Degradation Mechanisms in Quantum-Dot Light-Emitting Diodes: A Perspective on Nondestructive Analysis
Abstract
1. Introduction
1.1. Quantum-Dot Physics

1.2. QLEDs
2. Stability and Degradation Mechanisms in QLEDs
2.1. Progress of Reported Operating Lifetime
| Emission Color | Year | Core Material | Initial Luminance (cd/m2) | Operational Lifetime (h) | Reference |
|---|---|---|---|---|---|
| Red | 2014 | CdSe | 100 | 104,000 (T50) | [15] |
| 2015 | CdSe | 100 | 300,000 (T50) | [30] | |
| 2019 | CdSe | 100 | 1,600,000 (T50) | [31] | |
| 2019 | ZnCdSe | 100 | 1,800,000 (T50) | [16] | |
| 2021 | CdSe | 100 | 125,000,000 (T50) | [32] | |
| 2022 | InP | 100 | 32,000 (T95) | [33] | |
| 2022 | InP | 100 | 110,000 (T50) | [34] | |
| 2023 | CdSe | 1000 * 100 | 6360 (T95) * 318,755 (T95) | [35] | |
| 2024 | CdZnSe | 100 | 1,100,000 (T95) | [29] | |
| 2025 | CdZnSe | 1000 * 100 | 61,180 (T95) * 3,066,263 (T95) | [36] | |
| Green | 2019 | CdSe | 100 | 1,700,000 (T50) | [31] |
| 2020 | ZnCdSe | 100 | 1,655,000 (T50) | [37] | |
| 2022 | CdSe | 100 | 2,570,000 (T50) | [17] | |
| 2022 | InP | 100 | 20,044 (T50) | [38] | |
| 2024 | ZnCdSe | 100 | 10,000,000 (T50) | [39] | |
| 2024 | InP | 100 | 508,000 (T50) | [24] | |
| 2024 | CdSe | 100 | 18,000,000 (T50) | [12] | |
| 2025 | InP | 100 | 293,052 (T50) | [40] | |
| Blue | 2020 | ZnTeSe | 100 | 15,850 (T50) | [26] |
| 2022 | CdZnSe | 100 | 24,000 (T50) | [17] | |
| 2023 | ZnCdSe | 100 | 80,377 (T50) | [41] | |
| 2024 | CdZnS | 100 | 41,022 (T50) | [42] | |
| 2025 | ZnSeTeS | 100 | 30,000 (T50) | [43] | |
| 2025 | CdZnSe | 1000 * 100 | 54 (T95) * 2706 (T95) | [44] |
2.2. Degradation Mechanisms
2.2.1. Environmental Factors
2.2.2. Excitonic Factors

3. Characterization Methods for Nondestructive Analysis

4. Conclusions and Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rossetti, R.; Nakahara, S.; Brus, L.E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 1983, 79, 1086–1088. [Google Scholar] [CrossRef]
- Murray, C.B.; Norris, D.J.; Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715. [Google Scholar] [CrossRef]
- Hines, M.A.; Guyot-Sionnest, P. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. J. Phys. Chem. 1996, 100, 468–471. [Google Scholar] [CrossRef]
- Pietryga, J.M.; Park, Y.-S.; Lim, J.; Fidler, A.F.; Bae, W.K.; Brovelli, S.; Klimov, V.I. Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chem. Rev. 2016, 116, 10513–10622. [Google Scholar] [CrossRef]
- Kim, J.; Roh, J.; Park, M.; Lee, C. Recent Advances and Challenges of Colloidal Quantum Dot Light-Emitting Diodes for Display Applications. Adv. Mater. 2024, 36, 2212220. [Google Scholar] [CrossRef] [PubMed]
- Colvin, V.L.; Schlamp, M.C.; Alivisatos, A.P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357. [Google Scholar] [CrossRef]
- Li, B.; Chen, F.; Xu, H.; Song, Y.; Yan, X.; Xu, Q.; Wu, L.; Yan, Y.; Hou, W.; Cao, W.; et al. Advances in understanding quantum dot light-emitting diodes. Nat. Rev. Electr. Eng. 2024, 1, 412–425. [Google Scholar] [CrossRef]
- Su, Q.; Zhang, H.; Chen, S. Carrier Dynamics in Quantum Dot Light-Emitting Diodes: The Conversion between Electrons, Excitons, and Photons. Adv. Phys. Res. 2025, 4, 2400130. [Google Scholar] [CrossRef]
- Fan, J.; Han, C.; Yang, G.; Song, B.; Xu, R.; Xiang, C.; Zhang, T.; Qian, L. Recent Progress of Quantum Dots Light-Emitting Diodes: Materials, Device Structures, and Display Applications. Adv. Mater. 2024, 36, 2312948. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.; Ryu, H.; Lee, H. Recent Progress on Blue Quantum Dot Light-Emitting Diodes from Materials to Device Engineering. Korean J. Chem. Eng. 2024, 41, 3483–3500. [Google Scholar] [CrossRef]
