JAK2 46/1 (GGCC) Haplotype in Oncogenesis, as Risk Stratifier, and Indicator for Drug Resistance in Myeloproliferative Neoplasms
Abstract
1. Introduction
2. Myeloproliferative Neoplasms
- (1)
- Chronic Myeloid Leukemia (CML), particularly the BCR:ABL1-positive subtype that can be further categorized into two phases: CML Accelerated Phase (CML-AP) and CML Blast Phase (CML-BP);
- (2)
- Polycythemia Vera (PV);
- (3)
- Essential Thrombocythemia (ET);
- (4)
- Primary MyeloFibrosis (PMF), which is further divided into Early/pre-fibrotic primary myelofibrosis and Overt primary myelofibrosis.
- (5)
- Chronic Neutrophilic Leukemia (CNL);
- (6)
- Chronic Eosinophilic Leukemia (CEL);
- (7)
- Myeloproliferative Neoplasm Unclassifiable (MPN-U) introduced to identify cases with morphological, clinical, or molecular features that do not fit the other definitions. MPN-U is often used for patients in the early diagnosis phase [11].
3. Role and Regulatory Mechanism of Wild Type JAK2
4. JAK/STAT Pathway and V617F Mutation Involvement in MPN
5. JAK2 GGCC 46/1 Haplotype Discovery and Pathophysiology
6. JAK2 Haplotype 46/1 and Onco-Drug Resistance Onset
6.1. MPN Treatments and Therapies
- (1)
- Prevention of disease-related complications: MPNs are associated with a high risk of thromboembolic and hemorrhagic events, particularly in PV and ET. Indeed, treatment strategies aim to minimize these risks through cytoreductive therapy, antiplatelet agents, and phlebotomy, depending on patient-specific factors [56].
- (2)
- Risk-adapted therapeutic approaches: Therapeutic decisions should be guided by established prognostic models (e.g., International Prognostic Score for ET (IPSET), Dynamic International Prognostic Scoring System (DIPSS)) and take into account age, symptom burden, cardiovascular risk factors, Jak2/Mpl/Calr mutation status, and previous thrombotic events. Low-risk patients may benefit from observation or minimal intervention, whereas high-risk individuals may require more aggressive cytoreductive therapy [57].
- (3)
- Prevention of disease progression and leukemic transformation: Although many MPNs follow a relatively less aggressive clinical course, it remains a significant risk of progression to MF or acute myeloid leukemia (AML), particularly in PMF and in long-standing cases of PV or ET. Long-term management aims to delay or prevent such evolution through appropriate monitoring and timely therapeutic escalation [57].
- (4)
- Achievement of disease modification or cure: While a definitive cure remains elusive for most MPNs, certain disease-modifying agents have shown potential for deep molecular and clinical responses. Interferon-alpha, particularly in early-stage PV or ET, has demonstrated the ability to induce hematologic remission, reduce JAK2 V617F allele burden, and possibly alter the natural course of the disease. Allogeneic stem cell transplantation may offer a curative approach in selected high-risk patients with PMF or post-MPN AML [58,59].
- (1)
- Regarding PV, hydroxyurea (Oncocarbide) serves as the primary treatment for high-risk patients [70]. In contrast, it is used for low-risk patients when blood counts rise, symptoms intensify, or splenomegaly or phlebotomy intolerance occurs [15]. If hematocrit surpasses 45%, the therapy switches to ruxolitinib, which is pivotal in managing hematocrit and reducing splenomegaly [71,72].
- (2)
- Oncocarbide is also used as a first-line treatment in patients with essential thrombocythemia (ET). If hematocrit levels rise or the patient develops leukocytosis or thrombocytosis during treatment, the cytoreductive therapy is switched to ruxolitinib. For low-risk ET patients—typically younger individuals without additional risk factors or extreme thrombocytosis—management may consist of low-dose aspirin or simple observation [73]. However, extreme thrombocytosis (platelet count > 1 × 106/μL) poses a bleeding risk and requires closer monitoring [15]. High-risk patients are usually treated with cytoreductive therapy, with hydroxyurea as the standard first-line option. In cases of intolerance or resistance to hydroxyurea, alternatives such as anagrelide or ruxolitinib may be considered. Regardless of risk category, all patients should undergo careful management of cardiovascular risk factors [73]. In ET, Oncocarbide can be prescribed at doses up to 1.5–2 g per day to reduce platelet counts [74]. If platelet levels continue to rise despite treatment, a change in therapy is necessary [75]. Splenomegaly is another important clinical parameter; an increase in spleen size during Oncocarbide therapy may indicate developing resistance to the drug [11].
- (3)
- For MF patients, hydroxyurea is the first-line treatment, effectively halving splenomegaly in about 40% of cases, with benefits lasting roughly one year [76]. Myelosuppression and painful mucocutaneous ulcers are common side effects. If patients become refractory to hydroxyurea (e.g., hematocrit above 45%) [11] or experience symptomatic splenomegaly, treatment should switch to ruxolitinib [63] (Figure 4).
