Google Scholar] [CrossRef]
- Blackman, M.P.; Djukic, B.; Nelson, S.B.; Turrigiano, G.G. A Critical and Cell-Autonomous Role for MeCP2 in Synaptic Scaling Up. J. Neurosci. 2012, 32, 13529–13536. [Google Scholar] [CrossRef]
- Rahn, R.M.; Yen, A.; Chen, S.; Gaines, S.H.; Bice, A.R.; Brier, L.M.; Swift, R.G.; Lee, L.; Maloney, S.E.; Culver, J.P.; et al. Mecp2 Deletion Results in Profound Alterations of Developmental and Adult Functional Connectivity. Cereb. Cortex 2023, 33, 7436–7453. [Google Scholar] [CrossRef] [PubMed]
- Dani, V.S.; Chang, Q.; Maffei, A.; Turrigiano, G.G.; Jaenisch, R.; Nelson, S.B. Reduced Cortical Activity Due to a Shift in the Balance between Excitation and Inhibition in a Mouse Model of Rett Syndrome. Proc. Natl. Acad. Sci. USA 2005, 102, 12560–12565. [Google Scholar] [CrossRef]
- Iascone, D.M.; Li, Y.; Sümbül, U.; Doron, M.; Chen, H.; Andreu, V.; Goudy, F.; Blockus, H.; Abbott, L.F.; Segev, I.; et al. Whole-Neuron Synaptic Mapping Reveals Spatially Precise Excitatory/Inhibitory Balance Limiting Dendritic and Somatic Spiking. Neuron 2020, 106, 566–578.e8. [Google Scholar] [CrossRef]
- Liu, G. Local Structural Balance and Functional Interaction of Excitatory and Inhibitory Synapses in Hippocampal Dendrites. Nat. Neurosci. 2004, 7, 373–379. [Google Scholar] [CrossRef]
- Chao, H.-T.; Zoghbi, H.Y.; Rosenmund, C. MeCP2 Controls Excitatory Synaptic Strength by Regulating Glutamatergic Synapse Number. Neuron 2007, 56, 58–65. [Google Scholar] [CrossRef]
- Sceniak, M.P.; Lang, M.; Enomoto, A.C.; James Howell, C.; Hermes, D.J.; Katz, D.M. Mechanisms of Functional Hypoconnectivity in the Medial Prefrontal Cortex of Mecp2 Null Mice. Cereb. Cortex 2016, 26, 1938–1956. [Google Scholar] [CrossRef] [PubMed]
- Dani, V.S.; Nelson, S.B. Intact Long-Term Potentiation but Reduced Connectivity between Neocortical Layer 5 Pyramidal Neurons in a Mouse Model of Rett Syndrome. J. Neurosci. 2009, 29, 11263–11270. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.D.; Kavalali, E.T.; Monteggia, L.M. MeCP2-Dependent Transcriptional Repression Regulates Excitatory Neurotransmission. Curr. Biol. 2006, 16, 710–716. [Google Scholar] [CrossRef]
- Noutel, J.; Hong, Y.K.; Leu, B.; Kang, E.; Chen, C. Experience-Dependent Retinogeniculate Synapse Remodeling Is Abnormal in MeCP2-Deficient Mice. Neuron 2011, 70, 35–42. [Google Scholar] [CrossRef]
- Qiu, Z.; Sylwestrak, E.L.; Lieberman, D.N.; Zhang, Y.; Liu, X.-Y.; Ghosh, A. The Rett Syndrome Protein MeCP2 Regulates Synaptic Scaling. J. Neurosci. 2012, 32, 989–994. [Google Scholar] [CrossRef]
- Bading, H. Nuclear Calcium Signalling in the Regulation of Brain Function. Nat. Rev. Neurosci. 2013, 14, 593–608. [Google Scholar] [CrossRef]
- Hagenston, A.M.; Bading, H. Calcium Signaling in Synapse-to-Nucleus Communication. Cold Spring Harb. Perspect. Biol. 2011, 3, a004564. [Google Scholar] [CrossRef]
