Urinary Porphyrin Profiles and Trace Element Imbalances in Children with Autism Spectrum Disorders: Insights into Environmental and Metabolic Biomarkers
Abstract
1. Introduction
2. Results
2.1. Porphyrin Levels by Age
2.2. Porphyrin Levels by Sex
2.3. Porphyrin Levels by CARS Score Categories
2.4. Trace Elements Analysis and Their Ratios
3. Discussion
3.1. Strengths of the Study
3.2. Weaknesses of the Study
4. Materials and Methods
4.1. Characteristics of Study Participants
4.2. Urine Sample Collection and Analysis
4.3. Porphyrin Nomenclature
- -
- Uroporphyrin (uP): 8-carboxyl porphyrin, the earliest intermediate.
- -
- Heptacarboxyporphyrin (7cxP): 7-carboxyl porphyrin.
- -
- Hexacarboxyporphyrin (6cxP): 6-carboxyl porphyrin.
- -
- Pentacarboxyporphyrin (5cxP): 5-carboxyl porphyrin.
- -
- Coproporphyrin (cP): 4-carboxyl porphyrin, the end product of decarboxylation.
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rossignol, D.A.; Frye, R.E. A review of research trends in physiological abnormalities in autism spectrum disorders: Immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol. Psychiatry 2012, 17, 389–401. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 5; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Schaefer, G.B.; Mendelsohn, N.J. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genet. Med. 2013, 15, 399–407. [Google Scholar] [CrossRef]
- Bjørklund, G.; Meguid, N.A.; El-Ansary, A.; El-Bana, M.A.; Dadar, M.; Aaseth, J.; Hemimi, M.; Osredkar, J.; Chirumbolo, S. Diagnostic and Severity-Tracking Biomarkers for Autism Spectrum Disorder. J. Mol. Neurosci. 2018, 66, 492–511. [Google Scholar] [CrossRef]
- Carmona, A.; Roudeau, S.; Ortega, R. Molecular Mechanisms of Environmental Metal Neurotoxicity: A Focus on the Interactions of Metals with Synapse Structure and Function. Toxics 2021, 9, 198. [Google Scholar] [CrossRef]
- Wu, X.; Cobbina, S.J.; Mao, G.; Xu, H.; Zhang, Z.; Yang, L. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ. Sci. Pollut. Res. 2016, 23, 8244–8259. [Google Scholar] [CrossRef] [PubMed]
- Obun, F.E.; Aliu, T.B.; Popoola, D.A.; Raji, R.O. Toxicological Implications and Therapeutic Approaches in Heavy Metal Exposure: Focus on Lead and Mercury. AROC Nat. Prod. Res. 2025, 5, 1–10. [Google Scholar] [CrossRef]
- Fowler, B.A. Porphyrinurias Induced by Mercury and Other Metals. Toxicol. Sci. 2001, 61, 197–198. [Google Scholar] [CrossRef] [PubMed]
- Nataf, R.; Skorupka, C.; Amet, L.; Lam, A.; Springbett, A.; Lathe, R. Porphyrinuria in childhood autistic disorder: Implications for environmental toxicity. Toxicol. Appl. Pharmacol. 2006, 214, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Indika, N.L.R.; Senarathne, U.D.; Malvaso, A.; Darshana, D.; Owens, S.C.; Mansouri, B.; Semenova, Y.; Bjørklund, G. Abnormal Porphyrin Metabolism in Autism Spectrum Disorder and Therapeutic Implications. Mol. Neurobiol. 2024, 61, 3851–3866. [Google Scholar] [CrossRef]
- Woods, J.S.; Armel, S.E.; Fulton, D.I.; Allen, J.; Wessels, K.; Lynne Simmonds, P.; Granpeesheh, D.; Mumper, E.; Jeffrey Bradstreet, J.; Echeverria, D.; et al. Urinary Porphyrin Excretion in Neurotypical and Autistic Children. Environ. Health Perspect. 2010, 118, 1450–1457. [Google Scholar] [CrossRef]
- Geier, D.A.; Geier, M.R. A prospective assessment of porphyrins in autistic disorders: A potential marker for heavy metal exposure. Neurotox. Res. 2006, 10, 57–63. [Google Scholar] [CrossRef]
- Aposhian, H.V.; Aposhian, M.M. meso-2,3-Dimercaptosuccinic acid: Chemical, pharmacological and toxicological properties of an orally effective metal chelating agent. Annu. Rev. Pharmacol. Toxicol. 1990, 30, 279–306. [Google Scholar] [CrossRef]