6.2. Challenges and Drug Resistance in MPNs
7. JAK2 Haplotype 46/1 and Risk Stratification
8. Last Frontier: Epigenetic Therapies
9. Discussion
10. Conclusions
11. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van der Werf, I.; Jamieson, C.H.M. 3D insights: JAK2 46/1 haplotype shapes MPN development. Blood 2025, 145, 2112–2114. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.-A.; Choi, C.W. Recent insights regarding the molecular basis of myeloproliferative neoplasms. Korean J. Intern. Med. 2020, 35, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Quintás-Cardama, A.; Verstovsek, S. Molecular pathways: Jak/STAT pathway: Mutations, inhibitors, and resistance. Clin. Cancer Res. 2013, 19, 1933–1940. [Google Scholar] [CrossRef] [PubMed]
- Bader, M.S.; Meyer, S.C. JAK2 in Myeloproliferative Neoplasms: Still a Protagonist. Pharmaceuticals 2022, 15, 160. [Google Scholar] [CrossRef]
- Anelli, L.; Zagaria, A.; Specchia, G.; Albano, F. The JAK2 GGCC (46/1) Haplotype in Myeloproliferative Neoplasms: Causal or Random? Int. J. Mol. Sci. 2018, 19, 1152. [Google Scholar] [CrossRef]
- Olcaydu, D.; Harutyunyan, A.; Jäger, R.; Berg, T.; Gisslinger, B.; Pabinger, I.; Gisslinger, H.; Kralovics, R. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat. Genet. 2009, 41, 450–454. [Google Scholar] [CrossRef]
- Perrone, M.; Sergio, S.; Tarantino, A.; Loglisci, G.; Matera, R.; Seripa, D.; Maffia, M.; Di Renzo, N. Association of JAK2 Haplotype GGCC_46/1 with the Response to Onco-Drug in MPNs Patients Positive for JAK2V617F Mutation. Onco 2024, 4, 241–256. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Arbitman, L.; Zhang, H.; Shao, H.; Martin, M.; Moscinski, L.; Song, J. Current Advances in the Diagnosis and Treatment of Major Myeloproliferative Neoplasms. Cancers 2025, 17, 1834. [Google Scholar] [CrossRef]
- Ng, Z.Y.; Fuller, K.A.; Mazza-Parton, A.; Erber, W.N. Morphology of myeloproliferative neoplasms. Int. J. Lab. Hematol. 2023, 45, 59–70. [Google Scholar] [CrossRef]
- Gianelli, U.; Thiele, J.; Orazi, A.; Gangat, N.; Vannucchi, A.M.; Tefferi, A.; Kvasnicka, H.M. International Consensus Classification of myeloid and lymphoid neoplasms: Myeloproliferative neoplasms. Virchows Arch. 2023, 482, 53–68. [Google Scholar] [CrossRef]
- Barbui, T.; Tefferi, A.; Vannucchi, A.M.; Passamonti, F.; Silver, R.T.; Hoffman, R.; Verstovsek, S.; Mesa, R.; Kiladjian, J.-J.; Hehlmann, R.; et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: Revised management recommendations from European LeukemiaNet. Leukemia 2018, 32, 1057–1069. [Google Scholar] [CrossRef]
- Thapa, B.; Fazal, S.; Parsi, M.; Rogers, H.J. Myeloproliferative Neoplasms; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Satué, K.; Gardon, J.C.; Muñoz, A. A review of current knowledge of myeloproliferative disorders in the horse. Acta Vet. Scand. 2021, 63, 8. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.-M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating morphologic, clinical, and genomic data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Bae, S.H.; Bang, S.-M.; Eom, K.-S.; Hong, J.; Jang, S.; Jung, C.W.; Kim, H.-J.; Kim, H.Y.; Kim, M.K.; et al. The 2020 revision of the guidelines for the management of myeloproliferative neoplasms. Korean J. Intern. Med. 2021, 36, 45–62. [Google Scholar] [CrossRef]
- Aljagthmi, A.A.; Abdel-Aziz, A.K. Hematopoietic stem cells: Understanding the mechanisms to unleash the therapeutic potential of hematopoietic stem cell transplantation. Stem Cell Res. Ther. 2025, 16, 60. [Google Scholar] [CrossRef]
- Josil, J.; Thuillier, E.; Chambrun, L.; Plo, I. Natural history of myeloproliferative neoplasms by a phylogenetic tree-based approach. Med. Sci. 2024, 40, 209–211. [Google Scholar] [CrossRef]
- Verma, T.; Papadantonakis, N.; Barclift, D.P.; Zhang, L. Molecular Genetic Profile of Myelofibrosis: Implications in the Diagnosis, Prognosis, and Treatment Advancements. Cancers 2024, 16, 514. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, D.; Kremyanskaya, M.; Mascarenhas, J.; Hoffman, R. Diagnosis and Treatment of Polycythemia Vera. JAMA 2025, 333, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Castro, R.; Barranco-Lampón, G.; Arana-Luna, L.L.; Álvarez-Vera, J.L.; Rojas-Castillejos, F.; Peñaloza-Ramírez, R.; Carballo-Zarate, A.A.; Olarte-Carrillo, I.; Minamy, J.I.-G.; López-Salazar, J.; et al. Polycythaemia vera. Gac. Med. Mex. 2022, 158, 11–16. [Google Scholar] [CrossRef]
- Tefferi, A. Primary myelofibrosis: 2021 update on diagnosis, risk-stratification and management. Am. J. Hematol. 2021, 96, 145–162. [Google Scholar] [CrossRef]
- Tefferi, A.; Mudireddy, M.; Mannelli, F.; Begna, K.H.; Patnaik, M.M.; Hanson, C.A.; Ketterling, R.P.; Gangat, N.; Yogarajah, M.; De Stefano, V.; et al. Blast phase myeloproliferative neoplasm: Mayo-AGIMM study of 410 patients from two separate cohorts. Leukemia 2018, 32, 1200–1210. [Google Scholar] [CrossRef] [PubMed]