- Lobos, P.; Córdova, A.; Vega-Vásquez, I.; Ramírez, O.A.; Adasme, T.; Toledo, J.; Cerda, M.; Härtel, S.; Paula-Lima, A.; Hidalgo, C. RyR-Mediated Ca2+ Release Elicited by Neuronal Activity Induces Nuclear Ca2+ Signals, CREB Phosphorylation, and Npas4/RyR2 Expression. Proc. Natl. Acad. Sci. USA 2021, 118, e2102265118. [Google Scholar] [CrossRef]
- Buchthal, B.; Lau, D.; Weiss, U.; Weislogel, J.-M.; Bading, H. Nuclear Calcium Signaling Controls Methyl-CpG-Binding Protein 2 (MeCP2) Phosphorylation on Serine 421 Following Synaptic Activity. J. Biol. Chem. 2012, 287, 30967–30974. [Google Scholar] [CrossRef] [PubMed]
- Hardingham, G.E.; Arnold, F.J.; Bading, H. Nuclear Calcium Signaling Controls CREB-Mediated Gene Expression Triggered by Synaptic Activity. Nat. Neurosci. 2001, 4, 261–267. [Google Scholar] [CrossRef]
- Wayman, G.A.; Davare, M.; Ando, H.; Fortin, D.; Varlamova, O.; Cheng, H.-Y.M.; Marks, D.; Obrietan, K.; Soderling, T.R.; Goodman, R.H.; et al. An Activity-Regulated microRNA Controls Dendritic Plasticity by down-Regulating p250GAP. Proc. Natl. Acad. Sci. USA 2008, 105, 9093–9098. [Google Scholar] [CrossRef]
- Postogna, F.M.; Roggero, O.M.; Biella, F.; Frasca, A. Interpreting the Rich Dialogue between Astrocytes and Neurons: An Overview in Rett Syndrome. Brain Res. Bull. 2025, 227, 111386. [Google Scholar] [CrossRef] [PubMed]
- Kalani, L.; Kim, B.H.; Vincent, J.B.; Ausió, J. MeCP2 Ubiquitination and Sumoylation, in Search of a Function. Hum. Mol. Genet. 2023, 33, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bellini, E.; Pavesi, G.; Barbiero, I.; Bergo, A.; Chandola, C.; Nawaz, M.S.; Rusconi, L.; Stefanelli, G.; Strollo, M.; Valente, M.M.; et al. MeCP2 Post-Translational Modifications: A Mechanism to Control Its Involvement in Synaptic Plasticity and Homeostasis? Front. Cell Neurosci. 2014, 8, 236. [Google Scholar] [CrossRef]
- Tao, J.; Hu, K.; Chang, Q.; Wu, H.; Sherman, N.E.; Martinowich, K.; Klose, R.J.; Schanen, C.; Jaenisch, R.; Wang, W.; et al. Phosphorylation of MeCP2 at Serine 80 Regulates Its Chromatin Association and Neurological Function. Proc. Natl. Acad. Sci. USA 2009, 106, 4882–4887. [Google Scholar] [CrossRef]
- Chen, W.G.; Chang, Q.; Lin, Y.; Meissner, A.; West, A.E.; Griffith, E.C.; Jaenisch, R.; Greenberg, M.E. Derepression of BDNF Transcription Involves Calcium-Dependent Phosphorylation of MeCP2. Science 2003, 302, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, C.P.; Whitwam, T.; Boxer, L.D.; Li, E.; Silberfeld, A.; Trowbridge, S.; Mei, K.; Lin, C.; Shamah, R.; Griffith, E.C.; et al. Activity-Induced MeCP2 Phosphorylation Regulates Retinogeniculate Synapse Refinement. Proc. Natl. Acad. Sci. USA 2023, 120, e2310344120. [Google Scholar] [CrossRef] [PubMed]
- Chao, H.-T.; Zoghbi, H.Y. The Yin and Yang of MeCP2 Phosphorylation. Proc. Natl. Acad. Sci. USA 2009, 106, 4577–4578. [Google Scholar] [CrossRef] [PubMed]
- Rutlin, M.; Nelson, S.B. MeCP2: Phosphorylated Locally, Acting Globally. Neuron 2011, 72, 3–5. [Google Scholar] [CrossRef]
