Ferroptosis in the Ovarian Follicular Microenvironment: A Redox-Dependent Cell Death Pathway with Emerging Roles in PCOS, Oocyte Quality, and IVF Outcomes
Abstract
1. Introduction
2. Ovarian Environment and Fertility
2.1. PCOS—Human Evidence and Molecular Mechanisms
2.2. POI and Chemotherapy-Induced Ferroptosis in Ovarian Granulosa Cells
2.3. Ferroptosis, Ovarian Senescence, and Reduced Ovarian Reserve
3. Follicular-Fluid Redox and IVF Outcomes: Bridging Mechanistic Insights to Clinical Endpoints
4. Translational Pathways and Therapeutic Targets in Reproductive Ferroptosis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ART | assisted reproductive technology | 
| CC | cumulus cells | 
| E2 | estradiol | 
| FF | follicular fluid | 
| FPN | ferroportin | 
| FSP1 | ferroptosis suppressor protein 1 | 
| GSH | glutathione | 
| GPX4 | glutathione peroxidase 4 | 
| KEAP1 | Kelch-like ECH-associated protein 1 | 
| LH | luteinizing hormone | 
| LIP | labile iron pool | 
| LOOH | lipid hydroperoxide | 
| LOX | lipoxygenase | 
| MDA | malondialdehyde | 
| Nrf2 | nuclear factor erythroid 2-related factor 2 | 
| PCOS | polycystic ovary syndrome | 
| PUFA | polyunsaturated fatty acid | 
| ROS | reactive oxygen species | 
| SLC7A11 (xCT) | solute carrier family 7 member 11 (cystine/glutamate antiporter) | 
| TAC | total antioxidant capacity | 
| TFRC | transferrin receptor | 
| GPX | glutathione peroxidase | 
| ORP | oxidation–reduction potential | 
| IVF | in vitro fertilization | 
| MII | metaphase II | 
| FSH | follicle-stimulating hormone | 
| AMH | anti-Müllerian hormone | 
References
- Huete-Acevedo, J.; Mas-Bargues, C.; Arnal-Forné, M.; Atencia-Rabadán, S.; Sanz-Ros, J.; Borrás, C. Role of Redox Homeostasis in the Communication Between Brain and Liver Through Extracellular Vesicles. Antioxidants 2024, 13, 1493. [Google Scholar] [CrossRef]
- Di Marzo, N.; Chisci, E.; Giovannoni, R. The Role of Hydrogen Peroxide in Redox-Dependent Signaling: Homeostatic and Pathological Responses in Mammalian Cells. Cells 2018, 7, 156. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Pittman, R.N.; Popel, A.S. Nitric Oxide in the Vasculature: Where Does It Come From and Where Does It Go? A Quantitative Perspective. Antioxid. Redox Signal. 2008, 10, 1185–1198. [Google Scholar] [CrossRef]
- Lei, G.; Zhuang, L.; Gan, B. Targeting ferroptosis as a vulnerability in cancer. Nat. Rev. Cancer 2022, 22, 381–396. [Google Scholar] [CrossRef]
- Zhou, Q.; Meng, Y.; Li, D.; Yao, L.; Le, J.; Liu, Y.; Sun, Y.; Zeng, F.; Chen, X.; Deng, G. Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduct. Target. Ther. 2024, 9, 55. [Google Scholar] [CrossRef]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef]
- Lin, W.; Wang, C.; Liu, G.; Bi, C.; Wang, X.; Zhou, Q.; Jin, H. SLC7A11/xCT in cancer: Biological functions and therapeutic implications. Am. J. Cancer Res. 2020, 10, 3106–3126. [Google Scholar]
- Yang, W.S.; Stockwell, B.R. Ferroptosis: Death by Lipid Peroxidation. Trends Cell Biol. 2016, 26, 165–176. [Google Scholar] [CrossRef]
- Otasevic, V.; Vucetic, M.; Grigorov, I.; Martinovic, V.; Stancic, A. Ferroptosis in Different Pathological Contexts Seen through the Eyes of Mitochondria. Oxidative Med. Cell. Longev. 2021, 2021, 5537330. [Google Scholar] [CrossRef] [PubMed]
- Zilka, O.; Shah, R.; Li, B.; Friedmann Angeli, J.P.; Griesser, M.; Conrad, M.; Pratt, D.A. On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in Ferroptotic Cell Death. ACS Cent. Sci. 2017, 3, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell 2017, 171, 273–285. [Google Scholar] [CrossRef]
- Dixon, S.J.; Olzmann, J.A. The cell biology of ferroptosis. Nat. Rev. Mol. Cell Biol. 2024, 25, 424–442. [Google Scholar] [CrossRef] [PubMed]
- Weaver, K.; Skouta, R. The Selenoprotein Glutathione Peroxidase 4: From Molecular Mechanisms to Novel Therapeutic Opportunities. Biomedicines 2022, 10, 891. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Kang, R.; Klionsky, D.J.; Tang, D. GPX4 in cell death, autophagy, and disease. Autophagy 2023, 19, 2621–2638. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Wang, M.; Cui, J.; Yang, M.; Ma, L.; Kang, R.; Tang, D.; Wang, J. Glutathione metabolism in ferroptosis and cancer therapy. Cancer Lett. 2025, 621, 217697. [Google Scholar] [CrossRef]
- Liang, D.; Minikes, A.M.; Jiang, X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol. Cell 2022, 82, 2215–2227. [Google Scholar] [CrossRef]
- Doll, S.; Proneth, B.; Tyurina, Y.Y.; Panzilius, E.; Kobayashi, S.; Ingold, I.; Irmler, M.; Beckers, J.; Aichler, M.; Walch, A.; et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 2017, 13, 91–98. [Google Scholar] [CrossRef]
- He, H.; Yu, H.; Zhou, H.; Cui, G.; Shao, M. Natural Compounds as Modulators of Ferroptosis: Mechanistic Insights and Therapeutic Prospects in Breast Cancer. Biomolecules 2025, 15, 1308. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, T.; Wang, X.; Xiong, F.; Hu, Z.; Qiao, X.; Yuan, X.; Wang, D. ACSL3 and ACSL4, Distinct Roles in Ferroptosis and Cancers. Cancers 2022, 14, 5896. [Google Scholar] [CrossRef]
- Lancaster, G.I.; Murphy, A.J. Do physiological changes in fatty acid composition alter cellular ferroptosis susceptibility and influence cell function? J. Lipid Res. 2025, 66, 100765. [Google Scholar] [CrossRef]
- Yan, H.; Zou, T.; Tuo, Q.; Xu, S.; Li, H.; Belaidi, A.A.; Lei, P. Ferroptosis: Mechanisms and links with diseases. Signal Transduct. Target. Ther. 2021, 6, 49. [Google Scholar] [CrossRef]