- Al-Saei, A.N.J.M.; Nour-Eldine, W.; Rajpoot, K.; Arshad, N.; Al-Shammari, A.R.; Kamal, M.; Akil, A.A.S.; Fakhro, K.A.; Thornalley, P.J.; Rabbani, N. Validation of plasma protein glycation and oxidation biomarkers for the diagnosis of autism. Mol. Psychiatry 2024, 29, 653–659. [Google Scholar] [CrossRef]
- Dwyer, C.A.; Esko, J.D. Glycan susceptibility factors in autism spectrum disorders. Mol. Aspects Med. 2016, 51, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Omotosho, I.O.; Akinade, A.O.; Lagunju, I.A.; Yakubu, M.A. Oxidative stress indices in ASD children in Sub-Sahara Africa. J. Neurodev. Disord. 2021, 13, 50. [Google Scholar] [CrossRef] [PubMed]
- El-Meshad, G.M.; Abou El-Khair, M.S.; Moharam, N.M.; Abd El-Nabi, S.A. The plasma zinc/serum copper ratio as a biomarker in children with autism spectrum disorders. Menoufia Med. J. 2017, 30, 727–733. [Google Scholar] [CrossRef]
- Macedoni-Lukšič, M.; Gosar, D.; Bjørklund, G.; Oražem, J.; Kodrič, J.; Lešnik-Musek, P.; Zupančič, M.; France-Štiglic, A.; Sešek-Briški, A.; Neubauer, D.; et al. Levels of metals in the blood and specific porphyrins in the urine in children with autism spectrum disorders. Biol. Trace Elem. Res. 2015, 163, 2–10. [Google Scholar] [CrossRef]
- Abd Wahil, M.S.; Ja’afar, M.H.; Md Isa, Z. Assessment of Urinary Lead (Pb) and Essential Trace Elements in Autism Spectrum Disorder: A Case-Control Study Among Preschool Children in Malaysia. Biol. Trace Elem. Res. 2021, 200, 97–121. [Google Scholar] [CrossRef]
- Rafi’i, M.R.; Ja’afar, M.H.; Wahil, M.S.A.; Hanif, S.A.M. Urine manganese, cadmium, lead, arsenic, and selenium among autism spectrum disorder children in Kuala Lumpur. PeerJ 2024, 12, e17660. [Google Scholar] [CrossRef]
- Alabdali, A.; Al-Ayadhi, L.; El-Ansary, A. A key role for an impaired detoxification mechanism in the etiology and severity of autism spectrum disorders. Behav. Brain Funct. 2014, 10, 14. [Google Scholar] [CrossRef]
- Crăciun, E.C.; Bjørklund, G.; Tinkov, A.A.; Urbina, M.A.; Skalny, A.V.; Rad, F.; Dronca, E. Evaluation of whole blood zinc and copper levels in children with autism spectrum disorder. Metab. Brain Dis. 2016, 31, 887–890. [Google Scholar] [CrossRef] [PubMed]
- Li, S.O.; Wang, J.L.; Bjørklund, G.; Zhao, W.N.; Yin, C.H. Serum copper and zinc levels in individuals with autism spectrum disorders. Neuroreport 2014, 25, 1216–1220. [Google Scholar] [CrossRef] [PubMed]
- Gil-Hernández, F.; Gómez-Fernández, A.R.; La Torre-Aguilar, M.J.; Pérez-Navero, J.L.; Flores-Rojas, K.; Martín-Borreguero, P.; Gil-Campos, M. Neurotoxicity by mercury is not associated with autism spectrum disorders in Spanish children. Ital. J. Pediatr. 2020, 46, 19. [Google Scholar] [CrossRef]
- Stojsavljević, A.; Lakićević, N.; Pavlović, S. Mercury and Autism Spectrum Disorder: Exploring the Link through Comprehensive Review and Meta-Analysis. Biomedicines 2023, 11, 3344. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Shen, L.; Khan, N.U.; Zhang, X.; Chen, L.; Zhao, H.; Luo, P. Trace elements in children with autism spectrum disorder: A meta-analysis based on case-control studies. J. Trace Elem. Med. Biol. 2021, 67, 126782. [Google Scholar] [CrossRef]
- Geier, D.A.; Geier, M.R. Autism spectrum disorder-associated biomarkers for case evaluation and management by clinical geneticists. Expert Rev. Mol. Diagn. 2008, 8, 671–674. [Google Scholar] [CrossRef]
- Kern, J.K.; Geier, D.A.; Sykes, L.; Geier, M. Urinary Porphyrins in Autism Spectrum Disorders. In Comprehensive Guide to Autism; Springer: New York, NY, USA, 2014; pp. 1333–1348. [Google Scholar] [CrossRef]
- Geier, D.A.; Kern, J.K.; Geier, M.R. A prospective study of prenatal mercury exposure from maternal dental amalgams and autism severity. Acta Neurobiol. Exp. (Wars) 2009, 69, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Khaled, E.M.; Meguid, N.A.; Bjørklund, G.; Gouda, A.; Bahary, M.H.; Hashish, A.; Sallam, N.M.; Chirumbolo, S.; El-Bana, M.A. Altered urinary porphyrins and mercury exposure as biomarkers for autism severity in Egyptian children with autism spectrum disorder. Metab. Brain Dis. 2016, 31, 1419–1426. [Google Scholar] [CrossRef]