- Zagrebelsky, M.; Tacke, C.; Korte, M. BDNF Signaling during the Lifetime of Dendritic Spines. Cell Tissue Res. 2020, 382, 185–199. [Google Scholar] [CrossRef]
- Zhou, Z.; Hong, E.J.; Cohen, S.; Zhao, W.; Ho, H.H.; Schmidt, L.; Chen, W.G.; Lin, Y.; Savner, E.; Griffith, E.C.; et al. Brain-Specific Phosphorylation of MeCP2 Regulates Activity-Dependent Bdnf Transcription, Dendritic Growth, and Spine Maturation. Neuron 2006, 52, 255–269. [Google Scholar] [CrossRef]
- Cohen, S.; Gabel, H.W.; Hemberg, M.; Hutchinson, A.N.; Sadacca, L.A.; Ebert, D.H.; Harmin, D.A.; Greenberg, R.S.; Verdine, V.K.; Zhou, Z.; et al. Genome-Wide Activity-Dependent MeCP2 Phosphorylation Regulates Nervous System Development and Function. Neuron 2011, 72, 72–85. [Google Scholar] [CrossRef]
- Skene, P.J.; Illingworth, R.S.; Webb, S.; Kerr, A.R.W.; James, K.D.; Turner, D.J.; Andrews, R.; Bird, A.P. Neuronal MeCP2 Is Expressed at near Histone-Octamer Levels and Globally Alters the Chromatin State. Mol. Cell 2010, 37, 457–468. [Google Scholar] [CrossRef]
- Collins, A.L.; Levenson, J.M.; Vilaythong, A.P.; Richman, R.; Armstrong, D.L.; Noebels, J.L.; Sweatt, J.D.; Zoghbi, H.Y. Mild Overexpression of MeCP2 Causes a Progressive Neurological Disorder in Mice. Hum. Mol. Genet. 2004, 13, 2679–2689. [Google Scholar] [CrossRef]
- Impey, S.; Davare, M.; Lesiak, A.; Lasiek, A.; Fortin, D.; Ando, H.; Varlamova, O.; Obrietan, K.; Soderling, T.R.; Goodman, R.H.; et al. An Activity-Induced microRNA Controls Dendritic Spine Formation by Regulating Rac1-PAK Signaling. Mol. Cell. Neurosci. 2010, 43, 146–156. [Google Scholar] [CrossRef]
- Wanet, A.; Tacheny, A.; Arnould, T.; Renard, P. miR-212/132 Expression and Functions: Within and beyond the Neuronal Compartment. Nucleic Acids Res. 2012, 40, 4742–4753. [Google Scholar] [CrossRef] [PubMed]
- Vo, N.; Klein, M.E.; Varlamova, O.; Keller, D.M.; Yamamoto, T.; Goodman, R.H.; Impey, S. A cAMP-Response Element Binding Protein-Induced microRNA Regulates Neuronal Morphogenesis. Proc. Natl. Acad. Sci. USA 2005, 102, 16426–16431. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.F.; Sakamoto, K.; Wayman, G.A.; Impey, S.; Obrietan, K. Transgenic miR132 Alters Neuronal Spine Density and Impairs Novel Object Recognition Memory. PLoS ONE 2010, 5, e15497. [Google Scholar] [CrossRef]
- Tognini, P.; Pizzorusso, T. MicroRNA212/132 Family: Molecular Transducer of Neuronal Function and Plasticity. Int. J. Biochem. Cell Biol. 2012, 44, 6–10. [Google Scholar] [CrossRef]
- Lesiak, A.; Zhu, M.; Chen, H.; Appleyard, S.M.; Impey, S.; Lein, P.J.; Wayman, G.A. The Environmental Neurotoxicant PCB 95 Promotes Synaptogenesis via Ryanodine Receptor-Dependent miR132 Upregulation. J. Neurosci. 2014, 34, 717–725. [Google Scholar] [CrossRef]
- Wang, R.-Y.; Phang, R.-Z.; Hsu, P.-H.; Wang, W.-H.; Huang, H.-T.; Liu, I.Y. In Vivo Knockdown of Hippocampal miR-132 Expression Impairs Memory Acquisition of Trace Fear Conditioning. Hippocampus 2013, 23, 625–633. [Google Scholar] [CrossRef]