- Dai, Q.; Wei, X.; Zhao, J.; Zhang, D.; Luo, Y.; Yang, Y.; Xiang, Y.; Liu, X. Inhibition of FSP1: A new strategy for the treatment of tumors (Review). Oncol. Rep. 2024, 52, 105. [Google Scholar] [CrossRef]
- Feng, S.; Tang, D.; Wang, Y.; Li, X.; Bao, H.; Tang, C.; Dong, X.; Li, X.; Yang, Q.; Yan, Y.; et al. The mechanism of ferroptosis and its related diseases. Mol. Biomed. 2023, 4, 33. [Google Scholar] [CrossRef]
- Lin, H.-Y.; Ho, H.-W.; Chang, Y.-H.; Wei, C.-J.; Chu, P.-Y. The Evolving Role of Ferroptosis in Breast Cancer: Translational Implications Present and Future. Cancers 2021, 13, 4576. [Google Scholar] [CrossRef]
- Sun, K.; Zhi, Y.; Ren, W.; Li, S.; Zhou, X.; Gao, L.; Zhi, K. The mitochondrial regulation in ferroptosis signaling pathway and its potential strategies for cancer. Biomed. Pharmacother. 2023, 169, 115892. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-nonenal. Oxidative Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- He, J.; Li, Z.; Xia, P.; Shi, A.; FuChen, X.; Zhang, J.; Yu, P. Ferroptosis and ferritinophagy in diabetes complications. Mol. Metab. 2022, 60, 101470. [Google Scholar] [CrossRef] [PubMed]
- Pathria, G.; Ronai, Z.A. Harnessing the Co-vulnerabilities of Amino Acid-Restricted Cancers. Cell Metab. 2021, 33, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Kang, R.; Tang, D.; Liu, J. Ferroptosis: Principles and significance in health and disease. J. Hematol. Oncol. 2024, 17, 41. [Google Scholar] [CrossRef]
- Yan, H.-F.; Tuo, Q.-Z.; Yin, Q.-Z.; Lei, P. The pathological role of ferroptosis in ischemia/reperfusion-related injury. Zool. Res. 2020, 41, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Su, L.-J.; Zhang, J.-H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.-Y. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxidative Med. Cell. Longev. 2019, 2019, 5080843. [Google Scholar] [CrossRef] [PubMed]
- Urzúa, U.; Marín, A.; Castellón, E.A. Oxidative Stress, Parity History, and Remnant Follicles in the Aged Ovary: Insights on Ovarian Cancer Risk and Protection. Antioxidants 2025, 14, 759. [Google Scholar] [CrossRef]
- Tang, D.; Kang, R. From Oxytosis to Ferroptosis: 10 Years of Research on Oxidative Cell Death. Antioxid. Redox Signal. 2023, 39, 162–165. [Google Scholar] [CrossRef]
- Gaschler, M.M.; Stockwell, B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 2017, 482, 419–425. [Google Scholar] [CrossRef]
- Zhou, Q.; Meng, Y.; Le, J.; Sun, Y.; Dian, Y.; Yao, L.; Xiong, Y.; Zeng, F.; Chen, X.; Deng, G. Ferroptosis: Mechanisms and therapeutic targets. MedComm 2024, 5, e70010. [Google Scholar] [CrossRef] [PubMed]
- Begum, I.A. Oxidative stress: Oocyte quality and infertility. Reprod. Toxicol. 2025, 137, 109011. [Google Scholar] [CrossRef]
- Jia, Z.; Li, Y.; Zhou, B.; Xia, Q.; Wang, P.; Wang, X.; Sun, Z.; Guo, Y. Transcriptomic profiling of human granulosa cells between women with advanced maternal age with different ovarian reserve. J. Assist. Reprod. Genet. 2023, 40, 2427–2437. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.; Ni, F.; Jin, J.; Wu, Y.; Huang, Y.; Ye, X.; Shen, X.; Ying, Y.; Chen, J.; et al. BNC1 deficiency-triggered ferroptosis through the NF2-YAP pathway induces primary ovarian insufficiency. Nat. Commun. 2022, 13, 5871. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Deng, M.; Xu, C.; Zhang, Y.; Wu, D.; Tang, F.; Yang, R.; Miao, J. Ferroptosis induced by iron overload promotes fibrosis in ovarian endometriosis and is related to subpopulations of endometrial stromal cells. Front. Pharmacol. 2022, 13, 930614. [Google Scholar] [CrossRef]
- Li, X.; Lin, Y.; Cheng, X.; Yao, G.; Yao, J.; Hu, S.; Zhu, Q.; Wang, Y.; Ding, Y.; Lu, Y.; et al. Ovarian ferroptosis induced by androgen is involved in pathogenesis of PCOS. Hum. Reprod. Open 2024, 2024, hoae013. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Li, Y.; Song, D.; Ding, J.; Mei, S.; Sun, S.; Cheng, W.; Yu, J.; Zhou, L.; Kuang, Y.; et al. Iron-overloaded follicular fluid increases the risk of endometriosis-related infertility by triggering granulosa cell ferroptosis and oocyte dysmaturity. Cell Death Dis. 2022, 13, 579. [Google Scholar] [CrossRef]
- Dong, H.; Qiang, Z.; Chai, D.; Peng, J.; Xia, Y.; Hu, R.; Jiang, H. Nrf2 inhibits ferroptosis and protects against acute lung injury due to intestinal ischemia reperfusion via regulating SLC7A11 and HO-1. Aging 2020, 12, 12943–12959. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhou, X.; Li, H.; Cui, Q.; Yu, J.; Wang, G. Delivery of CatSper2 siRNA into Rat Sperms by Electroporation Repressed Ca2+ Influx During Sperm Hyperactivation. Agric. Sci. China 2011, 10, 1958–1967. [Google Scholar] [CrossRef]
- Bersuker, K.; Hendricks, J.M.; Li, Z.; Magtanong, L.; Ford, B.; Tang, P.H.; Roberts, M.A.; Tong, B.; Maimone, T.J.; Zoncu, R.; et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 2019, 575, 688–692. [Google Scholar] [CrossRef]
- Singh, S.; Pal, N.; Shubham, S.; Sarma, D.K.; Verma, V.; Marotta, F.; Kumar, M. Polycystic Ovary Syndrome: Etiology, Current Management, and Future Therapeutics. J. Clin. Med. 2023, 12, 1454. [Google Scholar] [CrossRef]
- Zaki, M.; Sherity, S.Y.E.; Metkees, M.; Salem, S.; Elnahas, T.; Salama, E.; Girgiss, M.W.; Youness, E.R. Total antioxidant capacity status in non-obese adolescent females with PCOS: A cross-section study. Middle East Fertil. Soc. J. 2024, 29, 51. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, B.; Jiang, Y.; Guo, H.; Li, Y. The mechanisms crosstalk and therapeutic opportunities between ferroptosis and ovary diseases. Front. Endocrinol. 2023, 14, 1194089. [Google Scholar] [CrossRef]