- Genthon, A.; Killian, M.; Mertz, P.; Cathebras, P.; De Mestral, S.G.; Guyotat, D.; Chalayer, E. Myelofibrosis: A review. Rev. Med. Interne 2021, 42, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Gopalan, S.; Smith, S.P.; Korunes, K.; Hamid, I.; Ramachandran, S.; Goldberg, A. Human genetic admixture through the lens of population genomics. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2022, 377, 20200410. [Google Scholar] [CrossRef] [PubMed]
- Paes, J.; Silva, G.A.V.; Tarragô, A.M.; Mourão, L.P.d.S. The Contribution of JAK2 46/1 Haplotype in the Predisposition to Myeloproliferative Neoplasms. Int. J. Mol. Sci. 2022, 23, 12582. [Google Scholar] [CrossRef]
- Yamaoka, K.; Saharinen, P.; Pesu, M.; Holt, V.E.; Silvennoinen, O.; O’Shea, J.J. The Janus kinases (Jaks). Genome Biol. 2004, 5, 253. [Google Scholar] [CrossRef]
- Tanner, J.W.; Chen, W.; Young, R.L.; Longmore, G.D.; Shaw, A.S. The conserved box 1 motif of cytokine receptors is required for association with JAK kinases. J. Biol. Chem. 1995, 270, 6523–6530. [Google Scholar] [CrossRef]
- Ferrao, R.D.; Wallweber, H.J.; Lupardus, P.J. Receptor-mediated dimerization of JAK2 FERM domains is required for JAK2 activation. eLife 2018, 7, 38089. [Google Scholar] [CrossRef]
- Imada, K.; Leonard, W.J. The Jak-STAT pathway. Mol. Immunol. 2000, 37, 1–11. [Google Scholar] [CrossRef]
- Staerk, J.; Constantinescu, S.N. The JAK-STAT pathway and hematopoietic stem cells from the JAK2 V617F perspective. JAK-STAT 2012, 1, 184–190. [Google Scholar] [CrossRef]
- Nair, P.C.; Piehler, J.; Tvorogov, D.; Ross, D.M.; Lopez, A.F.; Gotlib, J.; Thomas, D. Next-Generation JAK2 Inhibitors for the Treatment of Myeloproliferative Neoplasms: Lessons from Structure-Based Drug Discovery Approaches. Blood Cancer Discov. 2023, 4, 352–364. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Liu, Y.; Zhang, M.; Zhang, J. New advances in the role of JAK2 V617F mutation in myeloproliferative neoplasms. Cancer 2024, 130, 4229–4240. [Google Scholar] [CrossRef]
- Abraham, B.G.; Haikarainen, T.; Vuorio, J.; Girych, M.; Virtanen, A.T.; Kurttila, A.; Karathanasis, C.; Heilemann, M.; Sharma, V.; Vattulainen, I.; et al. Molecular basis of JAK2 activation in erythropoietin receptor and pathogenic JAK2 signaling. Sci. Adv. 2024, 10, eadl2097. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, S.R. Mechanistic Insights into Regulation of JAK2 Tyrosine Kinase. Front. Endocrinol. 2017, 8, 361. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, H.; Cumano, A.; Müller, M.; Wu, H.; Huffstadt, U.; Pfeffer, K. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 1998, 93, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Funakoshi-Tago, M.; Pelletier, S.; Matsuda, T.; Parganas, E.; Ihle, J.N. Receptor specific downregulation of cytokine signaling by autophosphorylation in the FERM domain of Jak2. EMBO J. 2006, 25, 4763–4772. [Google Scholar] [CrossRef]
- Ferrao, R.; Lupardus, P.J. The Janus Kinase (JAK) FERM and SH2 Domains: Bringing Specificity to JAK–Receptor Interactions. Front. Endocrinol. 2017, 8, 71. [Google Scholar] [CrossRef]
- Mazurkiewicz-Munoz, A.M.; Argetsinger, L.S.; Kouadio, J.-L.K.; Stensballe, A.; Jensen, O.N.; Cline, J.M.; Carter-Su, C. Phosphorylation of JAK2 at Serine 523: A Negative Regulator of JAK2 That Is Stimulated by GrowthHormone and Epidermal Growth Factor. Mol. Cell. Biol. 2006, 26, 4052–4062. [Google Scholar] [CrossRef]
- Ngoc, N.T.; Hau, B.B.; Vuong, N.B.; Xuan, N.T. JAK2 rs10974944 is associated with both V617F-positive and negative myeloproliferative neoplasms in a Vietnamese population: A potential genetic marker. Mol. Genet. Genom. Med. 2022, 10, e2044. [Google Scholar] [CrossRef]
- Silvennoinen, O.; Hubbard, S.R. Molecular insights into regulation of JAK2 in myeloproliferative neoplasms. Blood 2015, 125, 3388–3392. [Google Scholar] [CrossRef]
- Dusa, A.; Mouton, C.; Pecquet, C.; Herman, M.; Constantinescu, S.N. JAK2 V617F constitutive activation requires JH2 residue F595: A pseudokinase domain target for specific inhibitors. PLoS ONE 2010, 5, e11157. [Google Scholar] [CrossRef]
- Leroy, E.; Dusa, A.; Colau, D.; Motamedi, A.; Cahu, X.; Mouton, C.; Huang, L.J.; Shiau, A.K.; Constantinescu, S.N. Uncoupling JAK2 V617F activation from cytokine-induced signalling by modulation of JH2 αC helix. Biochem. J. 2016, 473, 1579–1591. [Google Scholar] [CrossRef] [PubMed]
- Agashe, R.P.; Lippman, S.M.; Kurzrock, R. JAK: Not Just Another Kinase. Mol. Cancer Ther. 2022, 21, 1757–1764. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, S.; Friedbichler, K.; Boudot, C.; Bourgeais, J.; Gouilleux-Gruart, V.; Régnier, A.; Herault, O.; Moriggl, R.; Gouilleux, F. STAT5A/5B-specific expansion and transformation of hematopoietic stem cells. Blood Cancer J. 2017, 7, e514. [Google Scholar] [CrossRef] [PubMed]