- Klein, M.E.; Lioy, D.T.; Ma, L.; Impey, S.; Mandel, G.; Goodman, R.H. Homeostatic Regulation of MeCP2 Expression by a CREB-Induced microRNA. Nat. Neurosci. 2007, 10, 1513–1514. [Google Scholar] [CrossRef]
- Su, M.; Hong, J.; Zhao, Y.; Liu, S.; Xue, X. MeCP2 Controls Hippocampal Brain-Derived Neurotrophic Factor Expression via Homeostatic Interactions with microRNA-132 in Rats with Depression. Mol. Med. Rep. 2015, 12, 5399–5406. [Google Scholar] [CrossRef]
- Yao, Z.-H.; Yao, X.-L.; Zhang, Y.; Zhang, S.-F.; Hu, J. miR-132 Down-Regulates Methyl CpG Binding Protein 2 (MeCP2) During Cognitive Dysfunction Following Chronic Cerebral Hypoperfusion. Curr. Neurovasc. Res. 2017, 14, 385–396. [Google Scholar] [CrossRef]
- Tong, L.; Li, M.-D.; Nie, P.-Y.; Chen, Y.; Chen, Y.-L.; Ji, L.-L. miR-132 Downregulation Alleviates Behavioral Impairment of Rats Exposed to Single Prolonged Stress, Reduces the Level of Apoptosis in PFC, and Upregulates the Expression of MeCP2 and BDNF. Neurobiol. Stress. 2021, 14, 100311. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Viveros, L.; Chiang, C.-K.; Ong, J.L.K.; Hegazi, S.; Cheng, A.H.; Bouchard-Cannon, P.; Fana, M.; Lowden, C.; Zhang, P.; Bothorel, B.; et al. miR-132/212 Modulates Seasonal Adaptation and Dendritic Morphology of the Central Circadian Clock. Cell Rep. 2017, 19, 505–520. [Google Scholar] [CrossRef]
- Bijkerk, R.; Trimpert, C.; van Solingen, C.; de Bruin, R.G.; Florijn, B.W.; Kooijman, S.; van den Berg, R.; van der Veer, E.P.; Bredewold, E.O.W.; Rensen, P.C.N.; et al. MicroRNA-132 Controls Water Homeostasis through Regulating MECP2-Mediated Vasopressin Synthesis. Am. J. Physiol. Renal Physiol. 2018, 315, F1129–F1138. [Google Scholar] [CrossRef]
- Pejhan, S.; Del Bigio, M.R.; Rastegar, M. The MeCP2E1/E2-BDNF-miR132 Homeostasis Regulatory Network Is Region-Dependent in the Human Brain and Is Impaired in Rett Syndrome Patients. Front. Cell Dev. Biol. 2020, 8, 763. [Google Scholar] [CrossRef]
- Vanhala, R.; Korhonen, L.; Mikelsaar, M.; Lindholm, D.; Riikonen, R. Neurotrophic Factors in Cerebrospinal Fluid and Serum of Patients with Rett Syndrome. J. Child Neurol. 1998, 13, 429–433. [Google Scholar] [CrossRef]
- Chang, Q.; Khare, G.; Dani, V.; Nelson, S.; Jaenisch, R. The Disease Progression of Mecp2 Mutant Mice Is Affected by the Level of BDNF Expression. Neuron 2006, 49, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Sampathkumar, C.; Wu, Y.-J.; Vadhvani, M.; Trimbuch, T.; Eickholt, B.; Rosenmund, C. Loss of MeCP2 Disrupts Cell Autonomous and Autocrine BDNF Signaling in Mouse Glutamatergic Neurons. eLife 2016, 5, e19374. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Pozzo-Miller, L. BDNF Deregulation in Rett Syndrome. Neuropharmacology 2014, 76, 737–746. [Google Scholar] [CrossRef]