- Wang, J.; Wu, N.; Peng, M.; Oyang, L.; Jiang, X.; Peng, Q.; Zhou, Y.; He, Z.; Liao, Q. Ferritinophagy: Research advance and clinical significance in cancers. Cell Death Discov. 2023, 9, 463. [Google Scholar] [CrossRef] [PubMed]
- Catapano, A.; Cimmino, F.; Petrella, L.; Pizzella, A.; D’Angelo, M.; Ambrosio, K.; Marino, F.; Sabbatini, A.; Petrelli, M.; Paolini, B.; et al. Iron metabolism and ferroptosis in health and diseases: The crucial role of mitochondria in metabolically active tissues. J. Nutr. Biochem. 2025, 140, 109888. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Fan, H.; Li, C.; Yang, K.; Xiong, C.; Xiong, S.; Feng, S.; Chen, S.; Wang, B.; Su, Y.; et al. Dysregulation of ferroptosis-related genes in granulosa cells associates with impaired oocyte quality in polycystic ovary syndrome. Front. Endocrinol. 2024, 15, 1346842. [Google Scholar] [CrossRef]
- Vergani, L.; Floreani, M.; Russell, A.; Ceccon, M.; Napoli, E.; Cabrelle, A.; Valente, L.; Bragantini, F.; Leger, B.; Dabbeni-Sala, F. Antioxidant defences and homeostasis of reactive oxygen species in different human mitochondrial DNA-depleted cell lines. Eur. J. Biochem. 2004, 271, 3646–3656. [Google Scholar] [CrossRef]
- Singh, A.K.; Chattopadhyay, R.; Chakravarty, B.; Chaudhury, K. Markers of oxidative stress in follicular fluid of women with endometriosis and tubal infertility undergoing IVF. Reprod. Toxicol. 2013, 42, 116–124. [Google Scholar] [CrossRef]
- Tirado-Hurtado, I.; Fajardo, W.; Pinto, J.A. DNA Damage Inducible Transcript 4 Gene: The Switch of the Metabolism as Potential Target in Cancer. Front. Oncol. 2018, 8, 106. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Ou, Z.; Chen, R.; Niu, X.; Chen, D.; Kang, R.; Tang, D. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 2016, 63, 173–184, Erratum in: Hepatology 2025, 82, E38–E39. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, W.; Wang, X.; Sun, Y.; Chen, X. A pharmacological review of dicoumarol: An old natural anticoagulant agent. Pharmacol. Res. 2020, 160, 105193. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, F.; Li, D.; Yan, Y.; Wang, H. Transferrin receptor-mediated reactive oxygen species promotes ferroptosis of KGN cells via regulating NADPH oxidase 1/PTEN induced kinase 1/acyl-CoA synthetase long chain family member 4 signaling. Bioengineered 2021, 12, 4983–4994. [Google Scholar] [CrossRef]
- Tang, M.-X.; Chen, J.-F.; Zhao, F.-Z.; Peng, J. Ferroptosis: A critical link to treatment resistance in esophageal carcinoma. iScience 2025, 28, 112901. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Xing, X.; Zhang, W.; Wang, Y.; Jin, X.; Wang, Y.; Tian, M.; Ba, X.; Hao, F. Cysteine and homocysteine can be exploited by GPX4 in ferroptosis inhibition independent of GSH synthesis. Redox Biol. 2024, 69, 102999. [Google Scholar] [CrossRef]
- Wang, X.; Wei, Y.; Wei, F.; Kuang, H. Regulatory mechanism and research progress of ferroptosis in obstetrical and gynecological diseases. Front. Cell Dev. Biol. 2023, 11, 1146971. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Das, N.K.; Talukder, I.; Singhal, R.; Castillo, C.; Andren, A.; Mancias, J.D.; Lyssiotis, C.A.; Shah, Y.M. PTEN-induced kinase PINK1 supports colorectal cancer growth by regulating the labile iron pool. J. Biol. Chem. 2023, 299, 104691. [Google Scholar] [CrossRef]
- Cheng, D.; Deng, B.; Tong, Q.; Gao, S.; Xiao, B.; Zhu, M.; Ren, Z.; Wang, L.; Sun, M. Proteomic Studies of the Mechanism of Cytotoxicity, Induced by Palytoxin on HaCaT Cells. Toxins 2022, 14, 269. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Zou, Y.; Wang, Y.; Duan, T.; Zhou, Z.; Huang, Y.; Ye, Q. EMC2 suppresses ferroptosis via regulating TFRC in nasopharyngeal carcinoma. Transl. Oncol. 2025, 52, 102251. [Google Scholar] [CrossRef]
- Liu, M.; Wu, K.; Wu, Y. The emerging role of ferroptosis in female reproductive disorders. Biomed. Pharmacother. 2023, 166, 115415. [Google Scholar] [CrossRef]
- Park, C.J.; Oh, J.-E.; Feng, J.; Cho, Y.M.; Qiao, H.; Ko, C. Lifetime changes of the oocyte pool: Contributing factors with a focus on ovulatory inflammation. Clin. Exp. Reprod. Med. 2022, 49, 16–25. [Google Scholar] [CrossRef]
- Elmorsy, E.A.; Saber, S.; Hamad, R.S.; Abdel-Reheim, M.A.; El-kott, A.F.; AlShehri, M.A.; Morsy, K.; Salama, S.A.; Youssef, M.E. Advances in understanding cisplatin-induced toxicity: Molecular mechanisms and protective strategies. Eur. J. Pharm. Sci. 2024, 203, 106939. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, M.; Sun, M. ACSL4 at the helm of the lipid peroxidation ship: A deep-sea exploration towards ferroptosis. Front. Pharmacol. 2025, 16, 1594419. [Google Scholar] [CrossRef]
- Chen, H.; Nie, P.; Li, J.; Wu, Y.; Yao, B.; Yang, Y.; Lash, G.E.; Li, P. Cyclophosphamide induces ovarian granulosa cell ferroptosis via a mechanism associated with HO-1 and ROS-mediated mitochondrial dysfunction. J. Ovarian Res. 2024, 17, 107. [Google Scholar] [CrossRef]
- Chiang, S.-K.; Chen, S.-E.; Chang, L.-C. A Dual Role of Heme Oxygenase-1 in Cancer Cells. Int. J. Mol. Sci. 2018, 20, 39. [Google Scholar] [CrossRef] [PubMed]