- Grandjean, P.; Landrigan, P. Developmental neurotoxicity of industrial chemicals. Lancet 2006, 368, 2167–2178. [Google Scholar] [CrossRef]
- Kern, J.K.; Geier, D.A.; Adams, J.B.; Mehta, J.A.; Grannemann, B.D.; Geier, M.R. Toxicity biomarkers in autism spectrum disorder: A blinded study of urinary porphyrins. Pediatr. Int. 2011, 53, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Ye, B.S.; Leung, A.O.W.; Wong, M.H. The association of environmental toxicants and autism spectrum disorders in children. Environ. Pollut. 2017, 227, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, D.A.; Genuis, S.J.; Frye, R.E. Environmental toxicants and autism spectrum disorders: A systematic review. Transl. Psychiatry 2014, 4, e360. [Google Scholar] [CrossRef]
- Bjørklund, G.; Semenova, Y.; El-Ansary, A.; Al-Ayadhi, L.Y. Porphyrinuria in Autism Spectrum Disorder: A Review. Curr. Med. Chem. 2023, 31, 6911–6925. [Google Scholar] [CrossRef]
- Geier, D.A.; Kern, J.K.; Geier, M.R. A prospective blinded evaluation of urinary porphyrins verses the clinical severity of autism spectrum disorders. J. Toxicol. Environ. Health-Part A Curr. Issues 2009, 72, 1585–1591. [Google Scholar] [CrossRef] [PubMed]
- Heyer, N.J.; Echeverria, D.; Woods, J.S. Disordered porphyrin metabolism: A potential biological marker for autism risk assessment. Autism Res. 2012, 5, 84–92. [Google Scholar] [CrossRef]
- Shandley, K.; Austin, D.W.; Bhowmik, J.L. Are Urinary Porphyrins a Valid Diagnostic Biomarker of Autism Spectrum Disorder? Autism Res. 2014, 7, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Vargason, T.; Grivas, G.; Hollowood-Jones, K.L.; Hahn, J. Towards a Multivariate Biomarker-Based Diagnosis of Autism Spectrum Disorder: Review and Discussion of Recent Advancements. Semin. Pediatr. Neurol. 2020, 34, 100803. [Google Scholar] [CrossRef]
- Gaafar, M.M.A.; Hussein, H.M.E.; Nasr, S.M.Z.; Amer, M.T.M.M. Plasma concentrations of the trace elements copper, zinc, lead and selenium in children with autistic spectrum disorder at Zagazig university hospitals. Egypt. J. Hosp. Med. 2021, 84, 2124–2129. [Google Scholar] [CrossRef]
- Mehta, S.Q.; Behl, S.; Day, P.L.; Delgado, A.M.; Larson, N.B.; Stromback, L.R.; Huebner, A.R.; DeGrado, T.R.; Davis, J.M.; Jannetto, P.J.; et al. Evaluation of Zn, Cu, and Se Levels in the North American Autism Spectrum Disorder Population. Front. Mol. Neurosci. 2021, 14, 665686. [Google Scholar] [CrossRef]
- Korashy, H.M.; Attafi, I.M.; Famulski, K.S.; Bakheet, S.A.; Hafez, M.M.; Alsaad, A.M.S.; Al-Ghadeer, A.R.M. Gene expression profiling to identify the toxicities and potentially relevant human disease outcomes associated with environmental heavy metal exposure. Environ. Pollut. 2017, 221, 64–74. [Google Scholar] [CrossRef]
- Ijomone, O.M.; Ijomone, O.K.; Iroegbu, J.D.; Ifenatuoha, C.W.; Olung, N.F.; Aschner, M. Epigenetic influence of environmentally neurotoxic metals. Neurotoxicology 2020, 81, 51. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Tran, L.H.; Jung, S. Salt Stress-Induced Modulation of Porphyrin Biosynthesis, Photoprotection, and Antioxidant Properties in Rice Plants (Oryza sativa). Antioxidants 2023, 12, 1618. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Angley, M.T.; Gerber, J.P.; Sorich, M.J. A review of candidate urinary biomarkers for autism spectrum disorder. Biomarkers 2011, 16, 537–552. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Vovk-Ornik, N. Kriteriji za Opredelitev Vrste in Stopnje Primanjkljajev, Ovir oz. Motenj Otrok s Posebnimi Potrebami; Zavod RS za Šolstvo: Ljubljana, Slovenija, 2015; ISBN 9789610303169.