- Tao, X.; Finkbeiner, S.; Arnold, D.B.; Shaywitz, A.J.; Greenberg, M.E. Ca2+ Influx Regulates BDNF Transcription by a CREB Family Transcription Factor-Dependent Mechanism. Neuron 1998, 20, 709–726. [Google Scholar] [CrossRef]
- Miyasaka, Y.; Yamamoto, N. Neuronal Activity Patterns Regulate Brain-Derived Neurotrophic Factor Expression in Cortical Cells via Neuronal Circuits. Front. Neurosci. 2021, 15, 699583. [Google Scholar] [CrossRef] [PubMed]
- Sugino, K.; Hempel, C.M.; Okaty, B.W.; Arnson, H.A.; Kato, S.; Dani, V.S.; Nelson, S.B. Cell-Type-Specific Repression by Methyl-CpG-Binding Protein 2 Is Biased toward Long Genes. J. Neurosci. 2014, 34, 12877–12883. [Google Scholar] [CrossRef] [PubMed]
- Sanfeliu, A.; Kaufmann, W.E.; Gill, M.; Guasoni, P.; Tropea, D. Transcriptomic Studies in Mouse Models of Rett Syndrome: A Review. Neuroscience 2019, 413, 183–205. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.; Hidalgo, C. Subcellular Localization and Transcriptional Regulation of Brain Ryanodine Receptors. Functional Implications. Cell Calcium 2023, 116, 102821. [Google Scholar] [CrossRef]
- Rosado, J.; Bui, V.D.; Haas, C.A.; Beck, J.; Queisser, G.; Vlachos, A. Calcium Modeling of Spine Apparatus-Containing Human Dendritic Spines Demonstrates an “All-or-Nothing” Communication Switch between the Spine Head and Dendrite. PLoS Comput. Biol. 2022, 18, e1010069. [Google Scholar] [CrossRef]
- Adasme, T.; Haeger, P.; Paula-Lima, A.C.; Espinoza, I.; Casas-Alarcón, M.M.; Carrasco, M.A.; Hidalgo, C. Involvement of Ryanodine Receptors in Neurotrophin-Induced Hippocampal Synaptic Plasticity and Spatial Memory Formation. Proc. Natl. Acad. Sci. USA 2011, 108, 3029–3034. [Google Scholar] [CrossRef]
- Mellentin, C.; Jahnsen, H.; Abraham, W.C. Priming of Long-Term Potentiation Mediated by Ryanodine Receptor Activation in Rat Hippocampal Slices. Neuropharmacology 2007, 52, 118–125. [Google Scholar] [CrossRef]
- Torres, R.F.; Kerr, B. Spatial Learning Is Associated with Antagonist Outcomes for DNA Methylation and DNA Hydroxymethylation in the Transcriptional Regulation of the Ryanodine Receptor 3. Neural Plast. 2021, 2021, 9930962. [Google Scholar] [CrossRef]
- Vervliet, T.; Pintelon, I.; Welkenhuyzen, K.; Bootman, M.D.; Bannai, H.; Mikoshiba, K.; Martinet, W.; Nadif Kasri, N.; Parys, J.B.; Bultynck, G. Basal Ryanodine Receptor Activity Suppresses Autophagic Flux. Biochem. Pharmacol. 2017, 132, 133–142. [Google Scholar] [CrossRef]
- Kuijpers, M.; Kochlamazashvili, G.; Stumpf, A.; Puchkov, D.; Swaminathan, A.; Lucht, M.T.; Krause, E.; Maritzen, T.; Schmitz, D.; Haucke, V. Neuronal Autophagy Regulates Presynaptic Neurotransmission by Controlling the Axonal Endoplasmic Reticulum. Neuron 2021, 109, 299–313.e9. [Google Scholar] [CrossRef]
- Esposito, A.; Seri, T.; Breccia, M.; Indrigo, M.; De Rocco, G.; Nuzzolillo, F.; Denti, V.; Pappacena, F.; Tartaglione, G.; Serrao, S.; et al. Unraveling Autophagic Imbalances and Therapeutic Insights in Mecp2-Deficient Models. EMBO Mol. Med. 2024, 16, 2795–2826. [Google Scholar] [CrossRef]