- Tomitsuka, Y.; Imaeda, H.; Ito, H.; Asou, I.; Ohbayashi, M.; Ishikawa, F.; Kuwata, H.; Hara, S. Gene deletion of long-chain acyl-CoA synthetase 4 attenuates xenobiotic chemical-induced lung injury via the suppression of lipid peroxidation. Redox Biol. 2023, 66, 102850. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Feng, D.; Wang, Z.; Zhao, Y.; Sun, R.; Tian, D.; Liu, D.; Zhang, F.; Ning, S.; Yao, J.; et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ. 2019, 26, 2284–2299. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Cheng, X.; Ji, J.; Lu, Y.; Xie, Y.; Wang, W.; Xu, Y.; Zhang, Y. Mechanism of ferroptosis in a rat model of premature ovarian insufficiency induced by cisplatin. Sci. Rep. 2023, 13, 4463. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.; Wang, R.; Cheng, F.; Wang, L.; Cui, Z.; She, J.; Yang, X. Endometrial stem cells alleviate cisplatin-induced ferroptosis of granulosa cells by regulating Nrf2 expression. Reprod. Biol. Endocrinol. 2024, 22, 41. [Google Scholar] [CrossRef]
- Lin, Q.; Li, S.; Jin, H.; Cai, H.; Zhu, X.; Yang, Y.; Wu, J.; Qi, C.; Shao, X.; Li, J.; et al. Mitophagy alleviates cisplatin-induced renal tubular epithelial cell ferroptosis through ROS/HO-1/GPX4 axis. Int. J. Biol. Sci. 2023, 19, 1192–1210. [Google Scholar] [CrossRef]
- Kobayashi, H.; Yoshimoto, C.; Matsubara, S.; Shigetomi, H.; Imanaka, S. Current Understanding of and Future Directions for Endometriosis-Related Infertility Research with a Focus on Ferroptosis. Diagnostics 2023, 13, 1926. [Google Scholar] [CrossRef]
- Bao, S.; Yin, T.; Liu, S. Ovarian aging: Energy metabolism of oocytes. J. Ovarian Res. 2024, 17, 118. [Google Scholar] [CrossRef]
- Zeng, W.; Wang, F.; Cui, Z.; Zhang, Y.; Li, Y.; Li, N.; Mao, Z.; Zhang, H.; Liu, Y.; Miao, Y.; et al. Inhibition of ferroptosis counteracts the advanced maternal age-induced oocyte deterioration. Cell Death Differ. 2025, 32, 1071–1085. [Google Scholar] [CrossRef] [PubMed]
- Seibt, T.M.; Proneth, B.; Conrad, M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic. Biol. Med. 2019, 133, 144–152. [Google Scholar] [CrossRef]
- Alves, F.; Lane, D.; Nguyen, T.P.M.; Bush, A.I.; Ayton, S. In defence of ferroptosis. Signal Transduct. Target Ther. 2025, 10, 2. [Google Scholar] [CrossRef]
- Xu, C.; Sun, S.; Johnson, T.; Qi, R.; Zhang, S.; Zhang, J.; Yang, K. The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity. Cell Rep. 2021, 35, 109235. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.-Y.; Huang, B.-Y.; Nie, H.-F.; Chen, X.-Y.; Zhou, Y.; Yang, T.; Cheng, S.-W.; Mei, Z.-G.; Ge, J.-W. The Interplay between Mitochondrial Dysfunction and Ferroptosis during Ischemia-Associated Central Nervous System Diseases. Brain Sci. 2023, 13, 1367. [Google Scholar] [CrossRef]
- Hu, J.; Wang, H.; Fang, J.; Jiang, R.; Kong, Y.; Zhang, T.; Yang, G.; Jin, H.; Shi, S.; Song, N.; et al. Ovarian aging-associated downregulation of GPX4 expression regulates ovarian follicular development by affecting granulosa cell functions and oocyte quality. FASEB J. 2025, 39, e70469. [Google Scholar] [CrossRef]
- Yang, S.; Luo, A.; Hao, X.; Lai, Z.; Ding, T.; Ma, X.; Mayinuer, M.; Shen, W.; Wang, X.; Lu, Y.; et al. Peroxiredoxin 2 Inhibits Granulosa Cell Apoptosis During Follicle Atresia Through the NFKB Pathway in Mice1. Biol. Reprod. 2011, 84, 1182–1189. [Google Scholar] [CrossRef]
- Wu, C.; Chen, D.; Stout, M.B.; Wu, M.; Wang, S. Hallmarks of ovarian aging. Trends Endocrinol. Metab. 2025, 36, 418–439. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Z.; Wang, H. The role of NCOA4-mediated ferritinophagy in the ferroptosis of hepatocytes: A mechanistic viewpoint. Pathol. Res. Pract. 2025, 270, 155996. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Liao, Y.; Zhu, C.; Zou, Z. GPX4, ferroptosis, and diseases. Biomed. Pharmacother. 2024, 174, 116512. [Google Scholar] [CrossRef]
- Li, C.; Wang, Q.; Bi, Y.; Gao, S.; Xu, J.; Chai, C.; Jiang, J.; Li, Q.; Xu, D. Mechanistic studies on the regulation of ferroptosis by ferritin 1 through the FTH1 signaling pathway affecting oocyte maturation. Theriogenology 2026, 249, 117658. [Google Scholar] [CrossRef]
- Elizur, S.E.; Aizer, A.; Yonish, M.; Shavit, T.; Orvieto, R.; Mashiach, R.; Cohen, S.B.; Berkowitz, E. Fertility preservation for women with ovarian endometriosis: Results from a retrospective cohort study. Reprod. Biomed. Online 2023, 46, 332–337. [Google Scholar] [CrossRef]
- Dong, X.; Xu, L.; Wang, S.; Jiao, X.; Yan, S.; Huang, Y.; Yuan, M.; Wang, G. Endometrial stromal cell autophagy-dependent ferroptosis caused by iron overload in ovarian endometriosis is inhibited by the ATF4-xCT pathway. Mol. Hum. Reprod. 2023, 30, gaad046. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, H. Autophagy-dependent ferroptosis in infectious disease. J. Transl. Intern. Med. 2023, 11, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; He, Y.; Cheng, W.; Zhou, Z.; Ni, Z.; Yu, C. Double-edged roles of ferroptosis in endometriosis and endometriosis-related infertility. Cell Death Discov. 2023, 9, 306. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Gao, F.; Man, J. Ferroptosis: The potential key roles in idiopathic pulmonary fibrosis. Eur. J. Med. Res. 2025, 30, 341. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Fu, H.; Ding, Y.; Yuan, Z.; Xiang, Z.; Ding, M.; Huang, M.; Peng, Y.; Li, T.; Zha, K.; et al. The role of iron overload and ferroptosis in arrhythmia pathogenesis. IJC Heart Vasc. 2024, 52, 101414. [Google Scholar] [CrossRef]
- Punziano, C.; Trombetti, S.; Cesaro, E.; Grosso, M.; Faraonio, R. Antioxidant Systems as Modulators of Ferroptosis: Focus on Transcription Factors. Antioxidants 2024, 13, 298. [Google Scholar] [CrossRef]