- Osredkar, J.; Gosar, D.; Maček, J.; Kumer, K.; Fabjan, T.; Finderle, P.; Šterpin, S.; Zupan, M.; Vrhovšek, M.J. Urinary markers of oxidative stress in children with autism spectrum disorder (ASD). Antioxidants 2019, 8, 187. [Google Scholar] [CrossRef]
- Schopler, E.; Reichler, R.J.; DeVellis, R.F.; Daly, K. Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS). J. Autism Dev. Disord. 1980, 10, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Armbruster, H.; Simon, K. Auftrennung und Quantifizierung der Porphyrine mit Hilfe der Hochleistungs-Flüssigkeits-Chromatographie. Ärztl. Lab. 1983, 29, 379–384. [Google Scholar]
- Štiglic, A.F.; Falnoga, I.; Briški, A.S.; Žavbi, M.; Osredkar, J.; Skitek, M.; Marc, J. Reference intervals of 24 trace elements in blood, plasma and erythrocytes for the Slovenian adult population. Clin. Chem. Lab. Med. 2023, 62, 946–957. [Google Scholar] [CrossRef]


| Porphyrin Fraction | ≤5 | 5–10 | ≥10 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Control Group | ASD Group | p-Value | Control Group | ASD Group | p-Value | Control Group | ASD Group | p-Value | |
| uP/creat (µmol/mol) | 2.66 (1.87–3.44) | 2.55 (2.10–2.99) | 0.73 | 1.94 (1.68–2.19) | 2.10 (1.82–2.36) | 0.86 | 1.56 (1.31–1.79) | 1.98 (1.77–2.19) | 0.007 |
| 7cxP/creat (µmol/mol) | 0.58 (0.37–0.78) | 0.51 (0.38–0.63) | 0.54 | 0.37 (0.30–0.42) | 0.43 (0.25–0.50) | 0.67 | 0.34 (0.27–0.40) | 0.45 (0.38–0.50) | 0.006 |
| 6cxP/creat (µmol/mol) | 1.24 (0.07–2.55) | 1.1 (0.05–2.18)2 | 0.24 | 0.41 (0.19–0.62) | 0.62 (0.29–0.94) | 0.88 | 0.89 (0.36–1.40) | 0.35 (0.21–0.49) | 0.01 |
| 5cxP/creat (µmol/mol) | 0.59 (0.32–0.85) | 0.44 (0.32–0.55) | 0.39 | 0.36 (0.26–0.45)6 | 0.35 (0.27–0.42) | 0.49 | 0.24 (0.17–0.30) | 0.30 (0.19–0.40) | 0.30 |
| cP/creat (µmol/mol) | 29.63 (16.11–43.14) | 25.30 (18.34–32.25) | 0.54 | 15.45 (11.69–19.21) | 18.01 (14.99–21.09) | 0.68 | 10.23 (7.63–12.82) | 15.78 (12.87–18.67) | 0.02 |
| Total P/creat (µmol/mol) | 34.94 (20.19–49.69) | 30.03 (22.02–38.04) | 0.52 | 18.57 (14.50–22.61) | 21.59 (18.10–25.06) | 0.56 | 13.36 (10.07–16.64) | 18.93 (15.80–22.04) | 0.03 |
| Age Group Comparison | uP (p-Value) | 7cxP (p-Value) | 6cxP (p-Value) | 5cxP (p-Value) | cP (p-Value) | Tot. (p-Value) |
|---|---|---|---|---|---|---|
| ≤5 vs. 5–10 | 0.032 | 0.141 | 0.549 | 0.043 | 0.089 | 0.088 |
| 5–10 vs. ≥10 | 0.741 | 0.293 | 0.174 | 0.180496 | 0.287 | 0.296 |
| ≤5 vs. ≥10 | 1.3 × 10−6 | 0.012 | 0.027 | 9.21 × 10−8 | 4.3 × 10−5 | 2.61 × 10−5 |
| Sex | uP/Creat | p | 7cxP/Creat | p | 6cxP/Creat | p | 5cxP/Creat | p | cP/Creat | p | Total P/Creat | p | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| C | ASD | C | ASD | C | ASD | C | ASD | C | ASD | C | ASD | |||||||