- Teofili, L.; Martini, M.; Cenci, T.; Petrucci, G.; Torti, L.; Storti, S.; Guidi, F.; Leone, G.; Larocca, L.M. Different STAT-3 and STAT-5 phosphorylation discriminates among Ph-negative chronic myeloproliferative diseases and is independent of the V617F JAK-2 mutation. Blood 2007, 110, 354–359. [Google Scholar] [CrossRef]
- Tefferi, A.; Lasho, T.L.; Mudireddy, M.; Finke, C.M.; Hanson, C.A.; Ketterling, R.P.; Gangat, N.; Pardanani, A. The germline JAK2 GGCC (46/1) haplotype and survival among 414 molecularly-annotated patients with primary myelofibrosis. Am. J. Hematol. 2019, 94, 299–305. [Google Scholar] [CrossRef]
- Jones, A.V.; Chase, A.; Silver, R.T.; Oscier, D.; Zoi, K.; Wang, Y.L.; Cario, H.; Pahl, H.L.; Collins, A.; Reiter, A.; et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat. Genet. 2009, 41, 446–449. [Google Scholar] [CrossRef]
- Vannucchi, A.M.; Guglielmelli, P. The JAK2 46/1 (GGCC) MPN-predisposing haplotype: A risky haplotype, after all. Am. J. Hematol. 2019, 94, 283–285. [Google Scholar] [CrossRef]
- Hermouet, S.; Vilaine, M. The JAK2 46/1 haplotype: A marker of inappropriate myelomonocytic response to cytokine stimulation, leading to increased risk of inflammation, myeloid neoplasm, and impaired defense against infection? Haematologica 2011, 96, 1575–1579. [Google Scholar] [CrossRef]
- Nasillo, V.; Riva, G.; Paolini, A.; Forghieri, F.; Roncati, L.; Lusenti, B.; Maccaferri, M.; Messerotti, A.; Pioli, V.; Gilioli, A.; et al. Inflammatory Microenvironment and Specific T Cells in Myeloproliferative Neoplasms: Immunopathogenesis and Novel Immunotherapies. Int. J. Mol. Sci. 2021, 22, 1906. [Google Scholar] [CrossRef]
- Harutyunyan, A.S.; Giambruno, R.; Krendl, C.; Stukalov, A.; Klampfl, T.; Berg, T.; Chen, D.; Feenstra, J.D.M.; Jäger, R.; Gisslinger, B.; et al. Germline RBBP6 mutations in familial myeloproliferative neoplasms. Blood 2016, 127, 362–365. [Google Scholar] [CrossRef]
- Silva, S.P.E.; Santos, B.C.; Pereira, E.M.d.F.; Ferreira, M.E.; Baraldi, E.C.; Sell, A.M.; Visentainer, J.E.L. Evaluation of the association between the JAK2 46/1 haplotype and chronic myeloproliferative neoplasms in a Brazilian population. Clinics 2013, 68, 5–9. [Google Scholar] [CrossRef]
- Hinds, D.A.; Barnholt, K.E.; Mesa, R.A.; Kiefer, A.K.; Do, C.B.; Eriksson, N.; Mountain, J.L.; Francke, U.; Tung, J.Y.; Nguyen, H.; et al. Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood 2016, 128, 1121–1128. [Google Scholar] [CrossRef] [PubMed]
- Guglielmelli, P.; Biamonte, F.; Spolverini, A.; Pieri, L.; Isgrò, A.; Antonioli, E.; Pancrazzi, A.; Bosi, A.; Barosi, G.; Vannucchi, A.M. Frequency and clinical correlates of JAK2 46/1 (GGCC) haplotype in primary myelofibrosis. Leukemia 2010, 24, 1533–1537. [Google Scholar] [CrossRef] [PubMed]
- Baumeister, J.; Chatain, N.; Sofias, A.M.; Lammers, T.; Koschmieder, S. Progression of Myeloproliferative Neoplasms (MPN): Diagnostic and Therapeutic Perspectives. Cells 2021, 10, 3551. [Google Scholar] [CrossRef] [PubMed]
- Hur, J.Y.; Choi, N.; Choi, J.H.; Kim, J.; Won, Y.W. Risk of thrombosis, hemorrhage and leukemic transformation in patients with myeloproliferative neoplasms: A nationwide longitudinal cohort study. Thromb Res. 2024, 236, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Rumi, E.; Cazzola, M. Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. Blood 2017, 129, 680–692. [Google Scholar] [CrossRef]
- Abu-Zeinah, G.; Krichevsky, S.; Cruz, T.; Hoberman, G.; Jaber, D.; Savage, N.; Sosner, C.; Ritchie, E.K.; Scandura, J.M.; Silver, R.T. Interferon-alpha for treating polycythemia vera yields improved myelofibrosis-free and overall survival. Leukemia 2021, 35, 2592–2601. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mascarenhas, J.; Kosiorek, H.E.; Prchal, J.T.; Rambaldi, A.; Berenzon, D.; Yacoub, A.; Harrison, C.N.; McMullin, M.F.; Vannucchi, A.M.; Ewing, J.; et al. A randomized phase 3 trial of interferon-α vs hydroxyurea in polycythemia vera and essential thrombocythemia. Blood 2022, 139, 2931–2941. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Musiałek, M.W.; Rybaczek, D. Hydroxyurea—The Good, the Bad and the Ugly. Genes 2021, 12, 1096. [Google Scholar] [CrossRef]
- James, C.; Ugo, V.; Le Couédic, J.-P.; Staerk, J.; Delhommeau, F.; Lacout, C.; Garçon, L.; Raslova, H.; Berger, R.; Bennaceur-Griscelli, A.; et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005, 434, 1144–1148. [Google Scholar] [CrossRef]