- Nishihara, T.; Matsumoto, K.; Hosoi, Y.; Morimoto, Y. Evaluation of antioxidant status and oxidative stress markers in follicular fluid for human in vitro fertilization outcome. Reprod. Med. Biol. 2018, 17, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Le, M.T.; Nguyen, T.T.T.; Nguyen, T.V.; Nguyen, Q.H.V. The impact of oxidation-reduction potential in follicular fluid on intracytoplasmic sperm injection outcomes. Clin. Exp. Reprod. Med. 2025, 52, 236–243. [Google Scholar] [CrossRef]
- Yalcinkaya, E.; Cakiroglu, Y.; Doger, E.; Budak, O.; Cekmen, M.; Caliskan, E. Effect of Follicular Fluid NO, MDA and GSH Levels on in vitro Fertilization Outcomes. J. Turk. Ger. Gynecol. Assoc. 2013, 14, 136–141. [Google Scholar] [CrossRef]
- Gongadashetti, K.; Gupta, P.; Dada, R.; Mahotra, N. Follicular fluid oxidative stress biomarkers and ART outcomes in PCOS women undergoing in vitro fertilization: A cross-sectional study. Int. J. Reprod. Biomed. 2021, 19, 449–456. [Google Scholar] [CrossRef]
- De Lima, C.B.; Cordeiro, F.B.; Camargo, M.; Zylbersztejn, D.S.; Cedenho, A.P.; Bertolla, R.P.; Lo Turco, E.G. Follicular fluid lipid peroxidation levels in women with endometriosis during controlled ovarian hyperstimulation. Hum. Fertil. 2017, 20, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.V.; Vale-Fernandes, E.; Albergaria, I.C.; Alves, M.G.; Monteiro, M.P. Follicular fluid composition and reproductive outcomes of women with polycystic ovary syndrome undergoing in vitro fertilization: A systematic review. Rev. Endocr. Metab. Disord. 2023, 24, 1045–1073. [Google Scholar] [CrossRef]
- Zec, I.; Goldštajn, M.Š.; Kuna, K.; Mikuš, M.; Stabile, G.; Bianco, B.; Buzzaccarini, G.; Laganà, A.S. Oxidative homeostasis in follicular fluid and reproductive outcomes—From bench to bedside. Menopause Rev./Przegląd Menopauzalny 2022, 21, 276–284. [Google Scholar] [CrossRef]
- Liu, T.; Qu, J.; Tian, M.; Yang, R.; Song, X.; Li, R.; Yan, J.; Qiao, J. Lipid Metabolic Process Involved in Oocyte Maturation During Folliculogenesis. Front. Cell Dev. Biol. 2022, 10, 806890. [Google Scholar] [CrossRef]
- Zaha, I.; Muresan, M.; Tulcan, C.; Huniadi, A.; Naghi, P.; Sandor, M.; Tripon, R.; Gaspar, C.; Klaudia-Melinda, M.; Sachelarie, L.; et al. The Role of Oxidative Stress in Infertility. J. Pers. Med. 2023, 13, 1264. [Google Scholar] [CrossRef] [PubMed]
- Polson, D.; Villalba, N.; Freeman, K. Optimization of a diagnostic platform for oxidation–reduction potential (ORP) measurement in human plasma. Redox Rep. 2018, 23, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Yang, X.; Zhao, D.; Zhang, P.; Mi, Y.; Xu, J.; Zhao, B.; Shi, D. Structural Characterization and Anti-Tumor Activity of a Polysaccharide from Laetiporus sulphureus in A549 Cells. Molecules 2025, 30, 3706. [Google Scholar] [CrossRef]
- He, S.; Wang, J.; Cao, S.; Wang, A.; Wang, Y.; Li, P.; Cao, X.; Cheng, R.; Chen, R.; Wang, Y.; et al. Maternal oxidative stress throughout pregnancy and early childhood neurodevelopment at different stages: Insights from a prospective cohort study. BMC Med. 2025, 23, 463. [Google Scholar] [CrossRef]
- Fan, Y.; Yang, Q.; Lin, Y.; Fu, X.; Shu, J. The effect of endometriosis on oocyte quality: Mechanisms, diagnosis and treatment. Arch. Gynecol. Obs. 2025, 311, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Jiao, W.; Li, X.; Zeng, C.; Shang, J.; Xue, Q. Ovarian endometriosis negatively impacts pregnancy outcomes in young infertile women undergoing IVF/ICSI treatment. Eur. J. Med. Res. 2025, 30, 555. [Google Scholar] [CrossRef]
- Zeber-Lubecka, N.; Ciebiera, M.; Hennig, E.E. Polycystic Ovary Syndrome and Oxidative Stress—From Bench to Bedside. Int. J. Mol. Sci. 2023, 24, 14126. [Google Scholar] [CrossRef]
- Orisaka, M.; Mizutani, T.; Miyazaki, Y.; Shirafuji, A.; Tamamura, C.; Fujita, M.; Tsuyoshi, H.; Yoshida, Y. Chronic low-grade inflammation and ovarian dysfunction in women with polycystic ovarian syndrome, endometriosis, and aging. Front. Endocrinol. 2023, 14, 1324429. [Google Scholar] [CrossRef]
- Agarwal, A.; Durairajanayagam, D.; Du Plessis, S.S. Utility of antioxidants during assisted reproductive techniques: An evidence based review. Reprod. Biol. Endocrinol. 2014, 12, 112. [Google Scholar] [CrossRef]
- Chen, H.; Wang, S.; Song, M.; Yang, D.; Li, H. Oocyte and dietary supplements: A mini review. Front. Cell Dev. Biol. 2025, 13, 1619758. [Google Scholar] [CrossRef]
- Wang, K.; Li, Y. Signaling pathways and targeted therapeutic strategies for polycystic ovary syndrome. Front. Endocrinol. 2023, 14, 1191759. [Google Scholar] [CrossRef]
- Ma, F.; Luo, S.; Lu, C.; Jiang, X.; Chen, K.; Deng, J.; Ma, S.; Li, Z. The role of Nrf2 in periodontal disease by regulating lipid peroxidation, inflammation and apoptosis. Front. Endocrinol. 2022, 13, 963451. [Google Scholar] [CrossRef] [PubMed]
- Ngo, V.; Duennwald, M.L. Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants 2022, 11, 2345. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yu, X.; Li, D.; Ma, N.; Wei, Z.; Ci, X.; Zhang, S. Nrf2 Signaling Pathway Mediates the Protective Effects of Daphnetin Against D-Galactose Induced-Premature Ovarian Failure. Front. Pharmacol. 2022, 13, 810524. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Rao, P.; Yu, W.; Tang, Y.; Jiang, X.; Liu, J. Melatonin Prevents the Progression of MASLD via Inhibiting FFAs-Induced Ferroptosis through KEAP1/NRF2/HO-1 Pathway. Biomol. Ther. 2025, 33, 876–889. [Google Scholar] [CrossRef]
- Kołodziejska, R.; Woźniak, A.; Bilski, R.; Wesołowski, R.; Kupczyk, D.; Porzych, M.; Wróblewska, W.; Pawluk, H. Melatonin—A Powerful Antioxidant in Neurodegenerative Diseases. Antioxidants 2025, 14, 819. [Google Scholar] [CrossRef]