- Lei, S.; Xiao, Y.; Yu, K.; Xiao, B.; Wan, M.; Zou, L.; You, Q.; Yang, R. Revisiting Hole Injection in Quantum Dot Light-Emitting Diodes. Adv. Funct. Mater. 2023, 33, 2305732. [Google Scholar] [CrossRef]
- Zhu, X.; Luo, X.; Deng, Y.; Wei, H.; Ying, L.; Huang, F.; Hu, Y.; Jin, Y. Doping bilayer hole-transport polymer strategy stabilizing solution-processed green quantum-dot light-emitting diodes. Sci. Adv. 2024, 10, eado0614. [Google Scholar] [CrossRef]
- Sun, X.; Chen, X.; Li, X.; Xie, J.; Lin, X.; Shen, Q.; Wu, L.; Chen, S. Hole-Injection-Barrier Effect on the Degradation of Blue Quantum-Dot Light-Emitting Diodes. ACS Nano 2024, 18, 5898–5906. [Google Scholar] [CrossRef]
- Kwak, J.; Bae, W.K.; Lee, D.; Park, I.; Lim, J.; Park, M.; Cho, H.; Woo, H.; Yoon, D.Y.; Char, K.; et al. Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure. Nano Lett. 2012, 12, 2362–2366. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.; Wang, J.; Peng, X. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99. [Google Scholar] [CrossRef]
- Song, J.; Wang, O.; Shen, H.; Lin, Q.; Li, Z.; Wang, L.; Zhang, X.; Li, L.S. Over 30% External Quantum Efficiency Light-Emitting Diodes by Engineering Quantum Dot-Assisted Energy Level Match for Hole Transport Layer. Adv. Funct. Mater. 2019, 29, 1808377. [Google Scholar] [CrossRef]
- Deng, Y.; Peng, F.; Lu, Y.; Zhu, X.; Jin, W.; Qiu, J.; Dong, J.; Hao, Y.; Di, D.; Gao, Y.; et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photonics 2022, 16, 505–511. [Google Scholar] [CrossRef]
- Li, H.; Zhou, S.; Chen, S. Highly Efficient Top-Emitting Quantum-Dot Light-Emitting Diodes with Record-Breaking External Quantum Efficiency of over 44.5%. Laser Photonics Rev. 2023, 17, 2300371. [Google Scholar] [CrossRef]
- Yang, D.; Wang, Y.; Xie, J.; Pan, D.; Zou, B.; Zhang, H. Regular Tandem Quantum Dot Light-Emitting Diodes with over 51% External Quantum Efficiency for Next-Generation Displays. Adv. Mater. 2025, e08173. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.; Park, J.W.; Min, S.; Lee, H.J.; Park, J.S.; Kim, G.-M.; Shin, D.; Im, S.; Lim, J.; Kim, K.H.; et al. Strain-graded quantum dots with spectrally pure, stable and polarized emission. Nat. Commun. 2024, 15, 5561. [Google Scholar] [CrossRef] [PubMed]
- Hahm, D.; Ko, D.; Jeong, B.G.; Jeong, S.; Lim, J.; Bae, W.K.; Lee, C.; Char, K. Environmentally benign nanocrystals: Challenges and future directions. J. Inf. Disp. 2019, 20, 61–72. [Google Scholar] [CrossRef]
- Jang, E.; Kim, Y.; Won, Y.-H.; Jang, H.; Choi, S.-M. Environmentally Friendly InP-Based Quantum Dots for Efficient Wide Color Gamut Displays. ACS Energy Lett. 2020, 5, 1316–1327. [Google Scholar] [CrossRef]
- Won, Y.-H.; Cho, O.; Kim, T.; Chung, D.-Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638. [Google Scholar] [CrossRef]
- Bian, Y.; Yan, X.; Chen, F.; Li, Q.; Li, B.; Hou, W.; Lu, Z.; Wang, S.; Zhang, H.; Zhang, W.; et al. Efficient green InP-based QD-LED by controlling electron injection and leakage. Nature 2024, 635, 854–859. [Google Scholar] [CrossRef]
- Bi, Y.; Sun, J.; Cao, S.; Li, Q.; Zheng, J.; Yuan, X.; Wang, Y.; Zou, B.; Zhao, J. Highly efficient and eco-friendly green quantum dot light-emitting diodes through interfacial potential grading. Nat. Commun. 2025, 16, 1945. [Google Scholar] [CrossRef]
- Kim, T.; Kim, K.-H.; Kim, S.; Choi, S.-M.; Jang, H.; Seo, H.-K.; Lee, H.; Chung, D.-Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389. [Google Scholar] [CrossRef]
- Lee, T.; Lee, M.; Kim, K.; Lee, H.; Yoon, S.-Y.; Yang, H.; Yu, S.; Kwak, J. Angle-Independent Top-Emitting Quantum-Dot Light-Emitting Diodes Using a Solution-Processed Subwavelength Scattering–Capping Layer. Adv. Opt. Mater. 2024, 12, 2302509. [Google Scholar] [CrossRef]