- Bertsias, G. Therapeutic targeting of JAKs: From hematology to rheumatology and from the first to the second generation of JAK inhibitors. Mediterr. J. Rheumatol. 2020, 31, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Verstovsek, S.; Mesa, R.A.; Gotlib, J.; Levy, R.S.; Gupta, V.; DiPersio, J.F.; Catalano, J.V.; Deininger, M.W.; Miller, C.B.; Silver, R.T.; et al. Efficacy, safety, and survival with ruxolitinib in patients with myelofibrosis: Results of a median 3-year follow-up of COMFORT-I. Haematologica 2015, 100, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Passamonti, F.; Maffioli, M. The role of JAK2 inhibitors in MPNs 7 years after approval. Blood 2018, 131, 2426–2435. [Google Scholar] [CrossRef]
- Harrison, C.N.; Schaap, N.; A Mesa, R. Management of myelofibrosis after ruxolitinib failure. Ann. Hematol. 2020, 99, 1177–1191. [Google Scholar] [CrossRef]
- Bewersdorf, J.P.; Jaszczur, S.M.; Afifi, S.; Zhao, J.C.; Zeidan, A.M. Beyond Ruxolitinib: Fedratinib and Other Emergent Treatment Options for Myelofibrosis. Cancer Manag. Res. 2019, 11, 10777–10790. [Google Scholar] [CrossRef]
- Talpaz, M.; Kiladjian, J.-J. Fedratinib, a newly approved treatment for patients with myeloproliferative neoplasm-associated myelofibrosis. Leukemia 2021, 35, 1–17. [Google Scholar] [CrossRef]
- Ross, D.M.; Babon, J.J.; Tvorogov, D.; Thomas, D. Persistence of myelofibrosis treated with ruxolitinib: Biology and clinical implications. Haematologica 2021, 106, 1244–1253. [Google Scholar] [CrossRef]
- Gerds, A.T.; Gotlib, J.; Ali, H.; Bose, P.; Dunbar, A.; Elshoury, A.; George, T.I.; Gundabolu, K.; Hexner, E.; Hobbs, G.S.; et al. Myeloproliferative Neoplasms, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 1033–1062. [Google Scholar] [CrossRef] [PubMed]
- Putter, J.S.; Seghatchian, J. Polycythaemia vera: Molecular genetics, diagnostics and therapeutics. Vox Sang. 2021, 116, 617–627. [Google Scholar] [CrossRef]
- Ajayi, S.; Becker, H.; Reinhardt, H.; Engelhardt, M.; Zeiser, R.; von Bubnoff, N.; Wäsch, R. Ruxolitinib. Recent Results Cancer Res. 2018, 212, 119–132. [Google Scholar] [CrossRef]
- Tefferi, A.; Barbui, T. Polycythemia vera: 2024 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2023, 98, 1465–1487. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Larrán, A.; Cervantes, F.; Besses, C. Treatment of essential thrombocythemia. Med. Clin. 2013, 141, 260–264. [Google Scholar] [CrossRef]
- Park, Y.H.; Lee, S.; Mun, Y.; Park, D.J. Prognostic value of modified criteria for hydroxyurea resistance or intolerance in patients with high-risk essential thrombocythemia. Cancer Med. 2023, 12, 8073–8082. [Google Scholar] [CrossRef] [PubMed]
- Barosi, G.; Besses, C.; Birgegard, G.; Briere, J.; Cervantes, F.; Finazzi, G.; Gisslinger, H.; Griesshammer, M.; Gugliotta, L.; Harrison, C.; et al. A unified definition of clinical resistance/intolerance to hydroxyurea in essential thrombocythemia: Results of a consensus process by an international working group. Leukemia 2007, 21, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Trillos, A.; Gaya, A.; Maffioli, M.; Arellano-Rodrigo, E.; Calvo, X.; Díaz-Beyá, M.; Cervantes, F. Efficacy and tolerability of hydroxyurea in the treatment of the hyperproliferative manifestations of myelofibrosis: Results in 40 patients. Ann. Hematol. 2010, 89, 1233–1237. [Google Scholar] [CrossRef] [PubMed]
- Newberry, K.J.; Patel, K.; Masarova, L.; Luthra, R.; Manshouri, T.; Jabbour, E.; Bose, P.; Daver, N.; Cortes, J.; Kantarjian, H.; et al. Clonal evolution and outcomes in myelofibrosis after ruxolitinib discontinuation. Blood 2017, 130, 1125–1131. [Google Scholar] [CrossRef]
- Williams, D.A. Pairing JAK with MEK for improved therapeutic efficiency in myeloproliferative disorders. J. Clin. Investig. 2019, 129, 1519–1521. [Google Scholar] [CrossRef]
- Hajmirza, A.; Emadali, A.; Gauthier, A.; Casasnovas, O.; Gressin, R.; Callanan, M. BET Family Protein BRD4: An Emerging Actor in NFκB Signaling in Inflammation and Cancer. Biomedicines 2018, 6, 16. [Google Scholar] [CrossRef]
- A Valenta, J.; Fiskus, W.; Manshouri, T.; Sharma, S.; Qi, J.; Schaub, L.J.; Shah, B.; Rodriguez, M.M.; Devaraj, S.; Iyer, S.P.; et al. Combined Therapy With BRD4 Antagonist and JAK Inhibitor Is Synergistically Lethal Against Human Myeloproliferative Neoplasm (MPN) Cells. Blood 2013, 122, 2842. [Google Scholar] [CrossRef]
- Kleppe, M.; Koche, R.; Zou, L.; van Galen, P.; Hill, C.E.; Dong, L.; De Groote, S.; Papalexi, E.; Somasundara, A.V.H.; Cordner, K.; et al. Dual Targeting of Oncogenic Activation and Inflammatory Signaling Increases Therapeutic Efficacy in Myeloproliferative Neoplasms. Cancer Cell 2018, 33, 29–43.e7. [Google Scholar] [CrossRef]