- Denley, M.C.S.; Gatford, N.J.F.; Sellers, K.J.; Srivastava, D.P. Estradiol and the Development of the Cerebral Cortex: An Unexpected Role? Front. Neurosci. 2018, 12, 245. [Google Scholar] [CrossRef]
- Prokai-Tatrai, K.; Prokai, L. The Impact of 17β-Estradiol on the Estrogen-Deficient Female Brain: From Mechanisms to Therapy with Hot Flushes as Target Symptoms. Front. Endocrinol. 2024, 14, 1310432. [Google Scholar] [CrossRef]
- Westberry, J.M.; Trout, A.L.; Wilson, M.E. Epigenetic Regulation of Estrogen Receptor Alpha Gene Expression in the Mouse Cortex during Early Postnatal Development. Endocrinology 2010, 151, 731–740. [Google Scholar] [CrossRef]
- Akama, K.T.; Thompson, L.I.; Milner, T.A.; McEwen, B.S. Post-Synaptic Density-95 (PSD-95) Binding Capacity of G-Protein-Coupled Receptor 30 (GPR30), an Estrogen Receptor That Can Be Identified in Hippocampal Dendritic Spines. J. Biol. Chem. 2013, 288, 6438–6450. [Google Scholar] [CrossRef]
- Clements, L.; Alexander, A.; Hamilton, K.; Irving, A.; Harvey, J. G-Protein Coupled Estrogen Receptor (GPER1) Activation Promotes Synaptic Insertion of AMPA Receptors and Induction of Chemical LTP at Hippocampal Temporoammonic-CA1 Synapses. Mol. Brain 2023, 16, 16. [Google Scholar] [CrossRef]
- Kumar, A.; Foster, T.C. G Protein-Coupled Estrogen Receptor: Rapid Effects on Hippocampal-Dependent Spatial Memory and Synaptic Plasticity. Front. Endocrinol. 2020, 11, 385. [Google Scholar] [CrossRef]
- Sanfeliu, A.; Hokamp, K.; Gill, M.; Tropea, D. Transcriptomic Analysis of Mecp2 Mutant Mice Reveals Differentially Expressed Genes and Altered Mechanisms in Both Blood and Brain. Front. Psychiatry 2019, 10, 278. [Google Scholar] [CrossRef] [PubMed]
- Roque, C.; Mendes-Oliveira, J.; Duarte-Chendo, C.; Baltazar, G. The Role of G Protein-Coupled Estrogen Receptor 1 on Neurological Disorders. Front. Neuroendocrinol. 2019, 55, 100786. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.N.; Huang, R.-Q.; Logan, S.M.; Yi, K.D.; Dillon, G.H.; Simpkins, J.W. Estrogens Directly Potentiate Neuronal L-Type Ca2+ Channels. Proc. Natl. Acad. Sci. USA 2008, 105, 15148–15153. [Google Scholar] [CrossRef]
- Pemberton, K.; Rosato, M.; Dedert, C.; DeLeon, C.; Arnatt, C.; Xu, F. Differential Effects of the G-Protein-Coupled Estrogen Receptor (GPER) on Rat Embryonic (E18) Hippocampal and Cortical Neurons. eNeuro 2022, 9, ENEURO.0475-21.2022. [Google Scholar] [CrossRef]
- Haase, F.; Singh, R.; Gloss, B.; Tam, P.; Gold, W. Meta-Analysis Identifies BDNF and Novel Common Genes Differently Altered in Cross-Species Models of Rett Syndrome. Int. J. Mol. Sci. 2022, 23, 11125. [Google Scholar] [CrossRef]
- Indelicato, E.; Boesch, S. From Genotype to Phenotype: Expanding the Clinical Spectrum of CACNA1A Variants in the Era of Next Generation Sequencing. Front. Neurol. 2021, 12, 639994. [Google Scholar] [CrossRef]