- Chen, H.-W.; Lee, J.-H.; Lin, B.-Y.; Chen, S.; Wu, S.-T. Liquid crystal display and organic light-emitting diode display: Present status and future perspectives. Light: Sci. Appl. 2018, 7, 17168. [Google Scholar] [CrossRef]
- Chen, Z.; Tian, N.; Chen, X.; Zhang, Y.; Liu, B.; Yuan, Z.; He, C.-Y.; Wang, A.-J.; Li, Y.; Ren, S.; et al. Large Scale Synthesis of Red-Emitting Quantum Dots for Efficient and Stable Light-Emitting Diodes. Adv. Mater. 2025, 37, 2413978. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, Y.; Cao, W.; Titov, A.; Hyvonen, J.; Manders, J.R.; Xue, J.; Holloway, P.H.; Qian, L. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 2015, 9, 259–266. [Google Scholar] [CrossRef]
- Shen, H.; Gao, Q.; Zhang, Y.; Lin, Y.; Lin, Q.; Li, Z.; Chen, L.; Zeng, Z.; Li, X.; Jia, Y.; et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197. [Google Scholar] [CrossRef]
- Lee, T.; Kim, B.J.; Lee, H.; Hahm, D.; Bae, W.K.; Lim, J.; Kwak, J. Bright and Stable Quantum Dot Light-Emitting Diodes. Adv. Mater. 2022, 34, 2106276. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, W.; Bian, Y.; Ahn, T.K.; Shen, H.; Ji, B. ZnF2-Assisted Synthesis of Highly Luminescent InP/ZnSe/ZnS Quantum Dots for Efficient and Stable Electroluminescence. Nano Lett. 2022, 22, 4067–4073. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Bian, Y.; Zhang, W.; Wu, Z.; Ahn, T.K.; Shen, H.; Du, Z. High Performance InP-based Quantum Dot Light-Emitting Diodes via the Suppression of Field-Enhanced Electron Delocalization. Adv. Funct. Mater. 2022, 32, 2204529. [Google Scholar] [CrossRef]
- Chen, D.; Ma, L.; Chen, Y.; Zhou, X.; Xing, S.; Deng, Y.; Hao, Y.; Pu, C.; Kong, X.; Jin, Y. Electrochemically Stable Ligands of ZnO Electron-Transporting Layers for Quantum-Dot Light-Emitting Diodes. Nano Lett. 2023, 23, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Gao, Y.; Li, B.; Yue, Y.; Wei, J.; Wu, Z.; Liu, F.; Manna, L.; Shen, H.; Li, H. Improving the Dynamic Stability of High-Efficiency Quantum Dot Light-Emitting Diodes by Core–shell Engineering. Adv. Mater. 2025, 37, 2504259. [Google Scholar] [CrossRef]
- Li, X.; Lin, Q.; Song, J.; Shen, H.; Zhang, H.; Li, L.S.; Li, X.; Du, Z. Quantum-Dot Light-Emitting Diodes for Outdoor Displays with High Stability at High Brightness. Adv. Opt. Mater. 2020, 8, 1901145. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, Q.; Chen, M.; Chen, F.; Wu, Z.; Shen, H. High-brightness green InP-based QLEDs enabled by in-situ passivating core surface with zinc myristate. Mater. Futures 2024, 3, 025201. [Google Scholar] [CrossRef]
- Li, M.; Li, R.; Wu, L.; Lin, X.; Xia, X.; Ao, Z.; Sun, X.; Chen, X.; Chen, S. Ultrabright and stable top-emitting quantum-dot light-emitting diodes with negligible angular color shift. Nat. Commun. 2024, 15, 5161. [Google Scholar] [CrossRef]
- Chen, M.; Li, Q.; Bian, Y.; Wang, S.; Hu, B.; Tang, A.; Chen, F.; Lv, Y.; Shen, H. High-Efficiency and Stable Green InP-QLED Enabled by Lowering Electron Injection Barrier. Adv. Opt. Mater. 2025, 13, 2402555. [Google Scholar] [CrossRef]
- Chen, X.; Lin, X.; Zhou, L.; Sun, X.; Li, R.; Chen, M.; Yang, Y.; Hou, W.; Wu, L.; Cao, W.; et al. Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling. Nat. Commun. 2023, 14, 284. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, B.; Chang, C.; Chen, F.; Zhang, Q.; Lin, Q.; Wang, L.; Yan, J.; Wang, F.; Chong, Y.; et al. Stable and efficient pure blue quantum-dot LEDs enabled by inserting an anti-oxidation layer. Nat. Commun. 2024, 15, 783. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Cao, F.; Yu, W.; Wang, S.; Hou, W.; Lu, Z.; Cao, W.; Zhang, J.; Zhang, X.; Yang, Y.; et al. Homogeneous ZnSeTeS quantum dots for efficient and stable pure-blue LEDs. Nature 2025, 639, 633–638. [Google Scholar] [CrossRef]