| F | 2.00 (1.45–2.41) | 2.31 (1.42–2.92) | 0.33 | 0.41 (0.27–0.51) | 0.49 (0.27–0.58) | 0.33 | 0.40 (0.08–1.11) | 0.23 (0.08–0.94) | 0.79 | 0.33 (0.28–0.41) | 0.34 (0.26–0.48) | 0.64 | 15.06 (6.05–21.53) | 19.30 (6.49–24.21) | 0.17 | 18.90 (8.30–25.15) | 23.38 (9.01–31.51) | 0.19 |
| M | 1.76 (1.02–2.35) | 1.94 (1.31–2.57) | 0.11 | 0.37 (0.21–0.48) | 0.44 (0.25–0.58) | 0.14 | 0.25 (0.07–0.61) | 0.10 (0.04–0.37) | 0.04 | 0.35 (0.20–0.42) | 0.35 (0.19–0.49) | 0.93 | 15.37 (4.18–24.95) | 17.97 (6.26–26.24) | 0.38 | 18.32 (5.86–29.91) | 21.32 (8.54–30.58) | 0.37 |
| p | 0.165 | 0.269 | 0.298 | 0.455 | 0.337 | 0.009 | 0.838 | 0.312 | 0.874 | 0.660 | 0.980 | 0.568 | ||||||
| Control | ASD | ||
|---|---|---|---|
| Median (IQR) | p | ||
| 5cxP/Creat | 0.24 (0.13 to 0.47) | 0.26 (0.14 to 0.41) | 0.870 |
| 6cxP/Creat | 0.29 (0.07 to 0.75) | 0.11 (0.04 to 0.44) | 0.023 |
| 7cxP/Creat | 0.35 (0.24 to 0.49) | 0.39 (0.26 to 0.58) | 0.088 |
| cP/Creat | 10.70 (5.38 to 21.84) | 16.91 (6.47 to 26.07) | 0.095 |
| uP/Creat | 1.72 (1.23 to 2.35) | 2.02 (1.34 to 2.67) | 0.081 |
| Total P/Creat | 13.71 (8.03 to 25.97) | 20.69 (8.78 to 30.79) | 0.106 |
| CARS Score | ≤28 | 29–36.5 | ≥37 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Porphyrin Fraction | Control Group | ASD Group | p-Value | Control Group | ASD Group | p-Value | Control Group | ASD Group | p-Value |
| uP/creat (µmol/mol) | 1.65 (1.20–2.49) | 1.85 (1.40–2.65) | 0.311 | 1.65 (1.20–2.49) | 1.69 (1.26–2.47) | 0.662 | 1.65 (1.20–2.49) | 1.95 (1.29–2.52) | 0.086 |
| 7cxP/creat (µmol/mol) | 0.36 (0.25–0.48) | 0.39 (0.27–0.58) | 0.198 | 0.36 (0.25–0.48) | 0.30 (0.20–0.45) | 0.245 | 0.36 (0.25–0.48) | 0.38 (0.27–0.66) | 0.640 |
| 6cxP/creat (µmol/mol) | 0.22 (0.06–0.65) | 0.09 (0.03–0.46) | 0.198 | 0.22 (0.06–0.65) | 0.09 (0.03–0.47) | 0.662 | 0.22 (0.06–0.65) | 0.24 (0.04–0.53) | 0.877 |
| 5cxP/creat (µmol/mol) | 0.22 (0.11–0.42) | 0.22 (0.15–0.40) | 0.812 | 0.22 (0.11–0.42) | 0.23 (0.10–0.40) | 0.760 | 0.22 (0.11–0.42) | 0.25 (0.13–0.42) | 0.559 |
| cP/creat (µmol/mol) | 10.97 (5.30–21.75) | 12.27 (6.10–26.78) | 0.668 | 10.97 (5.30–21.75) | 12.37 (4.83–21.55) | 1 | 10.97 (5.30–21.75) | 14.63 (4.16–26.63) | 0.391 |
| Total P/creat (µmol/mol) | 14.20 (7.64–25.68) | 15.58 (8.34–30.96) | 1 | 14.20 (7.64–25.68) | 14.72 (7.02–25.94) | 1 | 14.20 (7.64–25.68) | 17.71 (7.16–31.39) | 0.784 |
| uP | 7cxP | 6cxP | 5cxP | cP | Total P | |
|---|---|---|---|---|---|---|
| Median < 37 | 1.79 | 0.36 | 0.09 | 0.22 | 12.27 | 15.58 |