- Epperson, M.V.; Haws, M.E.; Standridge, S.; Gilbert, D.L. An Atypical Rett Syndrome Phenotype Due to a Novel Missense Mutation in CACNA1A. J. Child Neurol. 2018, 33, 286–289. [Google Scholar] [CrossRef]
- Rosenbaum, T.; Simon, S.A. TRPV1 Receptors and Signal Transduction. In TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades; Liedtke, W.B., Heller, S., Eds.; Frontiers in Neuroscience; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2007; ISBN 978-0-8493-4048-2. [Google Scholar]
- Suzuki, A.; Shinoda, M.; Honda, K.; Shirakawa, T.; Iwata, K. Regulation of Transient Receptor Potential Vanilloid 1 Expression in Trigeminal Ganglion Neurons via Methyl-CpG Binding Protein 2 Signaling Contributes Tongue Heat Sensitivity and Inflammatory Hyperalgesia in Mice. Mol. Pain. 2016, 12, 1744806916633206. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Drotar, J.; Li, K.; Clairmont, C.D.; Brumm, A.S.; Sullins, A.J.; Wu, H.; Liu, X.S.; Wang, J.; Gray, N.S.; et al. Pharmacological Enhancement of KCC2 Gene Expression Exerts Therapeutic Effects on Human Rett Syndrome Neurons and Mecp2 Mutant Mice. Sci. Transl. Med. 2019, 11, eaau0164. [Google Scholar] [CrossRef] [PubMed]
- Meza, R.C.; Ancatén-González, C.; Chiu, C.Q.; Chávez, A.E. Transient Receptor Potential Vanilloid 1 Function at Central Synapses in Health and Disease. Front. Cell. Neurosci. 2022, 16, 864828. [Google Scholar] [CrossRef]
- Morfin, P.J.d.R.; Chavez, D.S.; Jayaraman, S.; Yang, L.; Geisler, S.M.; Kochiss, A.L.; Tuluc, P.; Colecraft, H.M.; Marx, S.O.; Liu, X.S.; et al. A Genetically Encoded Actuator Boosts L-Type Calcium Channel Function in Diverse Physiological Settings. Sci. Adv. 2024, 10, eadq3374. [Google Scholar] [CrossRef]
- Qian, J.; Guan, X.; Xie, B.; Xu, C.; Niu, J.; Tang, X.; Li, C.H.; Colecraft, H.M.; Jaenisch, R.; Liu, X.S. Multiplex Epigenome Editing of MECP2 to Rescue Rett Syndrome Neurons. Sci. Transl. Med. 2023, 15, eadd4666. [Google Scholar] [CrossRef] [PubMed]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina Calistro, L.; Arancibia, Y.; Alarcón, J.; Torres, R.F. The Ca2+ Bridge: From Neurons to Circuits in Rett Syndrome. Int. J. Mol. Sci. 2025, 26, 10490. https://doi.org/10.3390/ijms262110490
Molina Calistro L, Arancibia Y, Alarcón J, Torres RF. The Ca2+ Bridge: From Neurons to Circuits in Rett Syndrome. International Journal of Molecular Sciences. 2025; 26(21):10490. https://doi.org/10.3390/ijms262110490
Chicago/Turabian StyleMolina Calistro, Luis, Yennyfer Arancibia, Javiera Alarcón, and Rodrigo Flavio Torres. 2025. "The Ca2+ Bridge: From Neurons to Circuits in Rett Syndrome" International Journal of Molecular Sciences 26, no. 21: 10490. https://doi.org/10.3390/ijms262110490
APA StyleMolina Calistro, L., Arancibia, Y., Alarcón, J., & Torres, R. F. (2025). The Ca2+ Bridge: From Neurons to Circuits in Rett Syndrome. International Journal of Molecular Sciences, 26(21), 10490. https://doi.org/10.3390/ijms262110490