- Jia, Y.; Li, H.; Guo, N.; Li, F.; Li, T.; Ma, H.; Zhao, Y.; Gao, H.; Wang, D.; Feng, J.; et al. Long-range order enhance performance of patterned blue quantum dot light-emitting diodes. Nat. Commun. 2025, 16, 7643. [Google Scholar] [CrossRef]
- Carrillo-Carrión, C.; Cárdenas, S.; Simonet, B.M.; Valcárcel, M. Quantum dots luminescence enhancement due to illumination with UV/Vis light. Chem. Commun. 2009, 35, 5214–5226. [Google Scholar] [CrossRef]
- Pechstedt, K.; Whittle, T.; Baumberg, J.; Melvin, T. Photoluminescence of Colloidal CdSe/ZnS Quantum Dots: The Critical Effect of Water Molecules. J. Phys. Chem. C 2010, 114, 12069–12077. [Google Scholar] [CrossRef]
- Zhao, Y.; Riemersma, C.; Pietra, F.; Koole, R.; de Mello Donegá, C.; Meijerink, A. High-Temperature Luminescence Quenching of Colloidal Quantum Dots. ACS Nano 2012, 6, 9058–9067. [Google Scholar] [CrossRef]
- Sun, Y.; Su, Q.; Zhang, H.; Wang, F.; Zhang, S.; Chen, S. Investigation on Thermally Induced Efficiency Roll-Off: Toward Efficient and Ultrabright Quantum-Dot Light-Emitting Diodes. ACS Nano 2019, 13, 11433–11442. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Cheng, C.; Tian, J. Exploring performance degradation of quantum-dot light-emitting diodes. J. Mater. Chem. C 2022, 10, 8642–8649. [Google Scholar] [CrossRef]
- Xue, X.; Dong, J.; Wang, S.; Zhang, H.; Zhang, H.; Zhao, J.; Ji, W. Degradation of quantum dot light emitting diodes, the case under a low driving level. J. Mater. Chem. C 2020, 8, 2014–2018. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, H.; Zhou, S.; Ding, S.; Xiao, X.; Wen, Z.; Niu, G.; Luo, X.; Wang, F.; Sun, X.W.; et al. Factors influencing the working temperature of quantum dot light-emitting diodes. Opt. Express 2020, 28, 34167–34179. [Google Scholar] [CrossRef]
- Han, Y.C.; Kim, E.; Kim, W.; Im, H.-G.; Bae, B.-S.; Choi, K.C. A flexible moisture barrier comprised of a SiO2-embedded organic–inorganic hybrid nanocomposite and Al2O3 for thin-film encapsulation of OLEDs. Org. Electron. 2013, 14, 1435–1440. [Google Scholar] [CrossRef]
- Lee, S.; Han, J.-H.; Lee, S.-H.; Baek, G.-H.; Park, J.-S. Review of Organic/Inorganic Thin Film Encapsulation by Atomic Layer Deposition for a Flexible OLED Display. JOM 2019, 71, 197–211. [Google Scholar] [CrossRef]
- Park, J.-S.; Chae, H.; Chung, H.K.; Lee, S.I. Thin film encapsulation for flexible AM-OLED: A review. Semicond. Sci. Technol. 2011, 26, 034001. [Google Scholar] [CrossRef]
- Lim, K.Y.; Kim, H.H.; Noh, J.H.; Tak, S.H.; Yu, J.-W.; Choi, W.K. Thin film encapsulation for quantum dot light-emitting diodes using a-SiNx:H/SiOxNy/hybrid SiOx barriers. RSC Adv. 2022, 12, 4113–4119. [Google Scholar] [CrossRef]
- Han, J.; Bong, J.; Lim, T.; Lee, K.-H.; Yang, H.; Ju, S. Water repellent spray-type encapsulation of quantum dot light-emitting diodes using super-hydrophobic self-assembled nanoparticles. Appl. Surf. Sci. 2015, 353, 338–341. [Google Scholar] [CrossRef]
- Yoon, B.; Park, C.-S.; Song, H.-J.; Kwak, J.; Lee, S.-S.; Lee, H. Perovskite solar cells integrated with blue cut-off filters for mitigating light-induced degradation. Opt. Express 2022, 30, 31367–31380. [Google Scholar] [CrossRef]
- Joe, S.-Y.; Yoon, B.; Shin, D.; Bae, W.K.; Lee, S.-S.; Lee, H. Time-Resolved Mechanism of Positive Aging in InP Quantum-Dot Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2024, 16, 46486–46494. [Google Scholar] [CrossRef]
- Jin, W.; He, S.; Lu, X.; Zhu, X.; Liu, D.; Sun, G.; Hao, Y.; Chen, Z.; Wang, C.; Zeng, J.; et al. Water-induced high-performance quantum-dot light-emitting diodes. Nat. Photon. 2025. [Google Scholar] [CrossRef]
- Lim, J.; Park, Y.-S.; Klimov, V.I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 2018, 17, 42–49. [Google Scholar] [CrossRef]