| Median ≥ 37 | 1.95 | 0.36 | 0.22 | 0.25 | 13.67 | 17.28 |
| Median (Total) | 1.87 | 0.36 | 0.12 | 0.22 | 13.28 | 16.84 |
| p-value | 0.205 | 0.774 | 0.091 | 0.571 | 0.673 | 0.673 |
| Element | ASD Group (Median [IQR]) | Control Group (Median [IQR]) | p-Value |
|---|---|---|---|
| Lead (Pb) | 1.275 [0.865–1.631] | 0.822 [0.588–1.377] | 0.004 |
| Copper (Cu) | 10.234 [7.745–11.989] | 9.290 [5.941–13.844] | 0.157 |
| Zinc (Zn) | 464.657 [188.072–698.387] | 455.894 [321.363–597.039] | 0.273 |
| Selenium (Se) | 21.891 [12.999–31.624] | 22.974 [18.142–31.495] | 0.343 |
| Mercury (Hg) | 0.13 [0.0725–0.296] | 0.237 [0.143–0.414] | 0.329 |
| Ratio | ASD (Median) | Control (Median) | p-Value | Interpretation |
|---|---|---|---|---|
| Zn/Cu | 45.4 | 49.1 | <0.001 | Lower in ASD—suggests increased oxidative stress [16,17,18] |
| Se/Pb | 17.2 | 27.9 | <0.001 | Lower in ASD—suggests impaired Pb detox [19,20,21] |
| Cu/Se | 0.47 | 0.40 | <0.001 | Higher in ASD—reflects pro-oxidant shift [18,22,23] |
| Hg/Se | 0.01 | 0.01 | 0.579 | No significant difference [20,24,25] |
| Zn/Pb | 364.4 | 554.6 | <0.001 | Lower in ASD—further support for Pb burden [18,19,26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osredkar, J.; Kumer, K.; Jekovec Vrhovšek, M.; Čuturić, L.; France Štiglic, A.; Fabjan, T. Urinary Porphyrin Profiles and Trace Element Imbalances in Children with Autism Spectrum Disorders: Insights into Environmental and Metabolic Biomarkers. Int. J. Mol. Sci. 2025, 26, 10478. https://doi.org/10.3390/ijms262110478
Osredkar J, Kumer K, Jekovec Vrhovšek M, Čuturić L, France Štiglic A, Fabjan T. Urinary Porphyrin Profiles and Trace Element Imbalances in Children with Autism Spectrum Disorders: Insights into Environmental and Metabolic Biomarkers. International Journal of Molecular Sciences. 2025; 26(21):10478. https://doi.org/10.3390/ijms262110478
Chicago/Turabian StyleOsredkar, Joško, Kristina Kumer, Maja Jekovec Vrhovšek, Lidija Čuturić, Alenka France Štiglic, and Teja Fabjan. 2025. "Urinary Porphyrin Profiles and Trace Element Imbalances in Children with Autism Spectrum Disorders: Insights into Environmental and Metabolic Biomarkers" International Journal of Molecular Sciences 26, no. 21: 10478. https://doi.org/10.3390/ijms262110478
APA StyleOsredkar, J., Kumer, K., Jekovec Vrhovšek, M., Čuturić, L., France Štiglic, A., & Fabjan, T. (2025). Urinary Porphyrin Profiles and Trace Element Imbalances in Children with Autism Spectrum Disorders: Insights into Environmental and Metabolic Biomarkers. International Journal of Molecular Sciences, 26(21), 10478. https://doi.org/10.3390/ijms262110478