- Zheng, M.; Liu, Y.; Zhang, G.; Yang, Z.; Xu, W.; Chen, Q. The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics. Antioxidants 2023, 12, 1675. [Google Scholar] [CrossRef]
- Tsui, K.-H.; Li, C.-J.; Lin, L.-T. Melatonin supplementation attenuates cuproptosis and ferroptosis in aging cumulus and granulosa cells: Potential for improving IVF outcomes in advanced maternal age. Reprod. Biol. Endocrinol. 2024, 22, 138. [Google Scholar] [CrossRef]
- Reiter, R.J.; Tan, D.-X.; Galano, A. Melatonin reduces lipid peroxidation and membrane viscosity. Front. Physiol. 2014, 5, 377. [Google Scholar] [CrossRef]
- Wang, F.; Min, J. DHODH tangoing with GPX4 on the ferroptotic stage. Signal Transduct. Target. Ther. 2021, 6, 244. [Google Scholar] [CrossRef]
- Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Organelle-specific regulation of ferroptosis. Cell Death Differ. 2021, 28, 2843–2856. [Google Scholar] [CrossRef]
- You, Y.; Qian, Z.; Jiang, Y.; Chen, L.; Wu, D.; Liu, L.; Zhang, F.; Ning, X.; Zhang, Y.; Xiao, J. Insights into the pathogenesis of gestational and hepatic diseases: The impact of ferroptosis. Front. Cell Dev. Biol. 2024, 12, 1482838. [Google Scholar] [CrossRef]
- Stockwell, B.R. A powerful cell-protection system prevents cell death by ferroptosis. Nature 2019, 575, 597–598. [Google Scholar] [CrossRef]
- Yang, M.; Tsui, M.G.; Tsang, J.K.W.; Goit, R.K.; Yao, K.-M.; So, K.-F.; Lam, W.-C.; Lo, A.C.Y. Involvement of FSP1-CoQ10-NADH and GSH-GPx-4 pathways in retinal pigment epithelium ferroptosis. Cell Death Dis. 2022, 13, 468. [Google Scholar] [CrossRef]
- Xie, C.; Lu, H.; Zhang, X.; An, Z.; Chen, T.; Yu, W.; Wang, S.; Shang, D.; Wang, X. Mitochondrial abnormality in ovarian granulosa cells of patients with polycystic ovary syndrome. Mol. Med. Rep. 2023, 29, 27. [Google Scholar] [CrossRef]
- Brown, A.M.; McCarthy, H.E. The Effect of CoQ10 supplementation on ART treatment and oocyte quality in older women. Hum. Fertil. 2023, 26, 1544–1552. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Rosales-Corral, S.; Tan, D.X.; Jou, M.J.; Galano, A.; Xu, B. Melatonin as a mitochondria-targeted antioxidant: One of evolution’s best ideas. Cell. Mol. Life Sci. 2017, 74, 3863–3881. [Google Scholar] [CrossRef] [PubMed]
- Divvela, S.S.K.; Gallorini, M.; Gellisch, M.; Patel, G.D.; Saso, L.; Brand-Saberi, B. Navigating redox imbalance: The role of oxidative stress in embryonic development and long-term health outcomes. Front. Cell Dev. Biol. 2025, 13, 1521336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Luo, Y.L.; Xiang, Y.; Bai, X.Y.; Qiang, R.R.; Zhang, X.; Yang, Y.L.; Liu, X.L. Ferroptosis inhibitors: Past, present and future. Front. Pharmacol. 2024, 15, 1407335. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, J.; Zeng, L.; Yang, Q.; Bai, F.; Mai, Q.; Deng, K. Human mesenchymal stem cells derived exosomes improve ovarian function in chemotherapy-induced premature ovarian insufficiency mice by inhibiting ferroptosis through Nrf2/GPX4 pathway. J. Ovarian Res. 2024, 17, 80. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Qin, Y.; Jiao, X. Can ferroptosis be a target for reproductive health? Trends Endocrinol. Metab. 2025, 36, 398–402. [Google Scholar] [CrossRef]
- Du, L.; Chen, W.; Zhang, D.; Cui, Y.; He, Z. The functions and mechanisms of piRNAs in mediating mammalian spermatogenesis and their applications in reproductive medicine. Cell. Mol. Life Sci. 2024, 81, 379. [Google Scholar] [CrossRef]
- Lin, Y.; Liang, A.; He, Y.; Li, Z.; Li, Z.; Wang, G.; Sun, F. Proteomic analysis of seminal extracellular vesicle proteins involved in asthenozoospermia by iTRAQ. Mol. Reprod. Dev. 2019, 86, 1094–1105. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Zhao, S.; Han, K.; Fan, L.; Zhao, C.; Yin, S.; Hu, H. Managing ferroptosis-related diseases with indirect dietary modulators of ferroptosis. J. Nutr. Biochem. 2023, 120, 109427. [Google Scholar] [CrossRef] [PubMed]
| Regulator/Pathway | Molecular Role | Evidence in Ovarian Context | Functional Consequences | 
|---|---|---|---|
| GPX4 (Glutathione peroxidase 4), [12,29,37] | Detoxifies lipid hydroperoxides; central ferroptosis suppressor | Downregulated in PCOS, chemotherapy-induced POI, endometriosis, ovarian aging | Loss of GPX4 increases lipid peroxidation, impairs granulosa cell survival, reduces oocyte competence | 
| ACSL4 (Acyl-CoA synthetase long-chain family member 4), [17,38,39] | Incorporates ω-6 PUFAs into phospholipids, increasing susceptibility to peroxidation | Upregulated in cisplatin-treated ovaries, PCOS granulosa cells, endometriosis stromal cells | Promotes ferroptosis and ovarian fibrosis; inhibition by rosiglitazone restores follicular viability | 
| NCOA4-mediated ferritinophagy, [40,41] | Releases stored iron from ferritin, increasing labile Fe2+ pool | Activated by androgens in PCOS, by iron-overloaded FF in endometriosis | Iron overload drives ROS accumulation, mitochondrial damage, granulosa cell ferroptosis | 
| HO-1 (Heme oxygenase-1), [29] | Catabolizes heme, releasing free iron | Upregulated in cyclophosphamide-exposed granulosa cells | Promotes iron overload and ferroptosis in POI models | 
| Nrf2/xCT (SLC7A11), [35,42,43] | Master antioxidant regulator; imports cystine for GSH synthesis | Activated by melatonin, MSC-derived exosomes; upregulated in resistant endometriotic lesions | Protects granulosa cells from ferroptosis; confers lesion survival in EM | 