- Lim, J.; Park, Y.-S.; Wu, K.; Yun, H.J.; Klimov, V.I. Droop-Free Colloidal Quantum Dot Light-Emitting Diodes. Nano Lett. 2018, 18, 6645–6653. [Google Scholar] [CrossRef]
- Chang, J.H.; Park, P.; Jung, H.; Jeong, B.G.; Hahm, D.; Nagamine, G.; Ko, J.; Cho, J.; Padilha, L.A.; Lee, D.C.; et al. Unraveling the Origin of Operational Instability of Quantum Dot Based Light-Emitting Diodes. ACS Nano 2018, 12, 10231–10239. [Google Scholar] [CrossRef]
- Deng, Y.; Lin, X.; Fang, W.; Di, D.; Wang, L.; Friend, R.H.; Peng, X.; Jin, Y. Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat. Commun. 2020, 11, 2309. [Google Scholar] [CrossRef]
- Chen, Z.; Li, H.; Yuan, C.; Gao, P.; Su, Q.; Chen, S. Color Revolution: Prospects and Challenges of Quantum-Dot Light-Emitting Diode Display Technologies. Small Methods 2024, 8, 2300359. [Google Scholar] [CrossRef]
- Kim, J.; Hahm, D.; Bae, W.K.; Lee, H.; Kwak, J. Transient Dynamics of Charges and Excitons in Quantum Dot Light-Emitting Diodes. Small 2022, 18, 2202290. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.; Shin, D.; Yoon, B.; Bae, W.K.; Kwak, J.; Lee, H. Direct Evidence of Excessive Charge-Carrier-Induced Degradation in InP Quantum-Dot Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2024, 17, 1408–1419. [Google Scholar] [CrossRef]
- Gao, P.; Chen, Z.; Chen, S. Electron-Induced Degradation in Blue Quantum-Dot Light-Emitting Diodes. Adv. Mater. 2024, 36, 2309123. [Google Scholar] [CrossRef] [PubMed]
- Han, M.G.; Lee, Y.; Kwon, H.-i.; Lee, H.; Kim, T.; Won, Y.-H.; Jang, E. InP-Based Quantum Dot Light-Emitting Diode with a Blended Emissive Layer. ACS Energy Lett. 2021, 6, 1577–1585. [Google Scholar] [CrossRef]
- Salsberg, E.; Aziz, H. Degradation of PEDOT:PSS hole injection layers by electrons in organic light emitting devices. Org. Electron. 2019, 69, 313–319. [Google Scholar] [CrossRef]
- Chen, Z.; Su, Q.; Qin, Z.; Chen, S. Effect and mechanism of encapsulation on aging characteristics of quantum-dot light-emitting diodes. Nano Res. 2021, 14, 320–327. [Google Scholar] [CrossRef]
- Keating, L.P.; Lee, H.; Rogers, S.P.; Huang, C.; Shim, M. Charging and Charged Species in Quantum Dot Light-Emitting Diodes. Nano Lett. 2022, 22, 9500–9506. [Google Scholar] [CrossRef] [PubMed]
- Heo, D.; Chang, J.H.; Shin, D.; Kwak, J.; Bae, W.; Lee, H. Modified Zinc Magnesium Oxide for Optimal Charge-Injection Balance in InP Quantum Dot Light-Emitting Diodes. Adv. Opt. Mater. 2023, 11, 2202256. [Google Scholar] [CrossRef]
- Choi, H.; Shin, D.; Bae, W.K.; Lee, H. Enhanced Stability of Cd-Free Quantum Dot Light-Emitting Diodes via Yttrium Acetate-Modified ZnMgO: Suppressing Mg Migration. Adv. Opt. Mater. 2025, 13, 2500988. [Google Scholar] [CrossRef]
- Yoon, S.H.; Gwak, D.; Kim, H.H.; Woo, H.J.; Cho, J.; Choi, J.W.; Choi, W.K.; Song, Y.J.; Lee, C.-L.; Park, J.; et al. Insertion of an Inorganic Barrier Layer as a Method of Improving the Performance of Quantum Dot Light-Emitting Diodes. ACS Photonics 2019, 6, 743–748. [Google Scholar] [CrossRef]
- Cha, Y.; Woo, H.J.; Yoon, S.H.; Song, Y.J.; Choi, Y.J.; Kim, S.H. Degradation phenomena of quantum dot light-emitting diodes induced by high electric field. Nanotechnology 2023, 34, 265705. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Sun, X. Impedance spectroscopy for quantum dot light-emitting diodes. J. Semicond. 2023, 44, 091603. [Google Scholar] [CrossRef]
- Zhang, L.; Nakanotani, H.; Adachi, C. Capacitance-voltage characteristics of a 4,4′-bis[(N-carbazole)styryl]biphenyl based organic light-emitting diode: Implications for characteristic times and their distribution. Appl. Phys. Lett. 2013, 103, 093301. [Google Scholar] [CrossRef]