- Verstovsek, S.; Mesa, R.A.; Gotlib, J.; Levy, R.S.; Gupta, V.; DiPersio, J.F.; Catalano, J.V.; Deininger, M.; Miller, C.; Silver, R.T.; et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N. Engl. J. Med. 2012, 366, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Koppikar, P.; Bhagwat, N.; Kilpivaara, O.; Manshouri, T.; Adli, M.; Hricik, T.; Liu, F.; Saunders, L.M.; Mullally, A.; Abdel-Wahab, O.; et al. Heterodimeric JAK–STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature 2012, 489, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-C.; Chiu, C.-C.; Lee, K.-D.; Hsu, C.-C.; Chen, H.-C.; Huang, T.H.-M.; Hsiao, S.-H.; Leu, Y.-W. JAK2V617F influences epigenomic changes in myeloproliferative neoplasms. Biochem. Biophys. Res. Commun. 2017, 494, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Wang, H.; Zheng, J.; Han, Y.; Huang, H.; Qian, P. Epigenetic regulation of hematopoietic stem cell homeostasis. Blood Sci. 2019, 1, 19–28. [Google Scholar] [CrossRef]
- Saleem, M.; Aden, L.A.; Mutchler, A.L.; Basu, C.; Ertuglu, L.A.; Sheng, Q.; Penner, N.; Hemnes, A.R.; Park, J.H.; Ishimwe, J.A.; et al. Myeloid-Specific JAK2 Contributes to Inflammation and Salt Sensitivity of Blood Pressure. Circ. Res. 2024, 135, 890–909. [Google Scholar] [CrossRef]
- Greenfield, G.; McMullin, M.F. Epigenetics in myeloproliferative neoplasms. Front. Oncol. 2023, 13, 1206965. [Google Scholar] [CrossRef]
- Courtier, F.; Carbuccia, N.; Garnier, S.; Guille, A.; Adélaïde, J.; Cervera, N.; Gelsi-Boyer, V.; Mozziconacci, M.-J.; Rey, J.; Vey, N.; et al. Genomic analysis of myeloproliferative neoplasms in chronic and acute phases. Haematologica 2017, 102, e11–e14. [Google Scholar] [CrossRef]
- Kilpivaara, O.; Mukherjee, S.; Schram, A.M.; Wadleigh, M.; Mullally, A.; Ebert, B.L.; Bass, A.; Marubayashi, S.; Heguy, A.; Garcia-Manero, G.; et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat. Genet. 2009, 41, 455–459. [Google Scholar] [CrossRef]
- Moliterno, A.R.; Kaizer, H. Applied genomics in MPN presentation. Hematol. Am. Soc. Hematol. Educ. Program 2020, 2020, 434–439. [Google Scholar] [CrossRef]
- Macedo, L.C.; Santos, B.C.; Pagliarini-e-Silva, S.; Pagnano, K.B.B.; Rodrigues, C.; Quintero, F.C.; Ferreira, M.E.; Baraldi, E.C.; Ambrosio-Albuquerque, E.P.; Sell, A.M.; et al. JAK2 46/1 haplotype is associated with JAK2 V617F—positive myeloproliferative neoplasms in Brazilian patients. Int. J. Lab. Hematol. 2015, 37, 654–660. [Google Scholar] [CrossRef]
- Hemminki, K.; Försti, A.; Bermejo, J.L. The “common disease-common variant” hypothesis and familial risks. PLoS ONE 2008, 3, e2504. [Google Scholar] [CrossRef] [PubMed]
- Carreño-Tarragona, G.; Tiana, M.; Rouco, R.; Leivas, A.; Victorino, J.; García-Vicente, R.; Chase, A.J.; Maidana, A.; Tapper, W.J.; Ayala, R.; et al. The JAK2 46/1 haplotype influences PD-L1 expression. Blood 2025, 145, 2196–2201. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Ren, J.; Chen, H.; Wang, Y.; Liu, Q.; Zhang, R.; Jiang, S.-W.; Li, J. Cytostatic and apoptotic effects of DNMT and HDAC inhibitors in endometrial cancer cells. Curr. Pharm. Des. 2014, 20, 1881–1887. [Google Scholar] [CrossRef] [PubMed]
- Parveen, R.; Harihar, D.; Chatterji, B.P. Recent histone deacetylase inhibitors in cancer therapy. Cancer 2023, 129, 3372–3380. [Google Scholar] [CrossRef]
- Ramos, T.L.; Sánchez-Abarca, L.I.; Redondo, A.; Hernández-Hernández, Á.; Almeida, A.M.; Puig, N.; Rodríguez, C.; Ortega, R.; Preciado, S.; Rico, A.; et al. HDAC8 overexpression in mesenchymal stromal cells from JAK2+ myeloproliferative neoplasms: A new therapeutic target? Oncotarget 2017, 8, 28187–28202. [Google Scholar] [CrossRef]
- Zeng, H.; Qu, J.; Jin, N.; Xu, J.; Lin, C.; Chen, Y.; Yang, X.; He, X.; Tang, S.; Lan, X.; et al. Feedback Activation of Leukemia Inhibitory Factor Receptor Limits Response to Histone Deacetylase Inhibitors in Breast Cancer. Cancer Cell 2016, 30, 459–473. [Google Scholar] [CrossRef]
- Kim, D.J. The Role of the DNA Methyltransferase Family and the Therapeutic Potential of DNMT Inhibitors in Tumor Treatment. Curr. Oncol. 2025, 32, 88. [Google Scholar] [CrossRef]
- Gan, F.; Zhou, X.; Zhou, Y.; Hou, L.; Chen, X.; Pan, C.; Huang, K. Nephrotoxicity instead of immunotoxicity of OTA is induced through DNMT1-dependent activation of JAK2/STAT3 signaling pathway by targeting SOCS3. Arch. Toxicol. 2019, 93, 1067–1082. [Google Scholar] [CrossRef]
- Wei, K.-L.; Chou, J.-L.; Chen, Y.-C.; Jin, H.; Chuang, Y.-M.; Wu, C.-S.; Chan, M.W.Y. Methylomics analysis identifies a putative STAT3 target, SPG20, as a noninvasive epigenetic biomarker for early detection of gastric cancer. PLoS ONE 2019, 14, e0218338. [Google Scholar] [CrossRef]
- Masarova, L.; Verstovsek, S.; Hidalgo-Lopez, J.E.; Pemmaraju, N.; Bose, P.; Estrov, Z.; Jabbour, E.J.; Ravandi-Kashani, F.; Takahashi, K.; Cortes, J.E.; et al. A phase 2 study of ruxolitinib in combination with azacitidine in patients with myelofibrosis. Blood 2018, 132, 1664–1674. [Google Scholar] [CrossRef]