| FSP1–CoQ10–NAD(P)H axis, [24,44] | Parallel antioxidant system reducing lipid peroxyl radicals | Indirect evidence in ovarian aging (CoQ10 supplementation improves IVF outcomes) | Enhances resilience of granulosa and cumulus cells, improves mitochondrial function | 
| BNC1/NF2-YAP pathway, [38] | Transcriptional regulation of oocyte lipid metabolism and redox homeostasis | BNC1 deficiency in oocytes triggers ferroptosis via NF2-YAP | Leads to premature follicle depletion and POI | 
| Biomarker | Molecular/Redox Role | Findings in IVF Context | Clinical Outcome Associations | 
|---|---|---|---|
| Total GSH, [94] | Major antioxidant, cofactor for GPX4 | ↓GSH in patients with low fertilization rates and in endometriosis | Low GSH linked to reduced fertilization success | 
| 8-OHdG (8-hydroxy-2′-deoxyguanosine), [94] | Marker of oxidative DNA damage | ↑8-OHdG in patients with poor fertilization and low-quality blastocysts | High 8-OHdG negatively associated with embryo development | 
| ORP, [95] | Global indicator of redox balance | ↑ORP correlates with ↓fertilization rates; higher ORP in low fertilization group (<80%) | Elevated ORP predicts poor fertilization in ICSI | 
| MDA, [96] | Lipid peroxidation end-product | ↑MDA in pregnant group; positive correlation with fertilization rate and grade 1 embryos | AUC = 0.74 for predicting pregnancy | 
| NO, [96] | Dual role in vascular and redox signaling | ↓NO in pregnant vs. non-pregnant women; lower FF NO associated with better outcome | Suggests threshold-dependent effect on oocyte competence | 
| 8-Isoprostane (8-IP), [97] | Oxidative stress lipid biomarker | ↑8-IP in PCOS women, particularly those with miscarriage | Linked to adverse outcomes in PCOS-IVF cycles | 
| TAC, [97] | Composite measure of non-enzymatic antioxidants | No clear correlation with IVF outcomes; elevated in PCOS but inconsistent | Potential as a supportive marker but not predictive | 
| Lipid Peroxidation (MDA levels) in endometriosis, [98] | Reflects ROS-driven lipid damage | ↑MDA in endometriosis FF compared to controls | Associated with reduced oocyte quality, age-dependent variations in severity | 
| Composite oxidative stress profile (ROS, inflammatory markers, growth factors), [99,100] | Integrative view of FF redox status | PCOS patients show higher oxidative and inflammatory biomarkers compared to controls | Reinforces link between low-grade inflammation, oxidative stress, and impaired IVF outcomes | 
| Class/Agent | Primary Mechanism | Ovarian Target/Context | Evidence (Model/Outcome) | Key Considerations | 
|---|---|---|---|---|
| Melatonin | Nrf2 activation → ↑SLC7A11/GPX4; mitochondrial ROS scavenging; stabilizes ΔΨm; modulates cuproptosis | Granulosa and cumulus cells (advanced maternal age, POI risk; environmental stress) | PM2.5 models: prevents GC ferroptosis and POI via Nrf2–GPX4–xCT; AMA cohort: ↑clinical/ongoing pregnancy and live birth | Generally safe; sufficient exposure (≥8 weeks in AMA study); avoid over-suppressing physiological ROS | 
| Coenzyme Q10 (ubiquinol) | Bioenergetic support; FSP1–CoQ10–NAD(P)H radical-trapping at membranes | Aging/DOR; mitochondrial insufficiency | Multi-omics in AMA: ↑GPX4, ↓TFRC/NCOA4/SLC3A2 with supplementation; clinical signals for oocyte/embryo quality | Formulation (ubiquinol > ubiquinone); adherence; benefit greatest in older/low-reserve cohorts | 
| Vitamin E/lipid RTAs (e.g., α-tocopherol; liproxstatin-1) | Lipid radical trapping; terminates peroxidation chain reactions | GC/oocyte protection; EM with iron overload | Vitamin E reverses EM-FF–induced GC ferroptosis and improves oocyte maturation (models); liproxstatin-1 protective in preclinical ferroptosis | Vitamin E widely used; liproxstatin-1 preclinical only; dose–response to avoid blunting needed signals | 
| Ferrostatin-1 | Prototypic ferroptosis inhibitor (lipid RTA) | GC protection (PCOS, POI, EM models) | Reverses anovulation/PCOS traits; protects ovary in cisplatin/cyclophosphamide and RPE models | Experimental tool; clinical translation pending | 
| Iron chelators (deferoxamine; deferiprone) | Lower labile Fe2+; blunt Fenton chemistry and ferritinophagy sequelae | EM (iron-overloaded FF); chemotherapy-related iron release | Deferoxamine improves EM-related infertility models; strong rationale in iron-driven contexts | Monitor iron status; avoid anemia; consider timing/local delivery | 
| Rosiglitazone (PPARγ agonist) | Functional ACSL4 inhibition; membrane remodeling toward less-peroxidizable lipids | Cisplatin-related POI; possibly EM fibrosis | Reduces ovarian injury and GC death in cisplatin models; mechanistic link to ACSL4 | Metabolic off-targets; patient selection critical | 
| Nrf2 activators (e.g., sulforaphane; melatonin) | KEAP1–Nrf2–ARE program: ↑xCT, ↑GPX4, ↑phase II enzymes | Chemotherapy-induced POI; environmental insults; aging | MSC/EnSC exosomes and melatonin signal via Nrf2; PM2.5 toxicity mitigated by Nrf2 | Potency/PK vary; sustained activation has context-dependent effects (balance HO-1) | 
| MSC/EnSC-derived exosomes | miRNA/protein cargo → ↑Nrf2/GPX4; ↓ferritinophagy; anti-oxidative reprogramming | Chemotherapy-induced POI; GC protection | hUC-MSC and EnSC exosomes restore ovarian function by inhibiting ferroptosis (in vivo/in vitro) | Manufacturing/standardization; regulatory pathway; promising FP adjuvant | 