- Hegedus, S.S.; Fagen, E.A. Midgap states in a-Si:H and a-SiGe:H p-i-n solar cells and Schottky junctions by capacitance techniques. J. Appl. Phys. 1992, 71, 5941–5951. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, P.; Qu, X.; Ma, J.; Liu, W.; Xu, B.; Wang, K.; Sun, X.W. Identifying the Surface Charges and their Impact on Carrier Dynamics in Quantum-Dot Light-Emitting Diodes by Impedance Spectroscopy. Adv. Opt. Mater. 2021, 9, 2100389. [Google Scholar] [CrossRef]
- Lee, S.; Choi, H.; Lee, H.; Song, H.-J. Impact of Electrostatic Discharge on the Degradation from Pixel to Panel Level of Quantum-Dot Light-Emitting Diode. Small 2025, 21, 2411539. [Google Scholar] [CrossRef]
- Niu, Q.; Wetzelaer, G.-J.A.H.; Blom, P.W.M.; Irina Crăciun, N. Quantification of hole-trap concentration in degraded polymer light-emitting diodes using impedance spectroscopy. Appl. Phys. Lett. 2019, 114, 163301. [Google Scholar] [CrossRef]
- Niu, Q.; Crăciun, N.I.; Wetzelaer, G.-J.A.H.; Blom, P.W.M. Origin of Negative Capacitance in Bipolar Organic Diodes. Phys. Rev. Lett. 2018, 120, 116602. [Google Scholar] [CrossRef]
- Huang, J.; Lin, W.; Li, S.; Li, J.; Feng, H.; Lin, X.; Guo, Y.; Liang, W.; Wu, L.; Blom, P.W.M.; et al. Hole Trap Formation in Quantum Dot Light-Emitting Diodes Under Electrical Stress. Adv. Electron. Mater. 2025, 11, 2400231. [Google Scholar] [CrossRef]
- Melitz, W.; Shen, J.; Kummel, A.C.; Lee, S. Kelvin probe force microscopy and its application. Surf. Sci. Rep. 2011, 66, 1–27. [Google Scholar] [CrossRef]
- Kim, M.; Lee, S.; Lee, J.; Kim, D.K.; Hwang, Y.J.; Lee, G.; Yi, G.-R.; Song, Y.J. Deterministic assembly of metamolecules by atomic force microscope-enabled manipulation of ultra-smooth, super-spherical gold nanoparticles. Opt. Express 2015, 23, 12766–12776. [Google Scholar] [CrossRef]
- An, K.; Kim, J.; Yoon, B.; Lee, H. Liq interlayer as electron extraction layer for highly efficient and stable perovskite solar cells. Int. J. Energy Res. 2022, 46, 5745–5755. [Google Scholar] [CrossRef]
- He, S.; Tang, X.; Deng, Y.; Yin, N.; Jin, W.; Lu, X.; Chen, D.; Wang, C.; Sun, T.; Chen, Q.; et al. Anomalous efficiency elevation of quantum-dot light-emitting diodes induced by operational degradation. Nat. Commun. 2023, 14, 7785. [Google Scholar] [CrossRef]
- Peter, R.; Griffiths, J.A.d.H. Introduction to Vibrational Spectroscopy. In Fourier Transform Infrared Spectrometry; Wiley: Hoboken, NJ, USA, 2006; pp. 1–18. [Google Scholar]
- Hong, Z.; Zou, Y.; Li, Y.; Cai, L.; Chen, Z.; Zang, J.; Bai, G.; Li, Y.; Chen, J.; Wu, Y.; et al. In Situ Ligand-Exchange in Solid Quantum Dots Film Enables Stacked White Light-Emitting Diodes. Adv. Opt. Mater. 2022, 10, 2200918. [Google Scholar] [CrossRef]
- Yu, Y.; Prudnikau, A.; Lesnyak, V.; Kirchner, R. Quantum Dots Facilitate 3D Two-Photon Laser Lithography. Adv. Mater. 2023, 35, 2211702. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-S.; Hong, J.; Hou, B.; Cho, Y.; Sohn, J.I.; Cha, S.; Kim, J.M. Inorganic-ligand exchanging time effect in PbS quantum dot solar cell. Appl. Phys. Lett. 2016, 109, 063901. [Google Scholar] [CrossRef]
- Biondi, M.; Choi, M.-J.; Ouellette, O.; Baek, S.-W.; Todorović, P.; Sun, B.; Lee, S.; Wei, M.; Li, P.; Kirmani, A.R.; et al. A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells. Adv. Mater. 2020, 32, 1906199. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Chen, M.; Chen, X.; Ma, W.; Sun, X.; Wu, L.; Lin, X.; Chen, Y.; Chen, S. Solution-processed quantum-dot light-emitting diodes combining ultrahigh operational stability, shelf stability, and luminance. npj Flex. Electron. 2022, 6, 96. [Google Scholar] [CrossRef]
- Yoon, S.-Y.; Lee, Y.-J.; Yang, H.; Jo, D.-Y.; Kim, H.-M.; Kim, Y.; Park, S.M.; Park, S.; Yang, H. Performance Enhancement of InP Quantum Dot Light-Emitting Diodes via a Surface-Functionalized ZnMgO Electron Transport Layer. ACS Energy Lett. 2022, 7, 2247–2255. [Google Scholar] [CrossRef]