- Assi, R.; Kantarjian, H.M.; Garcia-Manero, G.; Cortes, J.E.; Pemmaraju, N.; Wang, X.; Nogueras-Gonzalez, G.; Jabbour, E.; Bose, P.; Kadia, T.; et al. A phase II trial of ruxolitinib in combination with azacytidine in myelodysplastic syndrome/myeloproliferative neoplasms. Am. J. Hematol. 2018, 93, 277–285. [Google Scholar] [CrossRef]
- Manzotti, G.; Ciarrocchi, A.; Sancisi, V. Inhibition of BET Proteins and Histone Deacetylase (HDACs): Crossing Roads in Cancer Therapy. Cancers 2019, 11, 304. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Okhovat, J.-P.; Hong, E.K.; Kim, Y.H.; Wood, G.S. Preclinical Studies Support Combined Inhibition of BET Family Proteins and Histone Deacetylases as Epigenetic Therapy for Cutaneous T-Cell Lymphoma. Neoplasia 2019, 21, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Rampal, R.K.; Grosicki, S.; Chraniuk, D.; Abruzzese, E.; Bose, P.; Gerds, A.T.; Vannucchi, A.M.; Palandri, F.; Lee, S.-E.; Gupta, V.; et al. Pelabresib plus ruxolitinib for JAK inhibitor-naive myelofibrosis: A randomized phase 3 trial. Nat. Med. 2025, 31, 1531–1538. [Google Scholar] [CrossRef] [PubMed]
- Novotny-Diermayr, V.; Hart, S.; Goh, K.C.; Cheong, A.; Ong, L.-C.; Hentze, H.; Pasha, M.K.; Jayaraman, R.; Ethirajulu, K.; Wood, J.M. The oral HDAC inhibitor pracinostat (SB939) is efficacious and synergistic with the JAK2 inhibitor pacritinib (SB1518) in preclinical models of AML. Blood Cancer J. 2012, 2, e69. [Google Scholar] [CrossRef]
- Wolf, A.; Eulenfeld, R.; Gäbler, K.; Rolvering, C.; Haan, S.; Behrmann, I.; Denecke, B.; Haan, C.; Schaper, F. JAK2-V617F-induced MAPK activity is regulated by PI3K and acts synergistically with PI3K on the proliferation of JAK2-V617F-positive cells. JAK-STAT 2013, 2, e24574. [Google Scholar] [CrossRef]
- Trifa, A.P.; Cucuianu, A.; Popp, R.A. Development of a reliable PCR-RFLP assay for investigation of the JAK2 rs10974944 SNP, which might predispose to the acquisition of somatic mutation JAK2(V617F). Acta Haematol. 2010, 123, 84–87. [Google Scholar] [CrossRef]




| Title | Year of Publication | Main Discovery | Limits |
|---|---|---|---|
| A germline JAK2 SNP is associated with predisposition to the development of JAK2 V617F -positive myeloproliferative neoplasms (doi: 10.1038/ng.342) | 2009 | This study demonstrates that the V617F mutation is preferentially acquired in cis with the 46/1 haplotype, suggesting a key role of the predisposition allele in MPN acquisition. | Further studies are required to confirm the data obtained. |
| JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms (doi: 10.1038/ng.334) | 2009 | This study highlights the role of the 46/1 haplotype in the predisposition to MPN. | Further studies are required to confirm the data obtained. |
| JAK2 46/1 haplotype analysis in myeloproliferative neoplasms and acute myeloid leukemia (doi: 10.1038/leu.2010.172) | 2010 | This study confirms that the haplotype is a predisposing factor for V617F-positive MPNs acquisition. It also consolidates the hypothesis that this mutation preferentially arises on the considered haplotype. | Further studies are required to confirm the data obtained. |
| Evaluation of the association between the JAK2 46/1 haplotype and chronic myeloproliferative neoplasms in a Brazilian population (doi: 10.6061/clinics/2013(01) oa02) | 2013 | This study confirms the association between the 46/1 haplotype and BCR/ABL-negative MPNs. | Further studies are needed to investigate the molecular and genetic mechanisms of intracellular signaling involved in this pathway and to identify new biomarkers for diagnostic and therapeutic purposes. |
| The influence of novel transcriptional regulatory element in intron 14 on the expression of Janus kinase 2 gene in myeloproliferative neoplasms (doi: 10.1007/s13353-012-0125-x) | 2013 | This study suggests that the haplotype expression does not interfere with Jak2 gene expression in MPN patients. | Further studies are required to confirm the data obtained. |
| JAK2 46/1 haplotype is associated with JAK2 V617F positive myeloproliferative neoplasms in Brazilian patients (doi: 10.1111/ijlh.12380) | 2015 | In the present work, the G allele of the 46/1 haplotype has been associated with MPNs, especially in V617F-positive patients and with higher levels of hemoglobin in the Brazilian population. | Further studies are needed to confirm the data obtained and to investigate the epidemiological distribution of the considered variant. |
| The germline JAK2 GGCC (46/1) haplotype and survival among 414 molecularly annotated patients with primary myelofibrosis (doi: 10.1002/ajh.25349) | 2019 | This study reveals that nullizygosity for the 46/1 haplotype is associated with inferior survival in patients with JAK2 V617F-positive PMF. | Further studies are needed to confirm the data obtained with a stronger statistical analysis. |