| Targeting ATF4–xCT (contextual inhibition) | Reduce cystine import in resistant lesions → sensitize to ferroptosis | Endometriotic stromal cells (ferroptosis resistance) | EM stromal resistance driven by ATF4–xCT; conceptual targeting for lesion control | Cell-type selectivity essential (protect oocytes/GCs simultaneously) | 
| DHODH/mito-CoQ axis (modulation) | Mitochondrial ubiquinone reduction supports anti-ferroptotic tone | High mitochondrial ROS states (aging, chemotherapy) | Supported in other tissues; plausible in ovary; cooperates with GPX4/FSP1 | Limited ovarian data; potential synergy with CoQ10 | 
| GCH1–BH4 support | BH4 as lipid antioxidant and enzymatic cofactor | Nitric-oxide/lipid-peroxidation balance | Preclinical ferroptosis suppression in other systems; ovarian role putative | Watch NO coupling; reproductive validation needed | 
| NOX inhibitors | Reduce cytosolic ROS production | PCOS (TFRC→NOX1 axis); oxidative FF | In vitro PCOS models: NOX1 drives ROS/mitophagy/ferroptosis | Specificity required; avoid global ROS suppression that impairs ovulatory signaling | 
| HO-1 fine-tuning | Limit heme-iron release when overexpressed | Cyclophosphamide-related POI | HO-1 upregulation linked to GC ferroptosis; inhibition reduces damage | Dual roles of HO-1; careful, context-dependent modulation | 
| DHEA/metabolic cofactors (incl. Cleo-20 T3) | Support TCA/ETC; ↑GPX4 expression; redox–energy coupling | AMA/DOR | Reduced ferroptosis gene signature; improved IVF metrics (cohort) | Patient selection; endocrine context; quality sourcing | 
| Environmental mitigation (PM2.5) | Reduce particulate-induced oxidative stress | Women at risk of POI | PM2.5 drives ovarian ferroptosis; melatonin protective | Public health plus individual measures; adjunct to medical therapy | 
| Condition (Refs) | Model/Sample | Key Ferroptosis Mechanisms | Ovarian/Follicular Consequences | Proposed Therapeutic Strategies | 
|---|---|---|---|---|
| PCOS [40,50,56] | Human granulosa cells; DHEA/DHT-induced PCOS rat models | ↑Ferritinophagy via NCOA4; ↑Fe2+; ↑MDA; ↓GPX4; ↓FTH1; circRHBG–miR-515–SLC7A11 axis; TFRC–NOX1–PINK1–ACSL4 signaling | Granulosa-cell ferroptosis; mitochondrial damage; impaired oocyte maturation; anovulation | Ferrostatin-1; iron chelators; targeting circRHBG or SLC7A11 | 
| Chemotherapy-induced POI [22,59,67,71,72,131] | Cyclophosphamide- or cisplatin-treated mice; rat ovaries; granulosa cell lines (KGN, COV434) | ↑HO-1 → iron overload; ↓GPX4; ↑ACSL4 via SP1; ↑ALOX15; lipid peroxidation; mitochondrial dysfunction | Granulosa-cell death; follicle depletion; ovarian fibrosis; reduced hormone levels | Ferrostatin-1; rosiglitazone (ACSL4 inhibition); vitamin E; MSC-/EnSC-derived exosomes (via Nrf2/GPX4) | 
| Ovarian aging/DOR [37,38,73,119] | Granulosa cells from AMA women; transcriptomic profiling; multi-omics with supplementation | Dysregulated ferroptosis genes (TFRC, NCOA4, SLC3A2; ↓GPX4); impaired mitochondrial redox balance; BNC1 deficiency triggers ferroptosis via NF2–YAP | Accelerated follicle depletion; reduced oocyte quality; diminished ovarian reserve | DHEA; CoQ10; melatonin; ferroptosis/YAP inhibitors; antioxidant support | 
| Endometriosis-related infertility [41,88,90,115] | Follicular fluid and stromal cells from EM patients; EM mouse models | Iron-overloaded FF induces GC ferroptosis (NCOA4-ferritinophagy); autophagy-dependent ferroptosis in ESCs; ATF4–xCT confers ferroptosis resistance; iron-induced fibrosis (ACSL4/ROS) | GC loss; impaired oocyte maturation; stromal fibrosis; reduced embryo quality | Vitamin E; deferoxamine (iron chelation); ferrostatin-1; selective ATF4–xCT inhibition in lesions | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voros, C.; Chatzinikolaou, F.; Papadimas, G.; Polykalas, S.; Mavrogianni, D.; Koulakmanidis, A.-M.; Athanasiou, D.; Kanaka, V.; Kanaka, M.; Bananis, K.; et al. Ferroptosis in the Ovarian Follicular Microenvironment: A Redox-Dependent Cell Death Pathway with Emerging Roles in PCOS, Oocyte Quality, and IVF Outcomes. Int. J. Mol. Sci. 2025, 26, 10381. https://doi.org/10.3390/ijms262110381
Voros C, Chatzinikolaou F, Papadimas G, Polykalas S, Mavrogianni D, Koulakmanidis A-M, Athanasiou D, Kanaka V, Kanaka M, Bananis K, et al. Ferroptosis in the Ovarian Follicular Microenvironment: A Redox-Dependent Cell Death Pathway with Emerging Roles in PCOS, Oocyte Quality, and IVF Outcomes. International Journal of Molecular Sciences. 2025; 26(21):10381. https://doi.org/10.3390/ijms262110381
Chicago/Turabian StyleVoros, Charalampos, Fotios Chatzinikolaou, Georgios Papadimas, Spyridon Polykalas, Despoina Mavrogianni, Aristotelis-Marios Koulakmanidis, Diamantis Athanasiou, Vasiliki Kanaka, Maria Kanaka, Kyriakos Bananis, and et al. 2025. "Ferroptosis in the Ovarian Follicular Microenvironment: A Redox-Dependent Cell Death Pathway with Emerging Roles in PCOS, Oocyte Quality, and IVF Outcomes" International Journal of Molecular Sciences 26, no. 21: 10381. https://doi.org/10.3390/ijms262110381
APA StyleVoros, C., Chatzinikolaou, F., Papadimas, G., Polykalas, S., Mavrogianni, D., Koulakmanidis, A.-M., Athanasiou, D., Kanaka, V., Kanaka, M., Bananis, K., Athanasiou, A., Athanasiou, A., Papapanagiotou, I. K., Vaitsis, D., Tsimpoukelis, C., Daskalaki, M. A., Theodora, M., Thomakos, N., Antsaklis, P., ... Daskalakis, G. (2025). Ferroptosis in the Ovarian Follicular Microenvironment: A Redox-Dependent Cell Death Pathway with Emerging Roles in PCOS, Oocyte Quality, and IVF Outcomes. International Journal of Molecular Sciences, 26(21), 10381. https://doi.org/10.3390/ijms262110381
 
        





 
       