- Chrzanowski, M.; Zatryb, G.; Sitarek, P.; Podhorodecki, A. Effect of Air Exposure of ZnMgO Nanoparticle Electron Transport Layer on Efficiency of Quantum-Dot Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2021, 13, 20305–20312. [Google Scholar] [CrossRef]
- Yoon, B.; Lee, H. Defect passivation with spectral shift for improved efficiency and stability of quasi-2D blue perovskite light emitting diodes. Appl. Surf. Sci. 2025, 682, 161623. [Google Scholar] [CrossRef]
- Bae, W.K.; Park, Y.-S.; Lim, J.; Lee, D.; Padilha, L.A.; McDaniel, H.; Robel, I.; Lee, C.; Pietryga, J.M.; Klimov, V.I. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 2013, 4, 2661. [Google Scholar] [CrossRef]
- Kim, K.; Hahm, D.; Baek, G.W.; Lee, T.; Shin, D.; Lim, J.; Bae, W.K.; Kwak, J. Effect of Excess Carriers on the Degradation of InP-Based Quantum-Dot Light-Emitting Diodes. ACS Appl. Electron. Mater. 2022, 4, 6229–6236. [Google Scholar] [CrossRef]
- Sohn, J.; Ko, D.; Lee, H.; Han, J.; Lee, S.-D.; Lee, C. Degradation mechanism of blue thermally activated delayed fluorescent organic light-emitting diodes under electrical stress. Org. Electron. 2019, 70, 286–291. [Google Scholar] [CrossRef]
- Wei, B.; Horiba, Y.; Furukawa, K.; Ichikawa, M.; Koyama, T.; Taniguchi, Y. Electroluminescence Spikes of Pulsed Organic Light-Emitting Diodes at Switch-Off Using 1,4-Bis[2-[4-[N,N-di(p-tolyl)amino]phenyl]vinyl]benzene as a Light-Emitting Layer. Jpn. J. Appl. Phys. 2005, 44, 4248. [Google Scholar] [CrossRef]
- Xue, X.; Zhu, B.; Kang, Z.; Chi, X.; Zhang, H.; Tang, A.; Ji, W. Transient Electroluminescence Spectroscopy in Planar Electroluminescent Devices. Laser Photonics Rev. 2025, 19, 2401166. [Google Scholar] [CrossRef]
- Doe, T.; Kitano, K.; Yamamoto, S.; Yamamoto, M.; Goto, K.; Sakakibara, Y.; Kobashi, T.; Yamada, H.; Ueda, M.; Ryowa, T.; et al. Evaluation of degradation behavior in quantum dot light-emitting diode with different hole transport materials via transient electroluminescence. Appl. Phys. Lett. 2021, 118, 203503. [Google Scholar] [CrossRef]
- Zhao, S.; Bai, P.; Zhao, X.; Li, G. Transient Leakage Electroluminescence of Quantum-Dot Light-Emitting Diodes. Nano Lett. 2024, 24, 12981–12987. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Chen, C.; Wu, B.; Sun, F.; Bao, H.; Tian, W.; Chang, S.; Zhong, H.; Jin, S. Probing the Operation of Quantum-Dot Light-Emitting Diodes Using Electrically Pumped Transient Absorption Spectroscopy. J. Phys. Chem. Lett. 2024, 15, 8593–8599. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zhu, X.; Wu, B.; Jin, Y.; Tian, W.; Jin, S. Quantifying Efficiency Roll-Off Factors in Quantum-Dot Light-Emitting Diodes. Adv. Sci. 2024, 11, 2410041. [Google Scholar] [CrossRef]
- Yang, W.; Yang, Y.; Kaledin, A.L.; He, S.; Jin, T.; McBride, J.R.; Lian, T. Surface passivation extends single and biexciton lifetimes of InP quantum dots. Chem. Sci. 2020, 11, 5779–5789. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Chen, S.; Liu, C.; Li, Y.; Wu, J.; Wang, D.; Jiang, Z.; Li, Y.; Li, Y.; et al. Water-Soluble Conjugated Polyelectrolyte Hole Transporting Layer for Efficient Sky-Blue Perovskite Light-Emitting Diodes. Small 2021, 17, 2101477. [Google Scholar] [CrossRef]
- Rakshit, S.; Cohen, B.; Gutiérrez, M.; El-Ballouli, A.a.O.; Douhal, A. Deep Blue and Highly Emissive ZnS-Passivated InP QDs: Facile Synthesis, Characterization, and Deciphering of Their Ultrafast-to-Slow Photodynamics. ACS Appl. Mater. Interfaces 2023, 15, 3099–3111. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Cao, W.; Liu, T.; Tsang, S.-W.; Yang, Y.; Yan, X.; Qian, L. On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 2019, 10, 765. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, W.; Li, M.; Yang, Y.; Guo, M.; Tsang, S.-W.; Chen, S. Origin of Subthreshold Turn-On in Quantum-Dot Light-Emitting Diodes. ACS Nano 2019, 13, 8229–8236. [Google Scholar] [CrossRef]