| Association of JAK2 Haplotype GGCC_46/1 with the Response to Onco-Drug in MPNs Patients Positive for JAK2 V617F Mutation (doi.org/10.3390/onco4030018) | 2024 | This work highlights that G/G allele is associated with disease progression to myelofibrosis and certain resistance-related clinical parameters. | The narrow cardinality of the sample under study does not allow a significant static correlation to validate the preliminary results obtained. |
| 3D insights: JAK2 46/1 haplotype shapes MPN development (doi: 10.1182/blood.2025028547) | 2025 | This study investigates the link between immune checkpoint regulation and the 46/1 haplotype. It suggests that an immunosuppressive microenvironment in the bone marrow could be triggered by the presence of MPN-derived stem cells characterized by high PD-L1 expression. This background could stimulate the clonal expansion of cells with JAK2 mutations, explaining the genetic predisposition to MPNs. Moreover, the study highlighted that the physical interaction between PD-L1 and JAK2 changes in patients with the 46/1 haplotype and in those who have the non-risk haplotype. | The unclear mechanism of PD-L1 in MPN pathogenesis must be studied. |
| The JAK2 46/1 haplotype influences PD-L1 expression (doi: 10.1182/blood.2023023787) | 2025 | The present study suggests a new mechanism by which the haplotype could predispose to an increased risk of developing MPNs. In fact, it might be influenced by a concomitant higher expression of PD-L1. | Further studies are required to confirm the data obtained. |
| NCT/Identifier | Epigenetic Agent(s) | JAK Inhibitor(s) | MPN Population/Phase(s) | Key Endpoints / Preliminary Results | Status (Recruiting /Complete/Not Recruiting) |
|---|---|---|---|---|---|
| NCT01787487 (doi: 10.1182/blood-2018-04-846626) | Azacitidine (hypomethylating agent) | Ruxolitinib | Myelofibrosis (PMF, post-PV MF, post-ET MF) & MDS/MPN-U etc. requiring therapy; intermediate/high risk MF etc. | Primary: Objective response rate; also, spleen reduction, improvements in bone marrow fibrosis. Results so far: IWG-MRT responses ~72%; >50% spleen reduction in many; improvements in fibrosis in ~57% at 24 months; some cytopenias as toxicity. | Recruiting; primary completion ~April 2027. |
| NCT02076191 (doi: 10.1182/bloodadvances.2020002119) | Decitabine (hypomethylating agent) | Ruxolitinib | MPN-Accelerated Phase/Blast Phase (AP/BP) disease (post-ET, post-PV, or MF) | Primary: response rate (CR, CRi, PR, etc.); median overall survival ~9.5 months; ORR ~44%. Tolerability reasonable. | Completed |
| --- (doi: 10.1080/10428194.2018.1543876) | Pracinostat (HDAC inhibitor) | Ruxolitinib | Myelofibrosis | A phase 2 study: 80% had “clinical improvement”, spleen response ~74%, symptom response ~80%, some improvements in fibrosis; toxicity (anemia, etc.) high; frequent dose reductions. | Completed/Not Recruiting |
| MANIFEST-2 (NCT04603495) (doi: 10.1038/s41591-025-03572-3) | Pelabresib (BET inhibitor — epigenetic reader) | Ruxolitinib | JAK inhibitor-naive Myelofibrosis patients | Primary endpoint (SVR≥35% at week 24) met: ~65.9% vs. ~35.2% with placebo+ruxolitinib. Also, improvements in symptoms and bone marrow morphology. | Ongoing/Recently reported Phase 3. (JAKi-naive) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perrone, M.; Sergio, S.; Pranzo, B.; Tarantino, A.; Loglisci, G.; Matera, R.; Seripa, D.; Maffia, M.; Di Renzo, N. JAK2 46/1 (GGCC) Haplotype in Oncogenesis, as Risk Stratifier, and Indicator for Drug Resistance in Myeloproliferative Neoplasms. Int. J. Mol. Sci. 2025, 26, 10337. https://doi.org/10.3390/ijms262110337
Perrone M, Sergio S, Pranzo B, Tarantino A, Loglisci G, Matera R, Seripa D, Maffia M, Di Renzo N. JAK2 46/1 (GGCC) Haplotype in Oncogenesis, as Risk Stratifier, and Indicator for Drug Resistance in Myeloproliferative Neoplasms. International Journal of Molecular Sciences. 2025; 26(21):10337. https://doi.org/10.3390/ijms262110337
Chicago/Turabian StylePerrone, Michela, Sara Sergio, Beatrice Pranzo, Amalia Tarantino, Giuseppina Loglisci, Rosella Matera, Davide Seripa, Michele Maffia, and Nicola Di Renzo. 2025. "JAK2 46/1 (GGCC) Haplotype in Oncogenesis, as Risk Stratifier, and Indicator for Drug Resistance in Myeloproliferative Neoplasms" International Journal of Molecular Sciences 26, no. 21: 10337. https://doi.org/10.3390/ijms262110337
APA StylePerrone, M., Sergio, S., Pranzo, B., Tarantino, A., Loglisci, G., Matera, R., Seripa, D., Maffia, M., & Di Renzo, N. (2025). JAK2 46/1 (GGCC) Haplotype in Oncogenesis, as Risk Stratifier, and Indicator for Drug Resistance in Myeloproliferative Neoplasms. International Journal of Molecular Sciences, 26(21), 10337. https://doi.org/10.3390/ijms262110337