| Technique | Principle/Measured Quantity | Strengths | Limitations | Typical Applications in QLEDs |
|---|---|---|---|---|
| Impedance Spectroscopy (IS) | Frequency-dependent response of charge transport and accumulation | Provides in situ information on charge accumulation, recombination, and device degradation; sensitive to interface processes | Limited spatial resolution; interpretation requires equivalent-circuit modeling | Identifying charge-trapping sites; monitoring cathode migration and charge imbalance during degradation |
| Conductive AFM/Kelvin Probe Force Microscopy (KPFM) | Local current or surface potential mapping via nanoscale probe | Spatially resolved electrical/morphological correlation; can visualize local degradation and work-function shifts | Tip-induced mechanical damage possible; limited temporal resolution | Mapping degraded spots, work-function shifts at ETL/cathode interface, local field-induced degradation |
| Fourier-Transform Infrared Spectroscopy (FTIR) | Infrared absorption by molecular vibrational modes | Nondestructive chemical-bond identification; sensitive to surface ligand or functional-group changes | Requires IR-active species; limited depth sensitivity | Tracking QD-ligand detachment, ZnO surface hydroxyl/acetate evolution, interfacial chemical degradation |
| Time-Resolved Photoluminescence (TRPL) | Emission decay dynamics following pulsed excitation | Direct probe of exciton dynamics; identifies nonradiative recombination and trap formation | Requires optical transparency; may not access buried interfaces | Correlating PL lifetime with trap formation, excess charge effects, or ligand detachment during operation |
| Transient Electroluminescence (TREL) | Time-resolved emission under pulsed bias | In situ probe of charge injection, transport, and recombination kinetics | Requires functioning device; limited to emissive region | Evaluating charge mobility changes, interface traps, and emission delays with device aging |
| Transient Absorption (TA) | Photoinduced absorption change (exciton bleach dynamics) | Ultrafast temporal resolution (fs–ns); probes carrier trapping and recombination | Complex instrumentation; optical penetration depth limited | Tracking exciton bleaching, Auger recombination, and field-induced exciton dynamics |
| Electroabsorption (EA) | Modulation of optical absorption under electric field (Stark effect) | Directly probes internal electric fields and charge accumulation | Requires transparent electrodes; complex spectral deconvolution | Quantifying space-charge buildup, interface charge transfer, and flat-band voltage evolution |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H. Degradation Mechanisms in Quantum-Dot Light-Emitting Diodes: A Perspective on Nondestructive Analysis. Int. J. Mol. Sci. 2025, 26, 10465. https://doi.org/10.3390/ijms262110465
Lee H. Degradation Mechanisms in Quantum-Dot Light-Emitting Diodes: A Perspective on Nondestructive Analysis. International Journal of Molecular Sciences. 2025; 26(21):10465. https://doi.org/10.3390/ijms262110465
Chicago/Turabian StyleLee, Hyunho. 2025. "Degradation Mechanisms in Quantum-Dot Light-Emitting Diodes: A Perspective on Nondestructive Analysis" International Journal of Molecular Sciences 26, no. 21: 10465. https://doi.org/10.3390/ijms262110465
APA StyleLee, H. (2025). Degradation Mechanisms in Quantum-Dot Light-Emitting Diodes: A Perspective on Nondestructive Analysis. International Journal of Molecular Sciences, 26(21), 10465. https://doi.org/10.3390/ijms262110465

